1
|
Dong L, Zhou Y, Cao T, Zhang J, Zhu J, Zhang X, Liu L, Tong Z. Self-Assembly of Photoresponsive Nano Scrolls Produced by Exfoliation of Layered TaWO 6. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21377-21383. [PMID: 39367862 DOI: 10.1021/acs.langmuir.4c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Novel photoresponsive nano scrolls of tantalotungstate intercalated with C3F7-Azo+ were synthesized by guest-guest ion exchange. Physicochemical characterization utilizing X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) verified the successful synthesis of spiral nano scrolls. XRD and UV data evidenced aggregated conformations of C3F7-Azo+ with end-to-end J-type configurations between the tantalum tungstate layers. The nano scrolls exhibited reversible trans-cis photoisomerization under ultraviolet and visible light irradiation at 365 and 440 nm, respectively, while the basal spacing accompanying the photoresponse was reversibly changed. Overall, photofunctional tantalum tungstate nano scrolls have promising applications in optoelectronic devices.
Collapse
Affiliation(s)
- Li Dong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yicheng Zhou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tongtong Cao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiazheng Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Zhu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaobo Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lin Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiwei Tong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China
- SORST, Japan Science and Technology Agency (JST), Kawaguchi Center Building 4-1-8, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
2
|
Fucetola CP, Wang JT, Bolonduro OA, Lieber CM, Timko BP. Single-Crystal Silicon Nanotubes, Hollow Nanocones, and Branched Nanotube Networks. ACS NANO 2024; 18:3775-3782. [PMID: 38227976 DOI: 10.1021/acsnano.3c11841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We report a general approach for the synthesis of single-crystal silicon nanotubes, involving epitaxial deposition of silicon shells on germanium nanowire templates followed by removal of the germanium template by selective wet etching. By exploiting advances in the synthesis of germanium nanowires, we were able to rationally tune the nanotube internal diameters (5-80 nm), wall thicknesses (3-12 nm), and taper angles (0-9°) and additionally demonstrated branched silicon nanotube networks. Field effect transistors fabricated from p-type nanotubes exhibited a strong gate effect, and fluid transport experiments demonstrated that small molecules could be electrophoretically driven through the nanotubes. These results demonstrate the suitability of silicon nanotubes for the design of nanoelectrofluidic devices.
Collapse
Affiliation(s)
- Corey P Fucetola
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Justin T Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Olurotimi A Bolonduro
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Charles M Lieber
- Lieber Research Group, Lexington, Massachusetts 02420, United States
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Yadav A, Kelich P, Kallmyer N, Reuel NF, Vuković L. Characterizing the Interactions of Cell-Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24084-24096. [PMID: 37184257 PMCID: PMC10310319 DOI: 10.1021/acsami.3c01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into the POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for prescreening of new antimicrobial compounds that disrupt cell membranes.
Collapse
Affiliation(s)
- Anju Yadav
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| | | | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| |
Collapse
|
4
|
Stimuli-Responsive Boron-Based Materials in Drug Delivery. Int J Mol Sci 2023; 24:ijms24032757. [PMID: 36769081 PMCID: PMC9917063 DOI: 10.3390/ijms24032757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Drug delivery systems, which use components at the nanoscale level as diagnostic tools or to release therapeutic drugs to particular target areas in a regulated manner, are a fast-evolving field of science. The active pharmaceutical substance can be released via the drug delivery system to produce the desired therapeutic effect. The poor bioavailability and irregular plasma drug levels of conventional drug delivery systems (tablets, capsules, syrups, etc.) prevent them from achieving sustained delivery. The entire therapy process may be ineffective without a reliable delivery system. To achieve optimal safety and effectiveness, the drug must also be administered at a precision-controlled rate and the targeted spot. The issues with traditional drug delivery are overcome by the development of stimuli-responsive controlled drug release. Over the past decades, regulated drug delivery has evolved considerably, progressing from large- and nanoscale to smart-controlled drug delivery for several diseases. The current review provides an updated overview of recent developments in the field of stimuli-responsive boron-based materials in drug delivery for various diseases. Boron-containing compounds such as boron nitride, boronic acid, and boron dipyrromethene have been developed as a moving field of research in drug delivery. Due to their ability to achieve precise control over drug release through the response to particular stimuli (pH, light, glutathione, glucose or temperature), stimuli-responsive nanoscale drug delivery systems are attracting a lot of attention. The potential of developing their capabilities to a wide range of nanoscale systems, such as nanoparticles, nanosheets/nanospheres, nanotubes, nanocarriers, microneedles, nanocapsules, hydrogel, nanoassembly, etc., is also addressed and examined. This review also provides overall design principles to include stimuli-responsive boron nanomaterial-based drug delivery systems, which might inspire new concepts and applications.
Collapse
|
5
|
Yadav A, Kelich P, Kallmyer NE, Reuel NF, VukoviÄ L. Characterizing the Interactions of Cell Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotube Systems for Antimicrobial Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525557. [PMID: 36747775 PMCID: PMC9900920 DOI: 10.1101/2023.01.25.525557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase, and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. Compared to crotamine-derived peptide, colistin and TAT also induce larger perturbations in the thinnest region of the corona, by allowing more water molecules to directly contact the SWNT surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for pre-screening of new antimicrobial compounds that disrupt cell membranes.
Collapse
|
6
|
Delmez V, Tomasetti B, Daphnis T, Poleunis C, Lauzin C, Dupont-Gillain C, Delcorte A. Gas Cluster Ion Beams as a Versatile Soft-Landing Tool for the Controlled Construction of Thin (Bio)Films. ACS APPLIED BIO MATERIALS 2022; 5:3180-3192. [PMID: 35801397 DOI: 10.1021/acsabm.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface biofunctionalization with proteins is the key to many biomedical applications. In this study, a solvent-free method for the controlled construction of protein thin films is reported. Using large argon gas cluster ion beams, proteins are sputtered from a target (a pool of pure proteins), and collected on a chosen substrate, being nearly any solid material. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed the presence of intact protein molecules on the collectors. Furthermore, lowering the energy per atom in the cluster projectiles down to 1 eV/atom allowed more than 60% of bradykinin molecules to be transferred intact. This protein deposition method offers a precise control of the film thickness as the transferred protein quantity is proportional to the argon clusters ion dose reached for the transfer. This major feature enables building protein films from (sub)mono- to multilayers, without upper limitation of the thickness. A procedure was developed to measure the film thickness in situ the ToF-SIMS instrument. The versatility and potential of this soft-landing alternative for further applications is demonstrated on the one hand by building a protein thin film at the surface of paper, a substrate hardly compatible with solution-based adsorption methods. On the other hand, the possibility to achieve alternated multilayer buildup is demonstrated with the construction of a bilayer composed of bradykinin and Irganox, with the two layers well separated. These results lay the first stone toward original and complex multilayers that could previously not be considered with solution-based adsorption methods, and this regardless of the substrate nature.
Collapse
Affiliation(s)
- Vincent Delmez
- Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Benjamin Tomasetti
- Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Thomas Daphnis
- Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Clément Lauzin
- Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
El Hajam M, Kandri NI, Zerouale A, Wang X, Gustafsson J, Wang L, Mäkilä E, Hupa L, Xu C. Lignocellulosic Nanocrystals from Sawmill Waste as Biotemplates for Free-Surfactant Synthesis of Photocatalytically Active Porous Silica. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19547-19560. [PMID: 35441506 PMCID: PMC9073848 DOI: 10.1021/acsami.2c02550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
This work presents a new approach for more effective valorization of sawmill wastes (Beech and Cedar sawdusts), which were used as new sources for the extraction of lignin-containing and lignin-free cellulose II nanocrystals (L-CNCs and CNCs). It was shown that the properties of the extracted nanocrystals depend on the nature of the used sawdust (softwood or hardwood sawdusts). L-CNCs and CNCs derived from Beech fibers were long and thin and also had a higher crystallinity, compared with those obtained from Cedar fibers. Thanks to their interesting characteristics and their high crystallinity, these nanocrystals have been used without changing their surfaces as template cores for nanostructured hollow silica-free-surfactant synthesis for photocatalysis to degrade methylene blue (MB) dye. The synthesis was performed with a simple and efficient sol-gel method using tetraethyl orthosilicate as the silica precursor followed by calcination at 650 °C. The obtained materials were denoted as B/L-CNC/nanoSiO2, B/CNC/nanoSiO2, C/L-CNC/nanoSiO2, and C/CNC/nanoSiO2, when the used L-CNC and CNC cores are from Beech and Cedar, respectively. By comprehensive analysis, it was demonstrated that the nanostructured silica were quite uniform and had a similar morphology as the templates. Also, the pore sizes were closely related to the dimensions of L-CNC and CNC templates, with high specific surface areas. The photocatalytic degradation of MB dye was about 94, 98, 74, and 81% for B/L-CNC/nanoSiO2, B/CNC/nanoSiO2, C/L-CNC/nanoSiO2, and C/CNC/nanoSiO2, respectively. This study provides a simple route to extract L-CNCs and CNCs as organic templates to prepare nanostructured silica. The different silica structures showed excellent photodegradation of MB.
Collapse
Affiliation(s)
- Maryam El Hajam
- Processes,
Materials and Environment Laboratory (PMEL), Faculty of Sciences and
Techniques, Sidi Mohammed Ben Abdellah University, Road Imouzzer, BP 2202 Fez, Morocco
- Signals,
Systems and Components Laboratory (SSCL), Faculty of Sciences and
Techniques, Sidi Mohammed Ben Abdellah University, Road Imouzzer, BP 2202 Fez, Morocco
- Laboratory
of Natural Materials Technology, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
| | - Noureddine Idrissi Kandri
- Signals,
Systems and Components Laboratory (SSCL), Faculty of Sciences and
Techniques, Sidi Mohammed Ben Abdellah University, Road Imouzzer, BP 2202 Fez, Morocco
| | - Abdelaziz Zerouale
- Processes,
Materials and Environment Laboratory (PMEL), Faculty of Sciences and
Techniques, Sidi Mohammed Ben Abdellah University, Road Imouzzer, BP 2202 Fez, Morocco
| | - Xiaoju Wang
- Laboratory
of Natural Materials Technology, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Jan Gustafsson
- Laboratory
of Natural Materials Technology, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
| | - Luyao Wang
- Laboratory
of Natural Materials Technology, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
| | - Ermei Mäkilä
- Laboratory
of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20520 Turku, Finland
| | - Leena Hupa
- Laboratory
of Molecular Science and Technology, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
| | - Chunlin Xu
- Laboratory
of Natural Materials Technology, Åbo
Akademi University, Henrikinkatu
2, FI-20500 Turku, Finland
| |
Collapse
|
8
|
Naseh MF, Ansari JR, Alam MS, Javed MN. Sustainable Nanotorus for Biosensing and Therapeutical Applications. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2022:1-21. [DOI: 10.1007/978-3-030-69023-6_47-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/28/2021] [Indexed: 09/22/2024]
|
9
|
Abstract
Ni nanotubes (NTs) were produced by the template method in the pores of ion-track membranes and then were successfully functionalized with gold nanoparticles (Ni@Au NTs) using electroless wet-chemical deposition with the aim to demonstrate their high catalytic activity. The fabricated NTs were characterized using a variety of techniques in order to determine their morphology and dimensions, crystalline structure, and magnetic properties. The morphology of Au coating depended on the concentration of gold chloride aqueous solution used for Au deposition. The catalytic activity was evaluated by a model reaction of the reduction of 4-nitrophenol by borohydride ions in the presence of Ni and Ni@Au NTs. The reaction was monitored spectrophotometrically in real time by detecting the decrease in the absorption peaks. It was found that gold coating with needle-like structure formed at a higher Au-ions concentration had the strongest catalytic effect, while bare Ni NTs had little effect. The presence of a magnetic core allowed the extraction of the catalyst with the help of a magnetic field for reusable applications.
Collapse
|
10
|
Synthesis of Ni@Au core-shell magnetic nanotubes for bioapplication and SERS detection. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Wheat germin-like protein: Studies on chitin/chitosan matrix for tissue engineering applications. J Biosci Bioeng 2021; 131:549-556. [PMID: 33558135 DOI: 10.1016/j.jbiosc.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Advances in tissue engineering require the development of new biomaterials with adequate properties of cell attachment and growth. The properties of biomaterials can be improved by incorporation of bioactive molecules to enhance in vitro and/or in vivo functions. In this work, we study the role of a wheat germin-like protease inhibitor (GLPI), free or immobilized in biocompatible matrices to improve cell-attachment ability on different mammalian cell lines. The phylogenetic relationships and functional diversity of the GLPI were analyzed among diverse genera to get insights into sequence motif conservations. The cytocompatibility effect of free GLPI on C2C12 premyoblastic cells and B16 cells as tumoral model has been tested. GLPI promoted proliferation and metabolic activity of both cell types on in vitro models, not showing cytotoxic effects. Furthermore, GLPI was immobilized in chitin microparticles and in chitosan films; we demonstrated an accelerated cell adhesion process in both biomaterials.
Collapse
|
12
|
Bilal M, Ashraf SS, Cui J, Lou WY, Franco M, Mulla SI, Iqbal HMN. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review. Int J Biol Macromol 2021; 166:352-373. [PMID: 33129906 DOI: 10.1016/j.ijbiomac.2020.10.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
In the recent past, numerous new types of nanostructured carriers, as support matrices, have been engineered to advance the traditional enzyme immobilization strategies. The current research aimed to develop a robust enzyme-based biocatalytic platform and its effective deployment in the industrial biotechnology sectors at large and catalysis area, in particular, as low-cost biocatalytic systems. Suitable coordination between the target enzyme molecules and surface pendent multifunctional entities of nanostructured carriers has led an effective and significant contribution in myriad novel industrial, biotechnological, and biomedical applications. As compared to the immobilization on planar two-dimensional (2-D) surface, the unique physicochemical, structural and functional attributes of nano-engineered matrices, such as high surface-to-volume ratio, surface area, robust chemical and mechanical stability, surface pendant functional groups, outstanding optical, thermal, and electrical characteristics, resulted in the concentration of the immobilized entity being substantially higher, which is highly requisite from applied bio-catalysis perspective. Besides inherited features, nanostructured materials-based enzyme immobilization aided additional features, such as (1) ease in the preparation or green synthesis route, (2) no or minimal use of surfactants and harsh reagents, (3) homogeneous and well-defined core-shell nanostructures with thick enzyme shell, and (4) nano-size can be conveniently tailored within utility limits, as compared to the conventional enzyme immobilization. Moreover, the growing catalytic needs can be fulfilled by multi-enzymes co-immobilization on these nanostructured materials-based support matrices. This review spotlights the unique structural and functional attributes of several nanostructured materials, including carbon nanotubes, graphene, and its derivate constructs, nanoparticles, nanoflowers, and metal-organic frameworks as robust matrices for laccase immobilization. The later half of the review focuses on the applied perspective of immobilized laccases for the degradation of emergent contaminants, biosensing cues, and lignin deconstruction and high-value products.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
13
|
|
14
|
|
15
|
Kaul S, Singh V, Sandhir R, Singhal NK. Organophosphonate functionalized Au/Si@Fe3O4: Versatile carrier for enzyme immobilization. Methods Enzymol 2020; 630:199-214. [DOI: 10.1016/bs.mie.2019.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
A simple magnetic nanoparticle-poly-enzyme nanobead sandwich assay for direct, ultrasensitive DNA detection. Methods Enzymol 2019; 630:453-480. [PMID: 31931998 DOI: 10.1016/bs.mie.2019.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A simple magnetic nanoparticle (MNP)-poly-enzyme nanobead sandwich assay for direct detection of ultralow levels of unlabeled target-DNA is developed. This approach uses a capture-DNA covalently linked to a dense PEGylated polymer encapsulated MNP and a biotinylated signal-DNA to sandwich the target-DNA. A DNA ligation is then followed to offer high discrimination between the perfect-match and single-base mismatch target-DNAs. Only the presence of a perfect-match target can covalently link the biotinylated signal-DNA onto the MNP surface for subsequent binding to a polymer nanobead tagged with thousands of copies of high-activity neutravidin-horseradish peroxidase (NAV-HRP) for great enzymatic signal amplification. Combining the advantages of the dense MNP surface PEGylation to reduce non-specific adsorption (assay background) and the powerful signal amplification of poly-enzyme nanobead, this assay can directly quantify the target-DNA down to single digit attomolar with a large linear dynamic range of 5 orders of magnitude (from 10-18 to 10-13M).
Collapse
|
17
|
Silva-Torres O, Bojorquez-Vazquez L, Simakov A, Vazquez-Duhalt R. Enhanced laccase activity of biocatalytic hybrid copper hydroxide nanocages. Enzyme Microb Technol 2019; 128:59-66. [DOI: 10.1016/j.enzmictec.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
18
|
Roloff A, Nirmalananthan-Budau N, Rühle B, Borcherding H, Thiele T, Schedler U, Resch-Genger U. Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores. Anal Chem 2019; 91:8827-8834. [PMID: 31188569 DOI: 10.1021/acs.analchem.8b05515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aldehyde moieties on 2D-supports or micro- and nanoparticles can function as anchor groups for the attachment of biomolecules or as reversible binding sites for proteins on cell surfaces. The use of aldehyde-based materials in bioanalytical and medical settings calls for reliable methods to detect and quantify this functionality. We report here on a versatile concept to quantify the accessible aldehyde moieties on particle surfaces through the specific binding and subsequent release of small reporter molecules such as fluorescent dyes and nonfluorescent chromophores utilizing acylhydrazone formation as a reversible covalent labeling strategy. This is representatively demonstrated for a set of polymer microparticles with different aldehyde labeling densities. Excess reporter molecules can be easily removed by washing, eliminating inaccuracies caused by unspecific adsorption to hydrophobic surfaces. Cleavage of hydrazones at acidic pH assisted by a carbonyl trap releases the fluorescent reporters rapidly and quasi-quantitatively and allows for their fluorometric detection at low concentration. Importantly, this strategy separates the signal-generating molecules from the bead surface. This circumvents common issues associated with light scattering and signal distortions that are caused by binding-induced changes in reporter fluorescence as well as quenching dye-dye interactions on crowded particle surfaces. In addition, we demonstrate that the release of a nonfluorescent chromophore via disulfide cleavage and subsequent quantification by absorption spectroscopy gives comparable results, verifying that both assays are capable of rapid and sensitive quantification of aldehydes on microbead surfaces. These strategies enable a quantitative comparison of bead batches with different functionalization densities, and a qualitative prediction of their coupling efficiencies in bioconjugations, as demonstrated in reductive amination reactions with Streptavidin.
Collapse
Affiliation(s)
- Alexander Roloff
- Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Straße 11 , D-12489 Berlin , Germany
| | - Nithiya Nirmalananthan-Budau
- Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Straße 11 , D-12489 Berlin , Germany.,Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Bastian Rühle
- Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Straße 11 , D-12489 Berlin , Germany
| | | | - Thomas Thiele
- PolyAn GmbH , Rudolf-Baschant-Straße 2 , D-13086 Berlin , Germany
| | - Uwe Schedler
- PolyAn GmbH , Rudolf-Baschant-Straße 2 , D-13086 Berlin , Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Straße 11 , D-12489 Berlin , Germany
| |
Collapse
|
19
|
Briones X, Villalobos V, Queneau Y, Danna CS, Muñoz R, Ríos HE, Pavez J, Páez M, Cabrera R, Tamayo L, Urzúa MD. Surfaces based on amino acid functionalized polyelectrolyte films towards active surfaces for enzyme immobilization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109938. [PMID: 31499948 DOI: 10.1016/j.msec.2019.109938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Surface based on polyelectrolytes functionalized with amino acids onto amino-terminated solid surfaces of silicon wafers was prepared, with the purpose of evaluate the chemical functionality of the polyelectrolyte films in adsorption and catalytic activity of an enzyme. In this work, the adsorption of the enzyme glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides (LmG6PD) was studied as model. The polyelectrolytes were obtained from poly (maleic anhydride-alt-vinylpyrrolidone) [poly(MA-alt-VP)] and functionalized with amino acids of different hydropathy index: glutamine (Gln), tyrosine (Tyr) and methionine (Met). The polyelectrolytes were adsorbed onto the amino-terminated silicon wafer at pH 3.5 and 4.5 and at low and high ionic strength. At low ionic strength and pH 3.5, the largest quantity of adsorbed polyelectrolyte was on the films containing glutamine moiety as the most hydrophilic amino acid in the side chain of polymer chain (5.88 mg/m2), whereas at high ionic strength and pH 4.5, the lowest quantity was in films containing tyrosine moiety in the side chain (1.88 mg/m2). The films were characterized by ellipsometry, contact angle measurements and atomic force microscopy (AFM). The polyelectrolyte films showed a moderate degree of hydrophobicity, the methionine derivative being the most hydrophobic film. With the aim of evaluate the effect of the amino acid moieties on the ability of the surface to adsorb enzymes, we study the activity of the enzyme on these surfaces. We observed that the polarity of the side chain of the amino acid in the polyelectrolyte affected the quantity of LmG6PD adsorbed, as well as its specific activity, showing that films prepared from poly(MA-alt-VP) functionalized with Met provide the best enzymatic performance. The results obtained demonstrated that the surfaces prepared from polyelectrolytes functionalized with amino acids could be an attractive and simple platform for the immobilization of enzymes, which could be of interest for biocatalysis applications.
Collapse
Affiliation(s)
- Ximena Briones
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Centro de Química Médica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Las Condes 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Valeria Villalobos
- Universidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, El Llano Subercaseaux 2801, San Miguel, Chile des 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Yves Queneau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon, ICBMS, UMR 5246 CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, 1 rue Victor grignard, Bâtiment Lederer, Université Claude Bernard, 69622 Villeurbanne cedex, France
| | - Caroline Silva Danna
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Rodrigo Muñoz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Hernán E Ríos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Jorge Pavez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Maritza Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Marcela D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| |
Collapse
|
20
|
Fahmy SA, Alawak M, Brüßler J, Bakowsky U, El Sayed MMH. Nanoenabled Bioseparations: Current Developments and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4983291. [PMID: 30834268 PMCID: PMC6374799 DOI: 10.1155/2019/4983291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/13/2019] [Indexed: 12/21/2022]
Abstract
The use of nanomaterials in bioseparations has been recently introduced to overcome the drawbacks of the conventional methods. Different forms of nanomaterials, particularly magnetic nanoparticles (MNPs), carbon nanotubes (CNTs), casted nanoporous membranes, and electrospun nanofiber membranes were utilized in biological separation for the aim of production of different biomolecules such as proteins, amino acids, nucleic acids, and enzymes. This paper critically reviews the state-of-the-art efforts undertaken in this regard, with emphasis on the synthesis and performance evaluation of each nanoform. Challenges and future prospects in developing nanoenabled bioseparations are also discussed, for the purpose of highlighting potential advances in the synthesis and fabrication of novel nanomaterials as well as in the design of efficient nanoenabled processes for separating a wide spectrum of biomolecules.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Mayyada M. H. El Sayed
- Department of Chemistry, American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
21
|
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48:5717-5751. [DOI: 10.1039/c9cs00174c] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesis, bio-functionalization, and multifunctional activities of superparamagnetic-nanostructures have been extensively reviewed with a particular emphasis on their uses in a range of disease-specific biomarker detection and associated challenges.
Collapse
Affiliation(s)
- Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Department of Biochemistry & Molecular Biology
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| | - Muhammad Younus
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science & Technology
- Sylhet 3114
- Bangladesh
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- School of Mechanical and Mining Engineering
| | - Yoshio Bando
- International Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
- Institute of Molecular Plus
| | - Muhammad J. A. Shiddiky
- School of Environment and Sciences and Queensland Micro- and Nanotechnology Centre (QMMC)
- Griffith University
- QLD 4111
- Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| |
Collapse
|
22
|
Bilal M, Rasheed T, Zhao Y, Iqbal HMN, Cui J. "Smart" chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol 2018; 119:278-290. [PMID: 30041033 DOI: 10.1016/j.ijbiomac.2018.07.134] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In the past few decades, the enzyme immobilization technology has been exploited a lot and thus became a matter of rational design. Immobilization is an alternative approach to bio-catalysis with the added benefits, adaptability to automation and high-throughput applications. Immobilization-based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type or pristine counterparts. From the chemistry viewpoint, the concept of stabilization via manipulation of functional entities, the enzyme surfaces have been an important driving force for immobilizing purposes. In addition, the unique physiochemical and structural functionalities of pristine or engineered cues, or insoluble support matrices (carrier) such as mean particle diameter, swelling behavior, mechanical strength, and compression behavior are of supreme interest and importance for the performance of the immobilized systems. Immobilization of peroxidases into/onto insoluble support matrices is advantageous for practical applications due to convenience in handling, ease separation of enzymes from a reaction mixture and the reusability. A plethora of literature is available explaining individual immobilization system. However, current literature lacks the chemistry viewpoint of immobilization. This review work presents state-of-the-art "Smart" chemistry of immobilization and novel potentialities of several materials-based cues with different geometries including microspheres, hydrogels and polymeric membranes, nanoparticles, nanofibers, composite and hybrid or blended support materials. The involvement of various functional groups including amino, thiol, carboxylic, hydroxyl, and epoxy groups via "click" chemistry, amine chemistry, thiol chemistry, carboxyl chemistry, and epoxy chemistry over the protein surfaces is discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Jiandong Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
23
|
Liu Y, Vincent Edwards J, Prevost N, Huang Y, Chen JY. Physico- and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:389-394. [DOI: 10.1016/j.msec.2018.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023]
|
24
|
Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. Int J Biol Macromol 2018; 118:1833-1847. [DOI: 10.1016/j.ijbiomac.2018.07.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
|
25
|
Macha P, Perreault L, Hamedani Y, Mayes ML, Vasudev MC. Molecular Mechanisms of Tryptophan–Tyrosine Nanostructures Formation and their Influence on PC-12 Cells. ACS APPLIED BIO MATERIALS 2018; 1:1266-1275. [DOI: 10.1021/acsabm.8b00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Jeong Y, Kim S, Fang NX, Shin S, Choi H, Kim S, Kwon S, Cho YT. Multiscale Structures Aggregated by Imprinted Nanofibers for Functional Surfaces. J Vis Exp 2018. [PMID: 30272669 DOI: 10.3791/58356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Multiscale surface structures have attracted increasing interest owing to several potential applications in surface devices. However, an existing challenge in the field is the fabrication of hybrid micro-nano structures using a facile, cost-effective, and high-throughput method. To overcome these challenges, this paper proposes a protocol to fabricate multiscale structures using only an imprint process with an anodic aluminum oxide (AAO) filter and an evaporative self-aggregation process of nanofibers. Unlike previous attempts that have aimed to straighten nanofibers, we demonstrate a unique fabrication method for multiscale aggregated nanofibers with high aspect ratios. Furthermore, the surface morphology and wettability of these structures on various liquids were investigated to facilitate their use in multifunctional surfaces.
Collapse
Affiliation(s)
- Yeonho Jeong
- Department of Mechanical Engineering, Changwon National University
| | - Seok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology
| | | | - Seunghang Shin
- Department of Mechanical Engineering, Changwon National University
| | - Hyunmin Choi
- Department of Mechanical Engineering, Changwon National University
| | - Seonjun Kim
- Department of Mechanical Engineering, Changwon National University
| | - Sin Kwon
- Printed Electronics Research Team, Korea Institute of Machinery and Materials
| | - Young Tae Cho
- Department of Mechanical Engineering, Changwon National University;
| |
Collapse
|
27
|
Adachi R, Akiyama M, Morita Y, Komatsu T. Stratiform Protein Microtube Reactors Containing Glucose Oxidase Layer. Chem Asian J 2018; 13:2796-2799. [DOI: 10.1002/asia.201800927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/02/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Ryo Adachi
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8555 Japan
| | - Motofusa Akiyama
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8555 Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8555 Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8555 Japan
| |
Collapse
|
28
|
Xu Z, Wang L, Yuan H, Wang S, Zhou X. Fluorinated Mesoporous Anatase TiO2 Microspheres with High Surface and Enhanced Photocatalytic Activity for the Degradation of Methyl Orange. KINETICS AND CATALYSIS 2018. [DOI: 10.1134/s0023158418040158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Mikani M, Torabizadeh H, Rahmanian R. Magnetic soy protein isolate-bovine serum albumin nanoparticles preparation as a carrier for inulinase immobilisation. IET Nanobiotechnol 2018; 12:633-639. [PMID: 30095425 PMCID: PMC8676546 DOI: 10.1049/iet-nbt.2017.0188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
Abstract
Magnetic nanoparticles (NPs) were functionalised with soy protein isolate (SPI) and bovine serum albumin (BSA) for inulinase immobilisation. The results revealed the nanomagnetite size of about 50 nm with a polydispersity index (PDI) of 0.242. The average size of the SPI NPs prepared by using acetone was 80-90 nm (PDI, 0.277), and SPI-BSA NPs was 80-90 nm (PDI, 0.233), and their zeta potential was around -34 mV. The mean diameter of fabricated Fe3O4@SPI-BSA NPs was <120 nm (PDI, 0.187). Inulinase was covalently immobilised successfully through glutaraldehyde on Fe3O4@SPI-BSA NPs with 80% enzyme loading. Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy images provided sufficient proof for enzyme immobilisation on the NPs. The immobilised inulinase showed maximal activity at 45°C, which was 5°C higher than the optimum temperature of the free enzyme. Also, the optimum pH of the immobilised enzyme was shifted from 6 to 5.5. Thermal stability of the enzyme was considerably increased to about 43% at 75°C, and Km value was reduced to 25.4% after immobilisation. The half-life of the enzyme increased about 5.13-fold at 75°C as compared with the free form. Immobilised inulinase retained over 80% of its activity after ten cycles.
Collapse
Affiliation(s)
- Mohaddeseh Mikani
- Department of Food Science & Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Postal Code: 33853, Iran
| | - Homa Torabizadeh
- Department of Food Science & Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Postal Code: 33853, Iran.
| | - Reza Rahmanian
- Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, 32454, Iran
| |
Collapse
|
30
|
Han P, Liu T, Ji X, Tang S. Morphology-controlled synthesis of mesoporous silica with co-template of surfactant P123 and ionic liquid [Dmim]Cl. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Kang X, Song XZ, Han Y, Cao J, Tan Z. Defect-engineered TiO 2 Hollow Spiny Nanocubes for Phenol Degradation under Visible Light Irradiation. Sci Rep 2018; 8:5904. [PMID: 29651141 PMCID: PMC5897375 DOI: 10.1038/s41598-018-24353-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 11/21/2022] Open
Abstract
Herein, we mainly report a strategy for the facile synthesis of defect-engineered F-doped well-defined TiO2 hollow spiny nanocubes, constructed from NH4TiOF3 as precursor. The topological transformation of NH4TiOF3 mesocrystal is accompanied with fluorine anion releasing, which can be used as doping source to synthesize F-doped TiO2. Our result shows that the introduction of oxygen vacancies (Vo's) and F dopant can be further achieved by a moderate photoreduction process. The as prepared sample is beneficial to improve photocatalystic degradation and Photoelectrochemical (PEC) efficiency under visible light irradiation. And this improvement in photocatalytic and photoelectrocatalytic performance can be ascribed to the significant enhancement of visible light absorption and separation of excited charges resulted from the presence of oxygen vacancies, F- ions and hollow structure of TiO2.
Collapse
Affiliation(s)
- Xiaolan Kang
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Xue-Zhi Song
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Ying Han
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Junkai Cao
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Zhenquan Tan
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China.
| |
Collapse
|
32
|
|
33
|
Kutuzau MD, Kaniukov EY, Shumskaya EE, Bundyukova VD, Kalkabay GR, Zdorovets MV, Borgekov DB, Kozlovskiy AL. The behavior of Ni nanotubes under the influence of environments with different acidities. CrystEngComm 2018. [DOI: 10.1039/c8ce00362a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results of research on the behavior of Ni nanotubes under the influence of environments with different pH values are presented.
Collapse
Affiliation(s)
- Maksim D. Kutuzau
- Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
- Minsk
- 220072 Belarus
| | - Egor Yu. Kaniukov
- Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
- Minsk
- 220072 Belarus
| | - Elena E. Shumskaya
- Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
- Minsk
- 220072 Belarus
| | - Victoria D. Bundyukova
- Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
- Minsk
- 220072 Belarus
| | | | - Maxim V. Zdorovets
- Ural Federal University named after the first President of Russia B. N. Yeltsin
- Ekaterinburg
- Russian Federation
- L. N. Gumilyov Eurasian National University
- Astana
| | - Daryn B. Borgekov
- L. N. Gumilyov Eurasian National University
- Astana
- Kazakhstan
- Laboratory of Solid State Physics
- Institute of Nuclear Physics Astana
| | | |
Collapse
|
34
|
Zhu H, Li H, Robertson JWF, Balijepalli A, Krylyuk S, Davydov AV, Kasianowicz JJ, Suehle JS, Li Q. Novel nanofluidic chemical cells based on self-assembled solid-state SiO 2 nanotubes. NANOTECHNOLOGY 2017; 28:435601. [PMID: 28854152 DOI: 10.1088/1361-6528/aa8941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes on silicon-on-insulator (SOI) substrate have been successfully fabricated and characterized. The vertical SiO2 nanotubes with a smooth cavity are built from Si nanowires which were epitaxially grown on the SOI substrate. The nanotubes have rigid, dry-oxidized SiO2 walls with precisely controlled nanotube inner diameter, which is very attractive for chemical-/bio-sensing applications. No dispersion/aligning procedures were involved in the nanotube fabrication and integration by using this technology, enabling a clean and smooth chemical cell. Such a robust and well-controlled nanotube is an excellent case of developing functional nanomaterials by leveraging the strength of top-down lithography and the unique advantage of bottom-up growth. These solid, smooth, clean SiO2 nanotubes and nanofluidic devices are very encouraging and attractive in future bio-medical applications, such as single molecule sensing and DNA sequencing.
Collapse
Affiliation(s)
- Hao Zhu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Takafuji M, Hano N, Alam MA, Ihara H. Fabrication of Hollow Silica Microspheres with Orderly Hemispherical Protrusions and Capability for Heat-Induced Controlled Cracking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10679-10689. [PMID: 28914544 DOI: 10.1021/acs.langmuir.7b02223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hollow silica microspheres with orderly protrusions on their outer and inner surfaces were fabricated in three simple steps: (1) suspension polymerization of a polymerizable monomer containing silica nanoparticles to obtain polymeric microspheres with a layered shell of silica particles; (2) sol-gel reaction of tetraethoxysilane (TEOS) on the surface of the microspheres to connect the silica nanoparticles; (3) removal of polymer core by calcination. The shell composed of silica-connected silica nanoparticles remained spherical even after calcination, and the characteristic surface morphology with protrusions were obtained on both inner and outer surfaces. Measurements of the mechanical strength revealed that the compression modulus of the hollow microspheres increased with increasing thickness of the silica layer, which could be controlled by changing the concentration of TEOS in the sol-gel reaction. Rapid heating of the hollow silica microspheres with the thin silica-connected layer led to silica shell cracking, and the cracks were mostly observed in the connecting layer between the silica nanoparticles. The stress was probably concentrated in the connecting layer because of its lower thickness than the nanoparticles. Such characteristic of the hollow microspheres is useful for a capsule with capability for heat-induced controlled cracking caused by internal pressure changes.
Collapse
Affiliation(s)
- Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University , 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Kumamoto Institute for Photo-electro Organics (PHOENICS) , 3-11-38 Higashimachi, Higashi-ku Kumamoto 862-0901, Japan
| | - Nanami Hano
- Department of Applied Chemistry and Biochemistry, Kumamoto University , 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Md A Alam
- Department of Applied Chemistry and Biochemistry, Kumamoto University , 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University , Sonapur, Noakhali-3814, Bangladesh
| | - Hirotaka Ihara
- Kumamoto Institute for Photo-electro Organics (PHOENICS) , 3-11-38 Higashimachi, Higashi-ku Kumamoto 862-0901, Japan
- Department of New Frontier Science, Kumamoto University , 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
36
|
Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires. CRYSTALS 2017. [DOI: 10.3390/cryst7070215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Meoto S, Kent N, Nigra MM, Coppens MO. Mesostructure of Mesoporous Silica/Anodic Alumina Hierarchical Membranes Tuned with Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4823-4832. [PMID: 28437111 DOI: 10.1021/acs.langmuir.7b00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hierarchically structured membranes composed of mesoporous silica embedded inside the channels of anodic alumina (MS-AAM) were synthesized using the aspiration method. Ethanol is shown to have a significant effect on the type and organization of the mesoporous silica phase. Detailed textural analysis revealed that the pore size distribution of the mesoporous silica narrows and the degree of ordering increases with decreasing ethanol concentration used in the synthesis mixture. The silica mesopores were synthesized with pores as small as 6 nm in diameter, with the channel direction oriented in lamellar, circular, and columnar directions depending on the ethanol content. This study reveals ethanol concentration as a key factor behind the synthesis of an ordered mesoporous silica-anodic alumina membrane that can increase its functionality for membrane-based applications.
Collapse
Affiliation(s)
- Silo Meoto
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| | - Niall Kent
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| | - Michael M Nigra
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| | - Marc-Olivier Coppens
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| |
Collapse
|
38
|
Belkahla H, Herlem G, Picaud F, Gharbi T, Hémadi M, Ammar S, Micheau O. TRAIL-NP hybrids for cancer therapy: a review. NANOSCALE 2017; 9:5755-5768. [PMID: 28443893 DOI: 10.1039/c7nr01469d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials using soluble TRAIL or antibodies targeting the two main agonist receptors (TRAIL-R1 and TRAIL-R2) have, however, failed to demonstrate their efficacy in the clinic. TRAIL is expressed on the surface of natural killer or CD8+ T activated cells and contributes to tumor surveillance. Nanoparticles functionalized with TRAIL mimic membrane-TRAIL and exhibit stronger antitumoral properties than soluble TRAIL or TRAIL receptor agonist antibodies. This review provides an update on the association and the use of nanoparticles associated with TRAIL for cancer therapy.
Collapse
Affiliation(s)
- H Belkahla
- Nanomedicine Lab, EA 4662, Université de Bourgogne Franche-Comté, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
40
|
Kozlovskiy A, Zdorovets M, Kanukov E, Shumskaya E, Kadyrzhanov K, Rusakov V. Fe nanotubes: synthesis, structural and magnetic properties. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2016. [DOI: 10.15328/cb735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Wu L, Wu S, Xu Z, Qiu Y, Li S, Xu H. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosens Bioelectron 2016; 80:59-66. [DOI: 10.1016/j.bios.2016.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
|
42
|
Effectiveness of the Young-Laplace equation at nanoscale. Sci Rep 2016; 6:23936. [PMID: 27033874 PMCID: PMC4817043 DOI: 10.1038/srep23936] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
Using molecular dynamics (MD) simulations, a new approach based on the behavior of pressurized water out of a nanopore (1.3–2.7 nm) in a flat plate is developed to calculate the relationship between the water surface curvature and the pressure difference across water surface. It is found that the water surface curvature is inversely proportional to the pressure difference across surface at nanoscale, and this relationship will be effective for different pore size, temperature, and even for electrolyte solutions. Based on the present results, we cannot only effectively determine the surface tension of water and the effects of temperature or electrolyte ions on the surface tension, but also show that the Young-Laplace (Y-L) equation is valid at nanoscale. In addition, the contact angle of water with the hydrophilic material can be further calculated by the relationship between the critical instable pressure of water surface (burst pressure) and nanopore size. Combining with the infiltration behavior of water into hydrophobic microchannels, the contact angle of water at nanoscale can be more accurately determined by measuring the critical pressure causing the instability of water surface, based on which the uncertainty of measuring the contact angle of water at nanoscale is highly reduced.
Collapse
|
43
|
Covalent Immobilization and Characterization of a Novel Pullulanase from Fontibacillus sp. Strain DSHK 107 onto Florisil® and Nano-silica for Pullulan Hydrolysis. Appl Biochem Biotechnol 2016; 179:1262-74. [DOI: 10.1007/s12010-016-2063-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
44
|
Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 2016; 501:278-99. [DOI: 10.1016/j.ijpharm.2016.01.064] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
45
|
Emerging Nanomaterials for Analytical Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Kozlovskiy A, Meirimova T, Mashentseva A, Zdorovets M, Kanyukov E, Yakimchuk D, Petrov A, Kadyrzhanov K. Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2015. [DOI: 10.15328/cb628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Yoon SS, Khang DY. Direct Visualization of Etching Trajectories in Metal-Assisted Chemical Etching of Si by the Chemical Oxidation of Porous Sidewalls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10549-10554. [PMID: 26352208 DOI: 10.1021/acs.langmuir.5b02453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate a simple method for the visualization of trajectories traced by noble metal nanoparticles during metal-assisted chemical etching (MaCE) of Si. The nanoporous Si layer formed around drilled pores is converted into SiO2 by simple chemical oxidation. Etch removal of the remaining Si using alkali hydroxide leaves SiO2 nanostructures that are the exact replica of those drilled pores or etching trajectories. The differences in etching characteristics between Ag and Au have been investigated using the proposed visualization method. The shape and chemical stability of metal nanoparticles used for MaCE have been found to be critical in determining etching paths. The proposed method would be very helpful in studying the fundamental mechanism of MaCE as well as in micro/nanostructuring of the Si surface for various applications. This approach can also be used for the generation of straight or helical SiO2 nanotubes.
Collapse
Affiliation(s)
- Sung-Soo Yoon
- Department of Materials Science and Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Dahl-Young Khang
- Department of Materials Science and Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| |
Collapse
|
48
|
El-Safty SA, Sakai M, Selim MM, Alhamid AA. Mesotubular-Structured Hybrid Membrane Nanocontainer for Periodical Monitoring, Separation, and Recovery of Cobalt Ions from Water. Chem Asian J 2015; 10:1909-18. [DOI: 10.1002/asia.201500421] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Sherif A. El-Safty
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba-shi, Ibaraki-ken 05-0047 Japan
- Graduate School for Advanced Science and Engineering; Waseda University; 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Masaru Sakai
- Centre for Research in Isotopes & Environmental Dynamics; Tsukuba University; 265-38 Shin Makita Tsukuba-shi, Ibaraki 305-0076 Japan
| | - Mahmoud M. Selim
- Department of Mathematics & Physics; Al-Aflaj College of Science and Human Studies; Prince Sattam AbdulAziz University; Al-Aflaj 710-11912 Saudi Arabia
| | | |
Collapse
|
49
|
Fan Y, Ding Y, Ma H, Teramae N, Sun S, He Y. Optical waveguide sensor based on silica nanotube arrays for label-free biosensing. Biosens Bioelectron 2015; 67:230-6. [DOI: 10.1016/j.bios.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/04/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
50
|
Naiini MM, Ghahari M, Afarani MS. Synthesis of Hollow Tadpole-Like Silica Particles. PARTICULATE SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1080/02726351.2015.1008713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|