1
|
Tan C, Wang S, Barboza-Ramos I, Schanze KS. A Perspective Looking Backward and Forward on the 25th Anniversary of Conjugated Polyelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38584485 DOI: 10.1021/acsami.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conjugated polyelectrolytes are π-conjugated polymers that contain ionic charged groups such as sulfonate (R-SO3-), carboxylate (R-COO-), or ammonium (R-NR3+) combined with a π-conjugated backbone. This perspective provides a summary review of the key developments in the field, starting from the first reports of their synthesis and properties to application-focused developments. The applications include optical sensors for molecular and biomolecular targets, organic electronic applications, and specific biological applications including cellular imaging and photodynamic therapy. This perspective concludes with a discussion of where the field of conjugated polyelectrolytes is expected to lead in the coming years.
Collapse
Affiliation(s)
- Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Isaí Barboza-Ramos
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
2
|
Zhang X, Zhou C, Hou J, Feng G, Xu Z, Shao Y, Yang C, Xu G. Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification. BIOSENSORS 2024; 14:105. [PMID: 38392025 PMCID: PMC10887168 DOI: 10.3390/bios14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Precise DNA quantification and nuclear imaging are pivotal for clinical testing, pathological diagnosis, and drug development. The detection and localization of mitochondrial DNA serve as crucial indicators of cellular health. We introduce a novel conjugated oligoelectrolyte (COE) molecule, COE-S3, featuring a planar backbone composed of three benzene rings and terminal side chains. This unique amphiphilic structure endows COE-S3 with exceptional water solubility, a high quantum yield of 0.79, and a significant fluorescence Stokes shift (λex = 366 nm, λem = 476 nm), alongside a specific fluorescence response to DNA. The fluorescence intensity correlates proportionally with DNA concentration. COE-S3 interacts with double-stranded DNA (dsDNA) through an intercalation binding mode, exhibiting a binding constant (K) of 1.32 × 106 M-1. Its amphiphilic nature and strong DNA affinity facilitate its localization within mitochondria in living cells and nuclei in apoptotic cells. Remarkably, within 30 min of COE-S3 staining, cell vitality can be discerned through real-time nuclear fluorescence imaging of apoptotic cells. COE-S3's high DNA selectivity enables quantitative intracellular DNA analysis, providing insights into cell proliferation, differentiation, and growth. Our findings underscore COE-S3, with its strategically designed, shortened planar backbone, as a promising intercalative probe for DNA quantification and nuclear imaging.
Collapse
Affiliation(s)
- Xinmeng Zhang
- Shenzhen Testing Center of Medical Devices, Shenzhen Institute for Drug Control, Shenzhen 518057, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jianxun Hou
- Shenzhen Testing Center of Medical Devices, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Shao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Barboza-Ramos I, Karuk Elmas SN, Schanze KS. Fluorogenic sensors. SENSORY POLYMERS 2024:181-223. [DOI: 10.1016/b978-0-443-13394-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Chan CWT, Chan K, Yam VWW. Induced Self-Assembly and Disassembly of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complexes with Charge Reversal Properties: "Proof-of-Principle" Demonstration of Ratiometric Förster Resonance Energy Transfer Sensing of pH. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25122-25133. [PMID: 35766435 DOI: 10.1021/acsami.2c05677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A series of pH-responsive alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complexes with charge-reversal properties was synthesized, and the supramolecular assemblies between conjugated polyelectrolyte, PFP-OSO3-, and [Pt{bzimpy(TEG)2}{C≡C-C6H3-(COOH)2-3,5}]Cl (1) have been studied using UV-vis absorption, emission, and resonance light scattering (RLS) spectroscopy. An efficient Förster resonance energy transfer (FRET) from PFP-OSO3- donor to the aggregated 1 as acceptor with the aid of Pt(II)···Pt(II) interactions has been presented, which leads to a growth of triplet metal-metal-to-ligand charge transfer (3MMLCT) emission in the low-energy red region. The two-component PFP-OSO3--1 ensemble was then exploited as a "proof-of-principle" concept strategy for pH sensing by tracking the ratiometric emission changes. With the aid of judicious molecular design on the pH-driven charge-reversal property, the polyelectrolyte-induced self-assembly and the FRET from PFP-OSO3- to the platinum(II) aggregates have been modulated. Together with its excellent reversibility and photostability, the extra stability provided by the Pt(II)···Pt(II) and π-π stacking interactions on top of the electrostatic and hydrophobic interactions existing in polyelectrolye-complex assemblies has led to a selective and sensitive pH sensing assay.
Collapse
Affiliation(s)
- Calford Wai-Ting Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Kevin Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
5
|
Nguyen TN, Phung VD, Tran VV. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. BIOSENSORS 2023; 13:586. [PMID: 37366951 DOI: 10.3390/bios13060586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, virus pandemics have become a major burden seriously affecting human health and social and economic development. Thus, the design and fabrication of effective and low-cost techniques for early and accurate virus detection have been given priority for prevention and control of such pandemics. Biosensors and bioelectronic devices have been demonstrated as promising technology to resolve the major drawbacks and problems of the current detection methods. Discovering and applying advanced materials have offered opportunities to develop and commercialize biosensor devices for effectively controlling pandemics. Along with various well-known materials such as gold and silver nanoparticles, carbon-based materials, metal oxide-based materials, and graphene, conjugated polymer (CPs) have become one of the most promising candidates for preparation and construction of excellent biosensors with high sensitivity and specificity to different virus analytes owing to their unique π orbital structure and chain conformation alterations, solution processability, and flexibility. Therefore, CP-based biosensors have been regarded as innovative technologies attracting great interest from the community for early diagnosis of COVID-19 as well as other virus pandemics. For providing precious scientific evidence of CP-based biosensor technologies in virus detection, this review aims to give a critical overview of the recent research related to use of CPs in fabrication of virus biosensors. We emphasize structures and interesting characteristics of different CPs and discuss the state-of-the-art applications of CP-based biosensors as well. In addition, different types of biosensors such as optical biosensors, organic thin film transistors (OTFT), and conjugated polymer hydrogels (CPHs) based on CPs are also summarized and presented.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Viet-Duc Phung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Vinh Van Tran
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Dinesan H, Kumar SS. Laser-Induced Fluorescence (LIF) Spectroscopy of Trapped Molecular Ions in the Gas Phase. APPLIED SPECTROSCOPY 2022; 76:1393-1411. [PMID: 36263923 DOI: 10.1177/00037028221120830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This review focuses on the laser-induced fluorescence (LIF) spectroscopy of trapped gas-phase molecular ions, a developing field of research. Following a brief description of the theory and experimental approaches employed in general for fluorescence spectroscopy, the review summarizes the current state-of-the-art intrinsic fluorescence measurement techniques employed for gas-phase ions. Whereas the LIF spectroscopy of condensed matter systems is a well-developed area of research, the instrumentation used for such studies is not directly applicable to gas-phase ions. However, some measurement schemes employed in condensed-phase experiments could be highly beneficial for gas-phase investigations. We have included a brief discussion on some of these techniques as well. Quadrupole ion traps are commonly used for spatial confinement of ions in the ion-trap-based LIF. One of the main challenges involved in such experiments is the poor signal-to-noise ratio (SNR) arising due to weak gas-phase fluorescence emission, high background noise, and small solid angle for the fluorescence collection optics. The experimental approaches based on the integrated high-finesse optical cavities employed for the condensed-phase measurements provide a better (typically an order of magnitude more) SNR in the detected fluorescence than the single-pass detection schemes. Another key to improving the SNR is to exploit the maximum solid angle of light collection by choosing high numerical aperture (NA) collection optics. A combination of these two approaches integrated with ion traps could transmogrify this field, allowing one to study even weak fluorescence emission from gas-phase molecular ions. The review concludes by discussing the scope of the advances in the LIF instrumentation for detailed spectral characterization of fluorophores of weak gas-phase fluorescence emission, considering fluorescein as one example.
Collapse
Affiliation(s)
- Hemanth Dinesan
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), 443874Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - S Sunil Kumar
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), 443874Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
7
|
Nakasha K, Fukuhara G. Dynamic hybridization of fluorescence polymers upon complexation of glucan. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Maddali H, Miles CE, Kohn J, O'Carroll DM. Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. Chembiochem 2021; 22:1176-1189. [PMID: 33119960 PMCID: PMC8048644 DOI: 10.1002/cbic.202000744] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/29/2022]
Abstract
The recent pandemic of the novel coronavirus disease 2019 (COVID-19) has caused huge worldwide disruption due to the lack of available testing locations and equipment. The use of optical techniques for viral detection has flourished in the past 15 years, providing more reliable, inexpensive, and accurate detection methods. In the current minireview, optical phenomena including fluorescence, surface plasmons, surface-enhanced Raman scattering (SERS), and colorimetry are discussed in the context of detecting virus pathogens. The sensitivity of a viral detection method can be dramatically improved by using materials that exhibit surface plasmons or SERS, but often this requires advanced instrumentation for detection. Although fluorescence and colorimetry lack high sensitivity, they show promise as point-of-care diagnostics because of their relatively less complicated instrumentation, ease of use, lower costs, and the fact that they do not require nucleic acid amplification. The advantages and disadvantages of each optical detection method are presented, and prospects for applying optical biosensors in COVID-19 detection are discussed.
Collapse
Affiliation(s)
- Hemanth Maddali
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Catherine E Miles
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
9
|
Ma L, Huang Y, Zhang H, Ning W, Qi R, Yuan H, Lv F, Liu L, Yu C, Wang S. Sensitive Detection and Conjoint Analysis of Promoter Methylation by Conjugated Polymers for Differential Diagnosis and Prognosis of Glioma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9291-9299. [PMID: 32436715 DOI: 10.1021/acsami.0c03218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glioma is the most common primary tumor in the central nervous system (CNS) with the worst prognosis. Accurate pathological diagnosis has always been a challenge for optimal management of glioma. Promoter methylation is an important mechanism of epigenetic silencing tumor-suppressor genes and a potential biomarker for differential diagnosis and prognosis. Herein, using the cationic conjugated polymer (CCP)-based fluorescence resonance energy transfer (FRET) technique, we realized a highly sensitive detection of promoter methylation in clinical samples of minimal methylation degree (1.25%) and trace DNA quantity (10 ng/μL). Results for three glioma-related genes (MGMT, CDKN2A, and TERT) were combined in a diagnostic classifier to analyze the glioma-CpG island methylator phenotype (G-CIMP), which achieved a sensitivity of 80% at a maximum specificity of 100% for a glioma diagnosis. Kaplan-Meier survival curves and Pearson correlation analysis revealed that the prognosis of glioma patients with high G-CIMP scores (>5) was significantly better than those with low G-CIMP scores, especially in diffuse midline glioma and astrocytoma. This CCP-based FRET technique for determining G-CIMP status could provide patients with rapid and reasonably accurate diagnosis of glioma, as well as a valuable prognostic prediction that can guide individual treatment.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haitao Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
10
|
Zhang P, Ouyang Y, Willner I. Multiplexed and amplified chemiluminescence resonance energy transfer (CRET) detection of genes and microRNAs using dye-loaded hemin/G-quadruplex-modified UiO-66 metal-organic framework nanoparticles. Chem Sci 2021; 12:4810-4818. [PMID: 34163734 PMCID: PMC8179566 DOI: 10.1039/d0sc06744j] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2021] [Indexed: 01/11/2023] Open
Abstract
Dye-loaded UiO-66 metal-organic framework nanoparticles (NMOFs) modified with catalytic hemin/G-quadruplex DNAzyme labels act as functional hybrid modules for the chemiluminescence resonance energy transfer (CRET) analysis of miRNAs (miRNA-155 or miRNA-21) or genes (p53 or BRCA1). The dye-loaded NMOFs (dye = fluorescein (Fl) or rhodamine 6G (Rh 6G)) are modified with hairpin probes that are engineered to include in their loop domains recognition sequences for the miRNAs or genes, and in their stem regions caged G-quadruplex domains. In the presence of the analytes miRNAs or genes, the hairpin structures are opened, leading, in the presence of hemin, to the self-assembly of hemin/G-quadruplex DNAzyme labels linked to the dye-loaded NMOFs. In the presence of luminol and H2O2, the hemin/G-quadruplex DNAzyme labels catalyze the generation of chemiluminescence that provides radiative energy to stimulate the process of CRET to the dye loaded in the NMOFs, resulting in the luminescence of the loaded dye without external excitation. The resulting CRET signals relate to the concentrations of the miRNAs or the genes and allow the sensitive analysis of miRNAs and genes. In addition, the DNA hairpin-functionalized dye-loaded NMOF sensing modules were further applied to develop amplified miRNA or gene CRET-based sensing platforms. The dye-loaded NMOFs were modified with hairpin probes that include in their loop domain the recognition sequences for miRNA-155 or miRNA-21 or the recognition sequences for the p53 or BRCA1 genes. Subjecting the hairpin-modified NMOFs to the respective miRNAs or genes, in the presence of two hairpins H i and H j that include in their stem regions caged G-quadruplex subunit domains, results in the analyte-triggered opening of the probe hairpin linked to the NMOFs, and the opened hairpin tethers induce the cross-opening of the hairpins H i and H j by the hybridization chain reaction, HCR, resulting in the assembly of G-quadruplex wires tethered to the NMOFs. The binding of hemin to the HCR-generated chains yields hemin/G-quadruplex DNAzyme wires that enhance, in the presence of luminol/H2O2, the CRET processes in the hybrid nanostructures. These amplification platforms lead to the amplified sensing of miRNAs and genes. By mixing the Fl- and Rh 6G-loaded hairpin-functionalized UiO NMOFs, the multiplexed CRET detection of miRNA-155, miRNA-21 and the p53 and BRCA1 genes is demonstrated.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
11
|
Choudhury N, Saha B, De P. Recent progress in polymer-based optical chemosensors for Cu2+ and Hg2+ Ions: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 2020; 170:112682. [PMID: 33035898 DOI: 10.1016/j.bios.2020.112682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
The last decade has seen a surge of technical developments in the field on point-of-care testing (POCT). While these developments are extremely diverse, the common aim is to implement improved methods for quick, reliable and inexpensive diagnosis of patients within the clinical setting. While examples of successful introduction and use of POCT techniques are growing, further developments are still necessary to create POCT devices with better portability, usability and performance. Advances in smart materials emerge as potentially valuable know-hows to provide a competitive edge to the development of next generation POCT devices. This review describes the key advantages of adopting smart material-based technologies at different analytical stages of a POCT platform. Under these analytical stages which involves sample pre-treatment, analyte sensing and readout signal generator, several concepts and approaches from contemporary research work in using smart material-based technologies will be the major focus in this review. Lastly, challenges and potential outlook in implementing materials technologies from the application point of view for POCT will be discussed.
Collapse
|
13
|
Lichon L, Kotras C, Myrzakhmetov B, Arnoux P, Daurat M, Nguyen C, Durand D, Bouchmella K, Ali LMA, Durand JO, Richeter S, Frochot C, Gary-Bobo M, Surin M, Clément S. Polythiophenes with Cationic Phosphonium Groups as Vectors for Imaging, siRNA Delivery, and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1432. [PMID: 32708042 PMCID: PMC7466636 DOI: 10.3390/nano10081432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular location through confocal microscopy. The most promising polymers were then used as vectors for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells expressing luciferase, leading to 30-50% of the gene-silencing effect. In parallel, the photodynamic therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their potential for combined PDT and gene therapy.
Collapse
Affiliation(s)
- Laure Lichon
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Clément Kotras
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Bauyrzhan Myrzakhmetov
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Morgane Daurat
- NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, France;
| | - Christophe Nguyen
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Denis Durand
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Karim Bouchmella
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Lamiaa Mohamed Ahmed Ali
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Jean-Olivier Durand
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Sébastien Richeter
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Mathieu Surin
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
| | - Sébastien Clément
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| |
Collapse
|
14
|
Kjær C, Hansson RF, Hedberg C, Jensen F, Jensen HH, Nielsen SB. Gas-phase action and fluorescence spectroscopy of mass-selected fluorescein monoanions and two derivatives. Phys Chem Chem Phys 2020; 22:9210-9215. [PMID: 32227053 DOI: 10.1039/d0cp00453g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gaseous fluorescein monoanions are weakly fluorescent; they display a broad fluorescence spectrum and a large Stokes shift. This contrasts with the situation in aqueous solution. One explanation of the intriguing behavior in vacuo is based on internal proton transfer from the pendant carboxyphenyl group to one of the xanthene oxygens in the excited state; another that rotation of the carboxyphenyl group relative to the xanthene leads to a partial charge transfer from one chromophore (xanthene) to the other (carboxyphenyl) when the π orbitals start to overlap. To shed light on the mechanism at play, we synthesized two fluorescein derivatives where the carboxylic acid group is replaced with either an ester or a tertiary amide functionality and explored their gas-phase ion fluorescence using the home-built LUminescence iNstrument in Aarhus (LUNA) setup. Results on the fluorescein methyl ester that has no acidic proton clearly disprove the former explanation: The spectrum remains broad, and the band center (at 605 nm) is shifted even more to the red than that of fluorescein (590 nm). Experiments on the other variant that contains a piperidino amide are also in favor of the second explanation as here the piperidino already causes the dihedral angle between the planes defining the xanthene and the benzene ring to be less than 90° in the ground state (i.e., 63°), according to density functional theory calculations. As a result of the closer similarity between the ground-state and excited-state structures, the fluorescence spectrum is narrower than those of the other two ions, and the band maximum is further to the blue (575 nm). In accordance with a more delocalized ground state of the amide derivative, action spectra associated with photoinduced dissociation recorded at another setup show that the absorption-band maximum for the amide derivative is redshifted compared to that of fluorescein (538 nm vs. 525 nm).
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | | | - Frank Jensen
- Department of Chemistry, Aarhus University, Denmark
| | | | | |
Collapse
|
15
|
Kumar B, Ghosh R, Mora AK, Nath S. Anthryl Benzothiazolium Molecular Rotor-Based Turn-On DNA Probe: Detailed Mechanistic Studies. J Phys Chem B 2019; 123:7518-7527. [DOI: 10.1021/acs.jpcb.9b05570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhupesh Kumar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
16
|
Scheer PVD, Laar TVD, Sprakel J. Chain length-dependent luminescence in acceptor-doped conjugated polymers. Sci Rep 2019; 9:11217. [PMID: 31375694 PMCID: PMC6677785 DOI: 10.1038/s41598-019-47537-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Semiconducting polymers doped with a minority fraction of energy transfer acceptors feature a sensitive coupling between chain conformation and fluorescence emission, that can be harnessed for advanced solution-based molecular sensing and diagnostics. While it is known that chain length strongly affects chain conformation, and its response to external cues, the effects of chain length on the emission patterns in chromophore-doped conjugated polymers remains incompletely understood. In this paper, we explore chain-length dependent emission in two different acceptor-doped polyfluorenes. We show how the binomial distribution of acceptor incorporation, during the probabilistic polycondensation reaction, creates a strong chain-length dependency in the optical properties of this class of luminescent polymers. In addition, we also find that the intrachain exciton migration rate is chain-length dependent, giving rise to additional complexity. Both effects combined, make for the need to develop sensoric conjugated polymers of improved monodispersity and chemical homogeneity, to improve the accuracy of conjugated polymer based diagnostic approaches.
Collapse
Affiliation(s)
- Pieter van der Scheer
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Ties van de Laar
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Danielsen SPO, Nguyen TQ, Fredrickson GH, Segalman RA. Complexation of a Conjugated Polyelectrolyte and Impact on Optoelectronic Properties. ACS Macro Lett 2019; 8:88-94. [PMID: 35619414 DOI: 10.1021/acsmacrolett.8b00924] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrostatic assembly of conjugated polyelectrolytes, which combine a π-conjugated polymer backbone with pendant ionic groups, offer an opportunity for tuning materials properties and a new route for formulating concentrated inks for printable electronics. Complex coacervation, a liquid-liquid phase separation upon complexation of oppositely charged polyelectrolytes in solution, is used to form dense suspensions of π-conjugated material. A model system of a cationic conjugated polyelectrolyte poly(3-[6'-{N-butylimidazolium}hexyl]thiophene) bromide and sodium poly(styrenesulfonate) dissolved in tetrahydrofuran-water mixtures was used to investigate this complexation behavior of conjugated polyelectrolytes in terms of electrostatic strength, solvent quality, and polymer concentration. The balance of electrostatic interaction between the oppositely charged polyelectrolytes together with their charge compensating counterions and solvent quality for the hydrophobic π-conjugated backbone leads to a rich phase diagram of soluble complexes, precipitates, and complex coacervates. The conjugated polyelectrolyte in the polyelectrolyte complexes has an increased π-conjugation length and enhanced emissivity, with ideal chain configurations due to the reduction of kink sites and torsional disorder. The advantageous photophysical properties in the dense liquid phases makes the scheme attractive for the large-scale processing of optoelectronic devices, chemical sensors, and bioelectronics components.
Collapse
|
18
|
Bhattacharjee R, Moriam S, Umer M, Nguyen NT, Shiddiky MJA. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 2018; 143:4802-4818. [PMID: 30226502 DOI: 10.1039/c8an01348a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as in the initiation and progression of various diseases like cancer. Over the past few decades, an enormous amount of research has been carried out for the quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, the low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinder their application in routine clinical screening. Thus, as an alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost-effective, portable, and simple to operate. On the other hand, biosensors with optical readouts enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts into bisulfite free DNA methylation analysis is paving the way for the translation of this important biomarker into standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| | | | | | | | | |
Collapse
|
19
|
Sun SC, Lee CC, Chuang MC. Polymerase-assisted fluorescence resonance energy transfer (FRET) assay for simultaneous detection of binary viral sequences. Anal Chim Acta 2018; 1030:148-155. [DOI: 10.1016/j.aca.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
|
20
|
Zehra N, Dutta D, Malik AH, Ghosh SS, Iyer PK. Fluorescence Resonance Energy Transfer-Based Wash-Free Bacterial Imaging and Antibacterial Application Using a Cationic Conjugated Polyelectrolyte. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27603-27611. [PMID: 30052034 DOI: 10.1021/acsami.8b07516] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increase in bacterial infection and antibiotic resistance has posed a severe threat to the human health. This threat has warranted an imperative demand for the development of a new and effective bactericidal material to eradicate the antibiotic-resistant pathogenic bacteria. In this work, we report the wash-free imaging of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria using cationic conjugated polyelectrolyte[9,9-bis(6'-methylimidazoliumbromide)hexyl-fluorene- co-4,7-(2,1,3-benzothiadiazole)] (PFBT-MI) based on aggregation-induced fluorescence resonance energy transfer (FRET). Cationic imidazolium group strapped on the polymer side chain not only increases its solubility in water but also helps in binding with the negatively charged bacterial membrane via electrostatic interactions to turn on its bright yellow emission. The change in the fluorescence color of conjugated polyelectrolyte in the presence of bacteria could be visualized very easily via naked eyes under a UV lamp (365 nm). Furthermore, the antibacterial activity of PFBT-MI against both S. aureus and E. coli was observed because of the amphiphilic nature of the conjugated polyelectrolyte which in turn is due to the presence of ionic functionality and conjugated polymer backbone that can intercalate very proficiently into the bacterial membrane, which disrupts the membrane integrity and thus results in toxicity. Morphologically, the membrane damage was perceived via field emission scanning electron microscopy (FESEM) images, which clearly indicated the disruption of cell membrane upon exposure to PFBT-MI. The PFBT-MI acts as an effective antibacterial agent, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) value of (30 μM or 23.7 μg/mL) and (60 μM or 47.7 μg/mL) for S. aureus and for E. coli (60 μM or 47.7 μg/mL) and (100 μM or 79 μg/mL), respectively. Moreover, PFBT-MI shows less cytotoxicity against mammalian cells at concentration greater than MIC.
Collapse
|
21
|
Hladysh S, Murmiliuk A, Vohlídal J, Havlíček D, Sedlařík V, Štěpánek M, Zedník J. Combination of phosphonium and ammonium pendant groups in cationic conjugated polyelectrolytes based on regioregular poly(3-hexylthiophene) polymer chains. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Datta LP, De D, Ghosh U, Das TK. RAFT derived fatty acid based stimuli responsive fluorescent block copolymers as DNA sensor and cargo delivery agent. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Fu N, Wang Y, Liu D, Zhang C, Su S, Bao B, Zhao B, Wang L. A Conjugated Polyelectrolyte with Pendant High Dense Short-Alkyl-Chain-Bridged Cationic Ions: Analyte-Induced Light-Up and Label-Free Fluorescent Sensing of Tumor Markers. Polymers (Basel) 2017; 9:polym9060227. [PMID: 30970905 PMCID: PMC6432017 DOI: 10.3390/polym9060227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
A novel cationic water-soluble conjugated polyelectrolyte (CPE) of polyfluorene that contains 15% fraction of 2,1,3-benzothiadiazole (BT) units (PFC3NBT) has been obtained. PFC3NBT demonstrates intramolecular energy transfer from the fluorene segments to BT sites when negatively charged species (SDS or DNAs) are added, following by a shift in emission color from blue to green, has been developed. The high density of positive charges and pendent short alkyl chains of N-propyltrimethylammoniums endow PFC3NBT with high solubility and high fluorescence quantum efficiency of 33.6% in water. The fluorescence emission properties were investigated in the presence of adverse buffer solutions, different surfactants and DNA strands. Interesting fluorescence emission quenching at short wavelength and fluorescence resonance energy transfer (FRET) induced light-on at BT sites were observed and discussed in detail. Very different from previous reports, the fluorescence emission spectra transition happens with an enhancement of integrated fluorescent intensity. The analytes induced a light-up sensing system was studied with a PFC3NBT/SDS complex mode and confirmed with DNA/DNA-FAM sensing systems. More exciting preliminary results on label-free sensing of tumor markers were also reported by investigating the unique fluorescence response to 11 kinds of proteins. These results provide a new insight view for designing CPEs with light-up and label-free features for biomolecular sensing.
Collapse
Affiliation(s)
- Nina Fu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yijiao Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Dan Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Caixia Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Baomin Zhao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
25
|
Al Sulaiman D, Chang JYH, Ladame S. Subnanomolar Detection of Oligonucleotides through Templated Fluorogenic Reaction in Hydrogels: Controlling Diffusion to Improve Sensitivity. Angew Chem Int Ed Engl 2017; 56:5247-5251. [PMID: 28382640 PMCID: PMC5502887 DOI: 10.1002/anie.201701356] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Oligonucleotide-templated reactions are valuable tools for nucleic acid sensing both in vitro and in vivo. They are typically carried out under conditions that make any reaction in the absence of template highly unfavorable (most commonly by using a low concentration of reactants), which has a negative impact on the detection sensitivity. Herein, we report a novel platform for fluorogenic oligonucleotide-templated reactions between peptide nucleic acid probes embedded within permeable agarose and alginate hydrogels. We demonstrate that under conditions of restricted mobility (that is, limited diffusion), non-specific interactions between probes are prevented, thus leading to lower background signals. When applied to nucleic acid sensing, this accounts for a significant increase in sensitivity (that is, lower limit of detection). Optical nucleic acid sensors based on fluorogenic peptide nucleic acid probes embedded in permeable, physically crosslinked, alginate beads were also engineered and proved capable of detecting DNA concentrations as low as 100 pm.
Collapse
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jason Y H Chang
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
26
|
Al Sulaiman D, Chang JYH, Ladame S. Subnanomolar Detection of Oligonucleotides through Templated Fluorogenic Reaction in Hydrogels: Controlling Diffusion to Improve Sensitivity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Jason Y. H. Chang
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Sylvain Ladame
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
27
|
Tao C, Han X, Bao J, Chen Q, Huang Y, Xu G. Preparation of waterborne polyurethane with outstanding fluorescence properties and programmable emission intensity. POLYM INT 2017. [DOI: 10.1002/pi.5310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Can Tao
- School of Chemistry and Chemical Engineering; Anhui University, Key Laboratory of Environment-friendly Polymer Materials of Anhui Province; Hefei People's Republic of China
| | - Xixi Han
- School of Chemistry and Chemical Engineering; Anhui University, Key Laboratory of Environment-friendly Polymer Materials of Anhui Province; Hefei People's Republic of China
| | - Junjie Bao
- School of Chemistry and Chemical Engineering; Anhui University, Key Laboratory of Environment-friendly Polymer Materials of Anhui Province; Hefei People's Republic of China
| | - Qin Chen
- School of Chemistry and Chemical Engineering; Anhui University, Key Laboratory of Environment-friendly Polymer Materials of Anhui Province; Hefei People's Republic of China
| | - Yiping Huang
- School of Chemistry and Chemical Engineering; Anhui University, Key Laboratory of Environment-friendly Polymer Materials of Anhui Province; Hefei People's Republic of China
| | - Gewen Xu
- School of Chemistry and Chemical Engineering; Anhui University, Key Laboratory of Environment-friendly Polymer Materials of Anhui Province; Hefei People's Republic of China
| |
Collapse
|
28
|
Gaur P, Kumar A, Dalal R, Bhattacharyya S, Ghosh S. Emergence through delicate balance between the steric factor and molecular orientation: a highly bright and photostable DNA marker for real-time monitoring of cell growth dynamics. Chem Commun (Camb) 2017; 53:2571-2574. [DOI: 10.1039/c6cc09355h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A bright and biostable molecular fluorogenic material for real-time monitoring of in vitro cellular growth dynamics.
Collapse
Affiliation(s)
| | - Ajay Kumar
- Department of Biophysics PGIMER
- Chandigarh
- India
| | | | | | | |
Collapse
|
29
|
Kalel R, Mora AK, Ghosh R, Dhavale DD, Palit DK, Nath S. Interaction of a Julolidine-Based Neutral Ultrafast Molecular Rotor with Natural DNA: Spectroscopic and Molecular Docking Studies. J Phys Chem B 2016; 120:9843-53. [DOI: 10.1021/acs.jpcb.6b04811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul Kalel
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Dilip D. Dhavale
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Dipak K. Palit
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
30
|
Su Q, Nöll G. A sandwich-like strategy for the label-free detection of oligonucleotides by surface plasmon fluorescence spectroscopy (SPFS). Analyst 2016; 141:5784-5791. [PMID: 27484040 PMCID: PMC5166564 DOI: 10.1039/c6an01129b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cutting surface-bound optical molecular beacons results in a sandwich-like detection strategy with lower background fluorescence.
For the detection of oligonucleotides a sandwich-like detection strategy has been developed by which the background fluorescence is significantly lowered in comparison with surface-bound molecular beacons. Surface bound optical molecular beacons are DNA hairpin structures comprising a stem and a loop. The end of the stem is modified with a fluorophore and a thiol anchor for chemisorption on gold surfaces. In the closed state the fluorophore is in close proximity to the gold surface, and most of the fluorescence is quenched. After hybridization with a target the hairpin opens, the fluorophore and surface become separated, and the fluorescence drastically increases. Using this detection method the sensitivity is limited by the difference in the fluorescence intensity in the closed and open state. As the background fluorescence is mainly caused by non-quenched fluorophores, a strategy to reduce the background fluorescence is to cut the beacon in two halves. First a thiolated ssDNA capture probe strand (first half) is chemisorbed to a gold surface together with relatively short thiol spacers. Next the target is hybridized by one end to the surface-anchored capture probe and by the other to a fluorophore-labeled reporter probe DNA (second half). The signal readout is done by surface plasmon fluorescence spectroscopy (SPFS). Using this detection strategy the background fluorescence can be significantly lowered, and the detection limit is lowered by more than one order of magnitude. The detection of a target takes only a few minutes and the sensor chips can be used for multiple detection steps without a significant decrease in performance.
Collapse
Affiliation(s)
- Qiang Su
- Nöll Junior Research Group, Organic Chemistry, Chem. Biol. Dept., Faculty IV, Siegen University, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | |
Collapse
|
31
|
Qiao Y, Zheng X. Highly sensitive detection of copper ions by densely grafting fluorescein inside polyethyleneimine core-silica shell nanoparticles. Analyst 2016; 140:8186-93. [PMID: 26555568 DOI: 10.1039/c5an01880c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, polyethyleneimine (PEI) core-silica shell nanoparticles were synthesized and used for densely grafting fluorescent receptor units inside the core of these particles to result in multi-receptor units collectively sensing a target. Herein, copper ion quenching of the fluorescence intensity of a fluorescein isothiocyanate (FITC) system was selected as a model to confirm our proof-of-concept strategy. Our results showed that, compared to free FITC in solution, a 10-fold enhancement of the Stern-Volmer constant value for Cu(2+) quenching of the fluorescence intensity of the grafted state of FITC in PEI core-silica shell nanoparticles was achieved. Furthermore, compared to a previous collective sensing scheme by densely grafting fluorescent receptor units on a silica nanoparticle surface, the proposed scheme, which grafted fluorescent receptor units inside a polymer nano-core, was simple, highly efficient and presented higher sensitivity.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Xingwang Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
32
|
Malik AH, Hussain S, Iyer PK. Aggregation-Induced FRET via Polymer–Surfactant Complexation: A New Strategy for the Detection of Spermine. Anal Chem 2016; 88:7358-64. [DOI: 10.1021/acs.analchem.6b01788] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Akhtar Hussain Malik
- Department
of Chemistry, and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sameer Hussain
- Department
of Chemistry, and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Parameswar Krishnan Iyer
- Department
of Chemistry, and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
33
|
Gaur P, Kumar A, Dey G, Kumar R, Bhattacharyya S, Ghosh S. Selenium Incorporated Cationic Organochalcogen: Live Cell Compatible and Highly Photostable Molecular Stain for Imaging and Localization of Intracellular DNA. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10690-10699. [PMID: 27066840 DOI: 10.1021/acsami.6b00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Successful integration of selenium unit into a newly designed cationic chemical architecture led to the development of a highly photostable molecular maker PA5 to be used in fluorescence microscopy as cellular nucleus staining agent for longer duration imaging under continuous laser illumination. Adaptation of a targeted single-atom modification strategy led to the development of a series of proficient DNA light-up probes (PA1-PA5). Further, their comparative photophysical studies in the presence of DNA revealed the potential of electron rich heteroatoms of chalcogen family in improving binding efficiency and specificity of molecular probes toward DNA. The findings of cell studies confirmed the outstanding cell compatibility of probe PA5 in terms of cell permeability, biostability, and extremely low cytotoxicity. Moreover, the photostability experiment employing continuous laser illumination in solution phase as well as in cell assay (both fixed and live cells) revealed the admirable photobleaching resistance of PA5. Finally, while investigating the phototoxicity of PA5, the probe was found not to exhibit light-induced toxicity even when irradiated for longer duration. All these experimental results demonstrated the promising standing of PA5 as a futuristic cell compatible potential stain for bioimaging and temporal profiling of DNA.
Collapse
Affiliation(s)
- Pankaj Gaur
- School of Basic Sciences, Indian Institute of Technology Mandi , Mandi 175001, Himachal Pradesh, India
| | - Ajay Kumar
- Department of Biophysics, Post Graduate Institute of Medical Education and Research , Chandigarh, 160012, India
| | - Gourab Dey
- School of Basic Sciences, Indian Institute of Technology Mandi , Mandi 175001, Himachal Pradesh, India
| | - Rajendra Kumar
- UGC Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites, Panjab University , Chandigarh 160014, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research , Chandigarh, 160012, India
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi , Mandi 175001, Himachal Pradesh, India
| |
Collapse
|
34
|
Chan K, Yik-Sham Chung C, Wing-Wah Yam V. Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(ii) complex ensemble. Chem Sci 2016; 7:2842-2855. [PMID: 30090278 PMCID: PMC6055111 DOI: 10.1039/c5sc04563k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
The formation of supramolecular assemblies between [Pt(bzimpy-Et){C[triple bond, length as m-dash]CC6H4(CH2NMe3-4)}]Cl2 (1) and mPPE-Ala and the FRET properties of the ensemble have been revealed from the UV-vis absorption, steady-state emission and time-resolved emission decay studies. The two-component mPPE-Ala-1 ensemble has been employed in a "proof-of-principle" concept for label-free detection of G-quadruplex DNAs with the intramolecular propeller parallel folding topology, such as c-myc, in aqueous buffer solution. By the modulation of the aggregation/deaggregation of the polymer-metal complex aggregates and hence the FRET from the mPPE-Ala donor to the aggregated 1 as acceptor, the ensemble has been demonstrated for sensitive and selective label-free detection of c-myc via the monitoring of emission spectral changes of the ensemble. Ratiometric emission of the ensemble at 461 and 662 nm has been shown to distinguish the intramolecular propeller parallel G-quadruplex folding topology of c-myc from other G-quadruplex-forming sequences of different folding topologies, owing to the strong and specific interactions between c-myc and 1 as suggested by the UV-vis absorption and UV melting studies. In addition, the formation of high-order intermolecular multimeric G-quadruplexes from c-myc under molecular crowding conditions has been successfully probed by the ratiometric emission of the ensemble. The conformational and topological transition of human telomeric DNA from the mixed-hybrid form to the intramolecular propeller parallel form, as observed from the circular dichroism spectroscopy, has also been monitored by the ratiometric emission of the ensemble. The ability of the ensemble to detect these conformational and topological transitions of G-quadruplex DNAs has been rationalized by the excellent selectivity and sensitivity of the ensemble towards the intramolecular propeller parallel G-quadruplex DNAs and their high-order intermolecular multimers, which are due to the extra stabilization gained from Pt···Pt and π-π interactions in addition to the electrostatic and hydrophobic interactions found in the polymer-metal complex aggregates.
Collapse
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| |
Collapse
|
35
|
Dangsopon A, Poomsuk N, Siriwong K, Vilaivan T, Suparpprom C. Synthesis and fluorescence properties of 3,6-diaminocarbazole-modified pyrrolidinyl peptide nucleic acid. RSC Adv 2016. [DOI: 10.1039/c6ra15861g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diaminocarbazole-labeled acpcPNA as a self-reporting probe for determination of DNA sequences.
Collapse
Affiliation(s)
- Aukkrapon Dangsopon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Naresuan University
- Phitsanulok 65000
- Thailand
| | - Nattawee Poomsuk
- Materials Chemistry Research Center
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen 40002
| | - Khatcharin Siriwong
- Materials Chemistry Research Center
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Khon Kaen University
- Khon Kaen 40002
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Naresuan University
- Phitsanulok 65000
- Thailand
| |
Collapse
|
36
|
Darwish GH, Abouzeid J, Karam P. Tunable nanothermometer based on short poly(phenylene ethynylene). RSC Adv 2016. [DOI: 10.1039/c6ra14828j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a self-referencing ratiometric nanothermometer based on short conjugated polyelectrolytes (CPEs).
Collapse
Affiliation(s)
| | - Jihane Abouzeid
- Department of Chemistry
- American University of Beirut
- Beirut
- Lebanon
| | - Pierre Karam
- Department of Chemistry
- American University of Beirut
- Beirut
- Lebanon
| |
Collapse
|
37
|
Liu M, Li B. Detection of DNA hybridization using a cationic polyfluorene polymer as an enhancer of luminol chemiluminescence. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1735-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Tamaru SI, Hori K, Shinkai S. Environment-induced Sequential Interconversion of Amphoteric β-1,3-Glucans/Polythiophene Complexes: A Unique System Applicable to a Naked-eye Detectable Fluorogenic pH Probe. CHEM LETT 2015. [DOI: 10.1246/cl.150791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Kaori Hori
- Department of Nanoscience, Sojo University
| | - Seiji Shinkai
- Department of Nanoscience, Sojo University
- Nanotechnology Laboratory, Institute of Systems Information Technologies and Nanotechnologies (ISIT)
- Institute for Advanced Study, Kyushu University
| |
Collapse
|
39
|
Darwish GH, Karam P. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles. NANOSCALE 2015; 7:15149-15158. [PMID: 26255590 DOI: 10.1039/c5nr03299g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (∼10(9), on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.
Collapse
Affiliation(s)
- Ghinwa H Darwish
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | | |
Collapse
|
40
|
A new conjugated poly(pyridinium salt) derived from phenanthridine diamine: its synthesis, optical properties and interaction with calf thymus DNA. Polym J 2015. [DOI: 10.1038/pj.2015.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
Priftis D. Polyelectrolyte-graphene Nanocomposites for Biosensing Applications. CURR ORG CHEM 2015; 19:1819-1827. [PMID: 27713667 PMCID: PMC5024728 DOI: 10.2174/1385272819666150526005557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/05/2015] [Accepted: 05/25/2015] [Indexed: 11/22/2022]
Abstract
Due to their unique structure, the optical and mechanical properties graphene and its derivatives (e.g. graphene oxide, reduced graphene oxide) have captured the attention of a constantly increasing number of scientists with regards to biomolecule sensing. This mini review focuses on one specific type of sensor, that consisting of graphene and polyelectrolytes. Polyelectrolyte-graphene nanocomposites exhibit outstanding detection capabilities by synergistically combining the characteristics of both components, outperforming traditional sensors in many cases. Characteristics and mechanistic details of the most important polyelectrolyte-graphene based sensors will be discussed in detail in addition to some current challenges and future perspectives.
Collapse
Affiliation(s)
- Dimitrios Priftis
- The Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637,USA
| |
Collapse
|
42
|
Guzelturk B, Demir HV. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics. J Phys Chem Lett 2015; 6:2206-2215. [PMID: 26266593 DOI: 10.1021/acs.jpclett.5b00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.
Collapse
Affiliation(s)
- Burak Guzelturk
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI - The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI - The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
43
|
Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review. Anal Chim Acta 2015; 877:19-32. [DOI: 10.1016/j.aca.2015.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
|
44
|
Senthilkumar T, Asha SK. Selective and Sensitive Sensing of Free Bilirubin in Human Serum Using Water-Soluble Polyfluorene as Fluorescent Probe. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00043] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T. Senthilkumar
- Polymer
Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | - S. K. Asha
- Polymer
Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
- Academy of Scientific
and Innovative Research, New Delhi, India
- CSIR-Network Institutes
of Solar Energy, New Delhi, India
| |
Collapse
|
45
|
Wu Y, Tan Y, Wu J, Chen S, Chen YZ, Zhou X, Jiang Y, Tan C. Fluorescence array-based sensing of metal ions using conjugated polyelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6882-8. [PMID: 25741754 DOI: 10.1021/acsami.5b00587] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Array-based sensing offers several advantages for detecting a series of analytes with common structures or properties. In this study, four anionic conjugated polyelectrolytes (CPEs) with a common poly(p-pheynylene ethynylene) (PPE) backbone and varying pendant ionic side chains were designed. The conjugation length, repeat unit pattern, and ionic side chain composition were the main factors affecting the fluorescence patterns of CPE polymers in response to the addition of different metal ions. Eight metal ions, including Pb(2+), Hg(2+), Fe(3+), Cr(3+), Cu(2+), Mn(2+), Ni(2+), and Co(2+), categorized as water contaminants by the Environmental Protection Agency, were selected as analytes in this study. Fluorescence intensity response patterns of the four-PPE sensor array toward each of the metal ions were recorded, analyzed, and transformed into canonical scores using linear discrimination analysis (LDA), which permitted clear differentiation between metal ions using both two-dimensional and three-dimensional graphs. In particular, the array could readily differentiate between eight toxic metal ions in separate aqueous solutions at 100 nM. Our four-PPE sensor array also provides a practical application to quantify Pb(2+) and Hg(2+) concentrations in blind samples within a specific concentration range.
Collapse
Affiliation(s)
- Yi Wu
- †Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- ‡The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- ‡The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China
| | - Jiatao Wu
- †Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- ‡The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China
| | - Shangying Chen
- §Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Yu Zong Chen
- §Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- ∥Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, P. R. China
| | - Xinwen Zhou
- ⊥Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Yuyang Jiang
- ‡The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunyan Tan
- ‡The Ministry-Province Jointly Constructed Base for State Key Lab- Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
46
|
Li F, Chao J, Li Z, Xing S, Su S, Li X, Song S, Zuo X, Fan C, Liu B, Huang W, Wang L, Wang L. Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. Anal Chem 2015; 87:3877-83. [PMID: 25738486 DOI: 10.1021/ac504658a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we investigated the interactions between graphene oxide (GO) and conjugated polyelectrolytes (CPEs) with different backbone and side chain structures. By studying the mechanism of fluorescence quenching of CPEs by GO, we find that the charge and the molecular structure of CPEs play important roles for GO-CPEs interactions. Among them, electrostatic interaction, π-π interaction, and cation-π bonding are dominant driving forces. By using a cationic P2, we have developed a sensitive homogeneous sensor for DNA and RNA detection with a detection limit of 50 pM DNA and RNA, which increased the sensitivity by 40-fold as compared to GO-free CPE-based sensors. This GO-assisted CPE sensing strategy is also generic and shows a high potential for biosensor designs based on aptamers, proteins, peptides, and other biological probes.
Collapse
Affiliation(s)
- Fan Li
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jie Chao
- ‡Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Zhenhua Li
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shu Xing
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shao Su
- ‡Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Xiaoxia Li
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shiping Song
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaolei Zuo
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bin Liu
- §Department of Chemical and Bimolecular Engineering, National University of Singapore, 117576, Singapore
| | - Wei Huang
- ‡Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Lianhui Wang
- ‡Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Lihua Wang
- ∥Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
47
|
Tang Y, Liu Z, Zhu L, Han Y, Wang Y. Aggregation behavior of sodium lauryl ether sulfate with a positively bicharged organic salt and effects of the mixture on fluorescent properties of conjugated polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2104-2111. [PMID: 25641198 DOI: 10.1021/la504733q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aggregation behavior of anionic single-chain surfactant sodium lauryl ether sulfate containing three ether groups (SLE3S) with positively bicharged organic salt 1,2-bis(2-benzylammoniumethoxy)ethane dichloride (BEO) has been investigated in aqueous solution, and the effects of the BEO/SLE3S aggregate transitions on the fluorescent properties of anionic conjugated polyelectrolyte MPS-PPV with a larger molecular weight and cationic conjugated oligoelectrolyte DAB have been evaluated. Without BEO, SLE3S does not affect the fluorescent properties of MPS-PPV and only affects the fluorescent properties of DAB at a higher SLE3S concentration. With the addition of BEO, SLE3S and BEO form gemini-like surfactant (SLE3S)2-BEO. When the BEO/SLE3S molar ratio is fixed at 0.25, with increasing the BEO/SLE3S concentration, the BEO/SLE3S mixture forms large, loosely arranged aggregates and then transforms to closely packed spherical aggregates and finally to long thread-like micelles. The photoluminescence (PL) intensity of MPS-PPV varies with the morphologies of the BEO/SLE3S aggregates, while the PL intensity of DAB is almost independent of the aggregate morphologies. The results demonstrate that gemini-like surfactants formed through intermolecular interactions can effectively adjust the fluorescent properties of conjugated polyelectrolytes.
Collapse
Affiliation(s)
- Yongqiang Tang
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | | | | | |
Collapse
|
48
|
Rahman MM, Li XB, Lopa NS, Ahn SJ, Lee JJ. Electrochemical DNA hybridization sensors based on conducting polymers. SENSORS (BASEL, SWITZERLAND) 2015; 15:3801-29. [PMID: 25664436 PMCID: PMC4367386 DOI: 10.3390/s150203801] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 02/07/2023]
Abstract
Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| | - Xiao-Bo Li
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| | - Nasrin Siraj Lopa
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| | - Sang Jung Ahn
- Center for Advanced Instrumentation, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, Korea.
| | - Jae-Joon Lee
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| |
Collapse
|
49
|
Sharma R, Chhibber M, Mittal SK. Diphenylether based derivatives as Fe(iii) chemosensors: spectrofluorimetry, electrochemical and theoretical studies. RSC Adv 2015. [DOI: 10.1039/c5ra00969c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differential pulse voltammetric studies on DPE-I and DPE-II indicating selective response to Fe3+, supported by DFT studies using Gaussian software.
Collapse
Affiliation(s)
- Rashmi Sharma
- School of Chemistry and Biochemistry
- Thapar University
- Patiala-147004
- India
| | - Manmohan Chhibber
- School of Chemistry and Biochemistry
- Thapar University
- Patiala-147004
- India
| | - Susheel K. Mittal
- School of Chemistry and Biochemistry
- Thapar University
- Patiala-147004
- India
| |
Collapse
|
50
|
Doddi S, Ramakrishna B, Venkatesh Y, Bangal PR. Synthesis and spectral characterization of photoswitchable oligo(p-phenylenevinylene)–spiropyran dyad. RSC Adv 2015. [DOI: 10.1039/c5ra06628j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A novel dyad molecule coupling oligo(p-phenylenevinylene) (OPV) with spiropyran (SP) was synthesized and characterized in solution and in solid phase. Light-driven reversible transformations between isomers ofSPmodulate the fluorescence ofOPV.
Collapse
Affiliation(s)
- Siva Doddi
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
| | - Bheerappagari Ramakrishna
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
| | - Yeduru Venkatesh
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
| | - Prakriti Ranjan Bangal
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
| |
Collapse
|