1
|
Rana R, Sharma A, Kumar N, Khanna A, Jyoti, Dhir M, Gulati HK, Singh JV, Bedi PMS. A comprehensive review of synthetic and semisynthetic xanthine oxidase inhibitors: identification of potential leads based on in-silico computed ADME characteristics. Mol Divers 2024:10.1007/s11030-024-10962-1. [PMID: 39164505 DOI: 10.1007/s11030-024-10962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Xanthine oxidase (XO) inhibitors, both synthetic and semisynthetic, have been developed extensively over the past few decades. The increased level of XO is not only the major cause of gout but is also responsible for various conditions associated with hyperuricemia, such as cardiovascular disorders, chronic kidney disorders, diabetes, Alzheimer's disease and chronic wounds. Marketed available XO inhibitors (allopurinol, febuxostat, and topiroxostat) are used to treat hyperuricemia but they are associated with fatal side effects, which pose serious problems for the healthcare system, rising the need for new, more potent, safer compounds. This review summarizes recent findings on XO and describes their design, synthesis, biological significance in the development of anti-hyperuricemic drugs with ADME profile, structure activity relationship (SAR) and molecular docking studies. The results might help medicinal chemists to develop more efficacious XO inhibitors.
Collapse
Affiliation(s)
- Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Muskan Dhir
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
2
|
Pawar SS, Ketkar RN, Gaware PB, Jagushte KU, Dhawne D, Save SN, Sharma S, Periyasamy G, Chimthanawala N, Sathaye S, Joshi SV, Sadhukhan N. Molybdenum-maltolate as a molybdopterin mimic for bioinspired oxidation reaction. Dalton Trans 2024; 53:5770-5774. [PMID: 38488043 DOI: 10.1039/d3dt04296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A novel cis-dioxomolybdenum(VI)-maltolate [MoO2(Mal)2] (1) is prepared as a stable molybdopterin model for the biomimetic catalysis of the oxidation of hypoxanthine in acetonitrile-water at room temperature. Compound 1 efficiently catalyzes the oxidation reaction of toluene, diphenylmethane, and styrene. Cyto- and oral-toxicity studies suggest its tremendous potential for application as a molybdenum supplement.
Collapse
Affiliation(s)
- Swapnil S Pawar
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India.
| | - Rohit N Ketkar
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India.
| | - Pranav B Gaware
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India.
| | - Kaustubh U Jagushte
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India.
| | - Divyani Dhawne
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India.
| | - Shreyada N Save
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkind Rd, Pune, Maharashtra - 411007, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkind Rd, Pune, Maharashtra - 411007, India
| | - Ganga Periyasamy
- Department of Chemistry, Central College Campus, Bangalore University, Bangalore 560001, India
| | - Niyamat Chimthanawala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India
| | - Shreerang V Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India
| | - Nabanita Sadhukhan
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, India.
| |
Collapse
|
3
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Li L, Zhang C, Zhang Y, Chen S, Shan S, Wu T, Niu Y, Xu Y. Single substrate-functionalized molybdenum oxide nanozyme for specific colorimetric monitoring of xanthine oxidase activity. Mikrochim Acta 2024; 191:99. [PMID: 38228947 DOI: 10.1007/s00604-023-06149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Xanthine-functionalized molybdenum oxide nanodots (X-MoO3-x NDs) with peroxidase (POD)-like activity were developed for selective, sensitive, and facile colorimetric quantification of xanthine oxidase (XO). Xanthine functionalization can not only be favorable for the successful nanozyme preparation, but also for the specific recognition of XO as well as the simultaneous generation of hydrogen peroxide, which was subsequently transformed into hydroxyl radical to oxidize the chromogenic reagent based on the POD-like catalysis. Under the optimized conditions, the colorimetric biosensing platform was established for XO assay without addition of further substrates, showing good linearity relationship between absorbance difference (ΔA) and XO concentrations in the range 0.05-0.5 U/mL (R2 = 0.998) with a limit of detection (LOD) of 0.019 U/mL. The quantification of XO occurs in 25 min, which is superior to the previously reported and commercial XO assays. The proposed method has been successfully used in the assay of human serum samples, showing its high potential in the field of clinical monitoring.
Collapse
Affiliation(s)
- Limin Li
- Institute of Biomedical Engineering, College of Life Sciences, School of Tourism and Geography Sciences, Qingdao University, Qingdao, 266071, China
| | - Cai Zhang
- Institute of Biomedical Engineering, College of Life Sciences, School of Tourism and Geography Sciences, Qingdao University, Qingdao, 266071, China
| | - Yifan Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shengnan Chen
- Children's Hospital Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shuo Shan
- The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Tianming Wu
- Institute of Biomedical Engineering, College of Life Sciences, School of Tourism and Geography Sciences, Qingdao University, Qingdao, 266071, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, School of Tourism and Geography Sciences, Qingdao University, Qingdao, 266071, China.
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, School of Tourism and Geography Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Maghsoud Y, Dong C, Cisneros GA. Investigation of the Inhibition Mechanism of Xanthine Oxidoreductase by Oxipurinol: A Computational Study. J Chem Inf Model 2023; 63:4190-4206. [PMID: 37319436 PMCID: PMC10405278 DOI: 10.1021/acs.jcim.3c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Xanthine oxidoreductase (XOR) is an enzyme found in various organisms. It converts hypoxanthine to xanthine and urate, which are crucial steps in purine elimination in humans. Elevated uric acid levels can lead to conditions like gout and hyperuricemia. Therefore, there is significant interest in developing drugs that target XOR for treating these conditions and other diseases. Oxipurinol, an analogue of xanthine, is a well-known inhibitor of XOR. Crystallographic studies have revealed that oxipurinol directly binds to the molybdenum cofactor (MoCo) in XOR. However, the precise details of the inhibition mechanism are still unclear, which would be valuable for designing more effective drugs with similar inhibitory functions. In this study, molecular dynamics and quantum mechanics/molecular mechanics calculations are employed to investigate the inhibition mechanism of XOR by oxipurinol. The study examines the structural and dynamic effects of oxipurinol on the pre-catalytic structure of the metabolite-bound system. Our results provide insights on the reaction mechanism catalyzed by the MoCo center in the active site, which aligns well with experimental findings. Furthermore, the results provide insights into the residues surrounding the active site and propose an alternative mechanism for developing alternative covalent inhibitors.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Maghsoud Y, Dong C, Cisneros GA. Computational Characterization of the Inhibition Mechanism of Xanthine Oxidoreductase by Topiroxostat. ACS Catal 2023; 13:6023-6043. [PMID: 37547543 PMCID: PMC10399974 DOI: 10.1021/acscatal.3c01245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Xanthine oxidase (XO) is a member of the molybdopterin-containing enzyme family. It interconverts xanthine to uric acid as the last step of purine catabolism in the human body. The high uric acid concentration in the blood directly leads to human diseases like gout and hyperuricemia. Therefore, drugs that inhibit the biosynthesis of uric acid by human XO have been clinically used for many years to decrease the concentration of uric acid in the blood. In this study, the inhibition mechanism of XO and a new promising drug, topiroxostat (code: FYX-051), is investigated by employing molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. This drug has been reported to act as both a noncovalent and covalent inhibitor and undergoes a stepwise inhibition by all its hydroxylated metabolites, which include 2-hydroxy-FYX-051, dihydroxy-FYX-051, and trihydroxy-FYX-051. However, the detailed mechanism of inhibition of each metabolite remains elusive and can be useful for designing more effective drugs with similar inhibition functions. Hence, herein we present the computational investigation of the structural and dynamical effects of FYX-051 and the calculated reaction mechanism for all of the oxidation steps catalyzed by the molybdopterin center in the active site. Calculated results for the proposed reaction mechanisms for each metabolite's inhibition reaction in the enzyme's active site, binding affinities, and the noncovalent interactions with the surrounding amino acid residues are consistent with previously reported experimental findings. Analysis of the noncovalent interactions via energy decomposition analysis (EDA) and noncovalent interaction (NCI) techniques suggests that residues L648, K771, E802, R839, L873, R880, R912, F914, F1009, L1014, and A1079 can be used as key interacting residues for further hybrid-type inhibitor development.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States; Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
7
|
Hille R. Xanthine Oxidase-A Personal History. Molecules 2023; 28:1921. [PMID: 36838909 PMCID: PMC9966888 DOI: 10.3390/molecules28041921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
A personal perspective is provided regarding the work in several laboratories, including the author's, that has established the reaction mechanism of xanthine oxidase and related enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Recent advances in gout drugs. Eur J Med Chem 2022; 245:114890. [DOI: 10.1016/j.ejmech.2022.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
|
9
|
Kaur G, Singh A, Arora G, Monga A, Jassal AK, Uppal J, Bedi PMS, Bora KS. Synthetic heterocyclic derivatives as promising xanthine oxidase inhibitors: An overview. Chem Biol Drug Des 2022; 100:443-468. [PMID: 35763448 DOI: 10.1111/cbdd.14109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Inhibition of xanthine oxidase is an effective and most prominent therapeutic approach for the management of gout. Discovery of its association in the pathophysiology of diabetes, cardiovascular disorders, etc., widened its therapeutic horizons. Limited drug candidates in clinical practice along with side effects forced researchers to develop more efficacious and safer xanthine oxidase inhibitors for the management of gout and other disorders associated with xanthine oxidase hyperactivity. In this regard, this review focus on: (a) Various drug candidates in clinical practice and under clinical trials, (b) Development of various heterocyclic motifs as xanthine oxidase inhibitors in last two decades and (c) Various patented synthetic xanthine oxidase inhibitors.
Collapse
Affiliation(s)
- Gurinder Kaur
- University Institute of Pharma. Sciences, Chandigarh University, Mohali, Punjab, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Geetakshi Arora
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aditi Monga
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anupmjot Kaur Jassal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jasreen Uppal
- University Institute of Pharma. Sciences, Chandigarh University, Mohali, Punjab, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.,Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kundan Singh Bora
- University Institute of Pharma. Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
10
|
The Role of Oxidative Stress in Hyperuricemia and Xanthine Oxidoreductase (XOR) Inhibitors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1470380. [PMID: 33854690 PMCID: PMC8019370 DOI: 10.1155/2021/1470380] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Uric acid is the end product of purine metabolism in humans. Hyperuricemia is a metabolic disease caused by the increased formation or reduced excretion of serum uric acid (SUA). Alterations in SUA homeostasis have been linked to a number of diseases, and hyperuricemia is the major etiologic factor of gout and has been correlated with metabolic syndrome, cardiovascular disease, diabetes, hypertension, and renal disease. Oxidative stress is usually defined as an imbalance between free radicals and antioxidants in our body and is considered to be one of the main causes of cell damage and the development of disease. Studies have demonstrated that hyperuricemia is closely related to the generation of reactive oxygen species (ROS). In the human body, xanthine oxidoreductase (XOR) catalyzes the oxidative hydroxylation of hypoxanthine to xanthine to uric acid, with the accompanying production of ROS. Therefore, XOR is considered a drug target for the treatment of hyperuricemia and gout. In this review, we discuss the mechanisms of uric acid transport and the development of hyperuricemia, emphasizing the role of oxidative stress in the occurrence and development of hyperuricemia. We also summarize recent advances and new discoveries in XOR inhibitors.
Collapse
|
11
|
Singh JV, Bedi PMS, Singh H, Sharma S. Xanthine oxidase inhibitors: patent landscape and clinical development (2015–2020). Expert Opin Ther Pat 2020; 30:769-780. [DOI: 10.1080/13543776.2020.1811233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
12
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
13
|
Fritz Y, Wagenknecht HA. Influences of Linker and Nucleoside for the Helical Self-Assembly of Perylene Along DNA Templates. Front Chem 2019; 7:659. [PMID: 31696102 PMCID: PMC6817502 DOI: 10.3389/fchem.2019.00659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Six different conjugates of perylene with 2'-deoxyuridine and with 2-amino-2'-deoxyadenosine were synthesized and applied for DNA-templated assembly in aqueous buffer solutions. They differ by the linkers ethynylene, phenylene, and phenylene-ethynylene between nucleoside and chromophore. The nucleosides were investigated as monomers in CHCl3 and dimethyl sulfoxide by optical spectroscopy. The properties of the four phenylene-linked conjugates are similar to that of perylene as reference because these linkers separate both aromatic parts. The ethynylene linker electronically couples the chromophore with the respective nucleoside and thus red shifts the absorbance. The DNA-templated assembly properties were elucidated by mixing the templates in aqueous buffer with the perylene-nucleoside conjugates from a dimethyl sulfoxide stock solution. Specific binding of the nucleosides was probed by comparing the results with dA20 and T20 as single-stranded DNA templates. Our studies reveal the structural parameters that are important for the DNA-templated assembly of perylenes. First, perylene-2'-deoxyuridine conjugates do not form DNA-templated helical assemblies, regardless of the choice of linker. Second, the ethynylene linker is crucial for successful DNA-templated chromophore assemblies of perylene-2-amino-2'-deoxyadenosine conjugates. Third, in contrast, the phenylene linker inhibits self-assembly along single-stranded DNA templates. In conclusion, the 2-amino-2'-deoxyadenosin in combination with the ethynylene linker provides the best structural feature for specific and helical DNA-templated assembly of perylenes. This result is important for the design of future DNA-based supramolecular architectures with chromophores, in particular DNA-based light-harvesting systems and DNA systems for emitting or sensing circularly polarized luminescence.
Collapse
Affiliation(s)
- Yannic Fritz
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany
| | | |
Collapse
|
14
|
Thiazole-5-carboxylic acid derivatives as potent xanthine oxidase inhibitors: design, synthesis, in vitro evaluation, and molecular modeling studies. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02461-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Luna G, Dolzhenko AV, Mancera RL. Inhibitors of Xanthine Oxidase: Scaffold Diversity and Structure-Based Drug Design. ChemMedChem 2019; 14:714-743. [PMID: 30740924 DOI: 10.1002/cmdc.201900034] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Xanthine oxidase (XO) is the enzyme responsible for the catabolism of purines and their conversion into uric acid. XO is thus the target for the treatment of hyperuricemia and gout. For more than 50 years the only XO inhibitor drug available on the market was the purine analogue allopurinol. In the last decade there has been a resurgence in the search for new inhibitors of XO, as the activity of XO and hyperuricemia have also been associated with a variety of conditions such as diabetes, hypertension, and other cardiovascular diseases. In recent years the non-purine inhibitor febuxostat was approved in Europe and the USA for the treatment of hyperuricemia. This drug was followed by another XO inhibitor called topiroxostat. This review discusses the molecular structures and activities of the multiple classes of inhibitors that have been developed since the discovery of allopurinol, with a brief review of the molecular interactions between inhibitors and XO active site residues for the most important molecules. The challenges ahead for the discovery of new inhibitors of XO with novel chemical structures are discussed.
Collapse
Affiliation(s)
- Giuseppe Luna
- School of Pharmacy and Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
16
|
Computational exploration of reactive fragment for mechanism-based inhibition of xanthine oxidase. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Yang J, Dong C, Kirk ML. Xanthine oxidase-product complexes probe the importance of substrate/product orientation along the reaction coordinate. Dalton Trans 2017; 46:13242-13250. [PMID: 28696463 PMCID: PMC5634921 DOI: 10.1039/c7dt01728f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A combination of reaction coordinate computations, resonance Raman spectroscopy, spectroscopic computations, and hydrogen bonding investigations have been used to understand the importance of substrate orientation along the xanthine oxidase reaction coordinate. Specifically, 4-thiolumazine and 2,4-dithiolumazine have been used as reducing substrates for xanthine oxidase to form stable enzyme-product charge transfer complexes suitable for spectroscopic study. Laser excitation into the near-infrared molybdenum-to-product charge transfer band produces rR enhancement patterns in the high frequency in-plane stretching region that directly probe the nature of this MLCT transition and provide insight into the effects of electron redistribution along the reaction coordinate between the transition state and the stable enzyme-product intermediate, including the role of the covalent Mo-O-C linkage in facilitating this process. The results clearly show that specific Mo-substrate orientations allow for enhanced electronic coupling and facilitate strong hydrogen bonding interactions with amino acid residues in the substrate binding pocket.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM87131-0001, USA.
| | | | | |
Collapse
|
18
|
Kumar R, Joshi G, Kler H, Kalra S, Kaur M, Arya R. Toward an Understanding of Structural Insights of Xanthine and Aldehyde Oxidases: An Overview of their Inhibitors and Role in Various Diseases. Med Res Rev 2017; 38:1073-1125. [DOI: 10.1002/med.21457] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Harveen Kler
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Sourav Kalra
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
- Centre for Human Genetics and Molecular Medicine
| | - Manpreet Kaur
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Ramandeep Arya
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| |
Collapse
|
19
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Ojha R, Singh J, Ojha A, Singh H, Sharma S, Nepali K. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015). Expert Opin Ther Pat 2016; 27:311-345. [DOI: 10.1080/13543776.2017.1261111] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ritu Ojha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Jagjeet Singh
- Department of Pharmacy, Rayat-Bahara group of Institutes, Hoshiarpur, India
| | - Anu Ojha
- Department of Pharmacy, DIT University, Dehradun, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kunal Nepali
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| |
Collapse
|
21
|
Khambata RS, Ghosh SM, Ahluwalia A. "Repurposing" of Xanthine Oxidoreductase as a Nitrite Reductase: A New Paradigm for Therapeutic Targeting in Hypertension. Antioxid Redox Signal 2015; 23:340-53. [PMID: 25714611 DOI: 10.1089/ars.2015.6254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE In contrast to nitric oxide (NO), which has well-established, important effects in regulation of cardiovascular homeostasis, its oxidative metabolite nitrite has, until recently, been considered to be of minor functional significance. RECENT ADVANCES However, this view of nitrite has been radically revised over the past 10 years with evidence now supporting a critical role for this anion as a storage form of NO. CRITICAL ISSUES Importantly, while hypoxia and acidosis have been shown to play a pivotal role in the generation of nitrite to NO, a number of mammalian nitrite reductases have been identified that facilitate the reduction of nitrite. Critically, these nitrite reductases have been demonstrated to operate under physiological pH conditions and in normoxia, extending the functional remit of this anion from an ischemic mediator to an important regulator of physiology. One particular nitrite reductase that has been shown to operate under a wide range of environmental conditions is the enzyme xanthine oxidoreductase (XOR). FUTURE DIRECTIONS In this review, we discuss the evidence supporting a role for XOR as a nitrite reductase while focusing particularly on its function in hypertension. In addition, we discuss the potential merit in exploiting this activity of XOR in the therapeutics of hypertension.
Collapse
Affiliation(s)
- Rayomand S Khambata
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| | - Suborno M Ghosh
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Barts & The London Medical School, Queen Mary University of London , London, United Kingdom
| |
Collapse
|
22
|
Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking studies. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1382-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Stein BW, Kirk ML. Electronic structure contributions to reactivity in xanthine oxidase family enzymes. J Biol Inorg Chem 2015; 20:183-94. [PMID: 25425163 PMCID: PMC4867223 DOI: 10.1007/s00775-014-1212-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
We review the xanthine oxidase (XO) family of pyranopterin molybdenum enzymes with a specific emphasis on electronic structure contributions to reactivity. In addition to xanthine and aldehyde oxidoreductases, which catalyze the two-electron oxidation of aromatic heterocycles and aldehyde substrates, this mini-review highlights recent work on the closely related carbon monoxide dehydrogenase (CODH) that catalyzes the oxidation of CO using a unique Mo-Cu heterobimetallic active site. A primary focus of this mini-review relates to how spectroscopy and computational methods have been used to develop an understanding of critical relationships between geometric structure, electronic structure, and catalytic function.
Collapse
Affiliation(s)
- Benjamin W. Stein
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 300 Terrace St. NE, Albuquerque, NM 87131
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 300 Terrace St. NE, Albuquerque, NM 87131
| |
Collapse
|
24
|
Chen Z, Yin G. The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations. Chem Soc Rev 2015; 44:1083-100. [DOI: 10.1039/c4cs00244j] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relationships of active metal oxo and hydroxo moieties have been summarized with their implications for biological and chemical oxidations.
Collapse
Affiliation(s)
- Zhuqi Chen
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Guochuan Yin
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
25
|
Li J, Ryde U. Comparison of the Active-Site Design of Molybdenum Oxo-Transfer Enzymes by Quantum Mechanical Calculations. Inorg Chem 2014; 53:11913-24. [DOI: 10.1021/ic5010837] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jilai Li
- Department of Theoretical Chemistry, Chemical
Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- State Key Laboratory of Theoretical and
Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical
Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
26
|
Virdi HS, Sharma S, Mehndiratta S, Bedi PMS, Nepali K. Design, synthesis and evaluation of 2,4-diarylpyrano[3,2-c]chromen-5(4H)-one as a new class of non-purine xanthine oxidase inhibitors. J Enzyme Inhib Med Chem 2014; 30:1-7. [PMID: 25268805 DOI: 10.3109/14756366.2014.961446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/01/2014] [Indexed: 01/29/2023] Open
Abstract
Abstract Keeping in view the recent success of molecular hybridization technique in drug design, 2,4-diarylpyrano[3,2-c]chromen-5(4H)-ones as conjugates of coumarins and chalcones have been designed and synthesized in the present study. The catalytic efficiency of various Lewis acids for the synthesis of designed conjugates under neat conditions was investigated, and SiO2 (200-400 mesh)-ZnCl2 was optimized as the best catalyst among the tested ones. The conjugates were evaluated for in-vitro xanthine oxidase activity. The results of the in-vitro assay were quite promising as some conjugates were endowed with remarkable inhibitory potential against the enzyme. HV-8, 11 and 12 were found to be high-potent inhibitors with HV-11 (the most potent inhibitor) possessing an IC50 value of 2.21 µM. The most active conjugate HV-11 was evaluated for the type of inhibition and was found to be a mixed type inhibitor. The compliance of some selected conjugates to the Lipinski rule was also calculated.
Collapse
Affiliation(s)
- Harpreet S Virdi
- Department of Pharmaceutical sciences, Guru Nanak Dev University , Amritsar, Punjab , India and
| | | | | | | | | |
Collapse
|
27
|
Singh H, Sharma S, Ojha R, Gupta MK, Nepali K, Bedi P. Synthesis and evaluation of naphthoflavones as a new class of non purine xanthine oxidase inhibitors. Bioorg Med Chem Lett 2014; 24:4192-7. [DOI: 10.1016/j.bmcl.2014.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
28
|
Shukla S, Kumar D, Ojha R, Gupta MK, Nepali K, Bedi PMS. 4,6-Diaryl/heteroarylpyrimidin-2(1H)-ones as a New Class of Xanthine Oxidase Inhibitors. Arch Pharm (Weinheim) 2014; 347:486-95. [DOI: 10.1002/ardp.201400031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/27/2014] [Accepted: 03/12/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Shiwani Shukla
- Department of Pharmaceutical Sciences; Guru Nanak Dev University; Amritsar Punjab India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences; Guru Nanak Dev University; Amritsar Punjab India
| | - Ritu Ojha
- Department of Pharmaceutical Sciences; Guru Nanak Dev University; Amritsar Punjab India
| | - Manish K. Gupta
- Department of Pharmaceutical Chemistry; ISF College of Pharmacy; Moga Punjab India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences; Guru Nanak Dev University; Amritsar Punjab India
| | - Preet M. S. Bedi
- Department of Pharmaceutical Sciences; Guru Nanak Dev University; Amritsar Punjab India
| |
Collapse
|
29
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
30
|
Cao H, Hall J, Hille R. Substrate orientation and specificity in xanthine oxidase: crystal structures of the enzyme in complex with indole-3-acetaldehyde and guanine. Biochemistry 2014; 53:533-41. [PMID: 24397336 DOI: 10.1021/bi401465u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthine oxidase is a molybdenum-containing hydroxylase that catalyzes the hydroxylation of sp(2)-hybridized carbon centers in a variety of aromatic heterocycles as well as aldehydes. Crystal structures of the oxidase form of the bovine enzyme in complex with a poor substrate indole-3-acetaldehyde and the nonsubstrate guanine have been determined, both at a resolution of 1.6 Å. In each structure, a specific and unambiguous orientation of the substrate in the active site is observed in which the hydroxylatable site is oriented away from the active site molybdenum center. The orientation seen with indole-3-acetaldehyde has the substrate positioned with the indole ring rather than the exocyclic aldehyde nearest the molybdenum center, indicating that the substrate must rotate some 30° in the enzyme active site to permit hydroxylation of the aldehyde group (as observed experimentally), accounting for the reduced reactivity of the enzyme toward this substrate. The principal product of hydroxylation of indole-3-acetaldehyde by the bovine enzyme is confirmed to be indole-3-carboxylic acid based on its characteristic UV-vis spectrum, and the kinetics of enzyme reduction are reported. With guanine, the dominant orientation seen crystallographically has the C-8 position that might be hydroxylated pointed away from the active site molybdenum center, in a configuration resembling that seen previously with hypoxanthine (a substrate that is effectively hydroxylated at position 2). The ∼180° reorientation required to permit reaction is sterically prohibited, indicating that substrate (mis)orientation in the active site is a major factor precluding formation of the highly mutagenic 8-hydroxyguanine.
Collapse
Affiliation(s)
- Hongnan Cao
- Department of Biochemistry, University of California , Riverside, California 92521, United States
| | | | | |
Collapse
|
31
|
Microwave assisted synthesis of naphthopyrans catalysed by silica supported fluoroboric acid as a new class of non purine xanthine oxidase inhibitors. Bioorg Med Chem Lett 2014; 24:495-500. [DOI: 10.1016/j.bmcl.2013.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022]
|
32
|
Rathod MA, Patel D, Das A, Tipparaju SR, Shinde SS, Anderson RF. Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee: phenolics and caffeine metabolites. Free Radic Res 2013; 47:480-7. [DOI: 10.3109/10715762.2013.788167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Abstract
A perspective is provided of recent advances in our understanding of molybdenum-containing enzymes other than nitrogenase, a large and diverse group of enzymes that usually (but not always) catalyze oxygen atom transfer to or from a substrate, utilizing a Mo=O group as donor or acceptor. An emphasis is placed on the diversity of protein structure and reaction catalyzed by each of the three major families of these enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, 1643 Boyce Hall, Riverside, CA 92521, USA.
| |
Collapse
|
34
|
Dhiman R, Sharma S, Singh G, Nepali K, Singh Bedi PM. Design and synthesis of aza-flavones as a new class of xanthine oxidase inhibitors. Arch Pharm (Weinheim) 2012; 346:7-16. [PMID: 23076715 DOI: 10.1002/ardp.201200296] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 11/08/2022]
Abstract
In an attempt to develop non-purine-based xanthine oxidase (XO) inhibitors, keeping in view the complications reported with the use of purine-based XO inhibitors, the flavone framework (a class possessing XO inhibitory potential) was used as lead structure for further optimization. By means of structure-based classical bioisosterism, quinolone was used as an isoster for chromone (a bicyclic unit present in flavones), owing to the bioactive potential and drug-like properties of quinolones. This type of replacement does not alter the shape and structural features required for XO inhibition, and also provides some additional interaction sites, without the loss of hydrogen bonding and hydrophobic and arene-arene interactions. In the present study, a series of 2-aryl/heteroaryl-4-quinolones (aza analogs of flavones) was rationally designed, synthesized and evaluated for in vitro XO inhibitory activity. Some notions about structure-activity relationships are presented indicating the influence of the nature of the 2-aryl ring on the inhibitory activity. Important interactions of the most active compound 3l (IC(50) = 6.24 µM) with the amino acid residues of the active site of XO were figured out by molecular modeling.
Collapse
Affiliation(s)
- Rajni Dhiman
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | | | | | | | | |
Collapse
|
35
|
N-(1,3-Diaryl-3-oxopropyl)amides as a new template for xanthine oxidase inhibitors. Bioorg Med Chem 2011; 19:5569-76. [DOI: 10.1016/j.bmc.2011.07.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/23/2022]
|
36
|
Shi S, Wang Y, Xu A, Wang H, Zhu D, Roy SB, Jackson TA, Busch DH, Yin G. Distinct Reactivity Differences of Metal Oxo and Its Corresponding Hydroxo Moieties in Oxidations: Implications from a Manganese(IV) Complex Having Dihydroxide Ligand. Angew Chem Int Ed Engl 2011; 50:7321-4. [DOI: 10.1002/anie.201100588] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/17/2011] [Indexed: 11/12/2022]
|
37
|
Shi S, Wang Y, Xu A, Wang H, Zhu D, Roy SB, Jackson TA, Busch DH, Yin G. Distinct Reactivity Differences of Metal Oxo and Its Corresponding Hydroxo Moieties in Oxidations: Implications from a Manganese(IV) Complex Having Dihydroxide Ligand. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Abstract
Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan and Department of Biochemistry, University of California, Riverside, CA 92521
| | - Florian Bittner
- Department of Plant Biology, Technical University of Braunschweig, 38023 Braunschweig, Germany
| |
Collapse
|
39
|
|
40
|
Kumar R, Darpan, Sharma S, Singh R. Xanthine oxidase inhibitors: a patent survey. Expert Opin Ther Pat 2011; 21:1071-108. [DOI: 10.1517/13543776.2011.577417] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Nepali K, Singh G, Turan A, Agarwal A, Sapra S, Kumar R, Banerjee UC, Verma PK, Satti NK, Gupta MK, Suri OP, Dhar K. A rational approach for the design and synthesis of 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles as a new class of potential non-purine xanthine oxidase inhibitors. Bioorg Med Chem 2011; 19:1950-8. [DOI: 10.1016/j.bmc.2011.01.058] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 11/26/2022]
|
42
|
Cao H, Pauff JM, Hille R. Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid. J Biol Chem 2010; 285:28044-53. [PMID: 20615869 PMCID: PMC2934669 DOI: 10.1074/jbc.m110.128561] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/27/2010] [Indexed: 11/06/2022] Open
Abstract
Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp(2)-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 A resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 A resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative product not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg(880) and Glu(802), previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.
Collapse
Affiliation(s)
- Hongnan Cao
- From the Department of Biochemistry, University of California at Riverside, Riverside, California 92521 and
| | - James M. Pauff
- From the Department of Biochemistry, University of California at Riverside, Riverside, California 92521 and
- the Medical Scientist Program, The Ohio State University, Columbus, Ohio 43210
| | - Russ Hille
- From the Department of Biochemistry, University of California at Riverside, Riverside, California 92521 and
| |
Collapse
|
43
|
Active transition metal oxo and hydroxo moieties in nature's redox, enzymes and their synthetic models: Structure and reactivity relationships. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2010.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Hille R. EPR Studies of Xanthine Oxidoreductase and Other Molybdenum-Containing Hydroxylases. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4419-1139-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
45
|
Xu A, Xiong H, Yin G. Distinct Oxygenation Difference between Manganese(IV) Hydroxo and Oxo Moieties: Electron Transfer versus Concerted Oxygen Transfer. Chemistry 2009; 15:11478-81. [DOI: 10.1002/chem.200901524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Metz S, Thiel W. A Combined QM/MM Study on the Reductive Half-Reaction of Xanthine Oxidase: Substrate Orientation and Mechanism. J Am Chem Soc 2009; 131:14885-902. [DOI: 10.1021/ja9045394] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sebastian Metz
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
47
|
Metz S, Wang D, Thiel W. Reductive Half-Reaction of Aldehyde Oxidoreductase toward Acetaldehyde: A Combined QM/MM Study. J Am Chem Soc 2009; 131:4628-40. [DOI: 10.1021/ja805938w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Metz
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Dongqi Wang
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
48
|
Bayse CA. Density-functional theory models of xanthine oxidoreductase activity: comparison of substrate tautomerization and protonation. Dalton Trans 2009:2306-14. [DOI: 10.1039/b821878a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Pauff JM, Hemann CF, Jünemann N, Leimkühler S, Hille R. The Role of Arginine 310 in Catalysis and Substrate Specificity in Xanthine Dehydrogenase from Rhodobacter capsulatus. J Biol Chem 2007; 282:12785-90. [PMID: 17327224 DOI: 10.1074/jbc.m700364200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rapid reaction kinetics of wild-type xanthine dehydrogenase from Rhodobacter capsulatus and variants at Arg-310 in the active site have been characterized for a variety of purine substrates. With xanthine as substrate, k(red) (the limiting rate of enzyme reduction by substrate at high [S]) decreased approximately 20-fold in an R310K variant and 2 x 10(4)-fold in an R310M variant. Although Arg-310 lies on the opposite end of the substrate from the C-8 position that becomes hydroxylated, its interaction with substrate still contributed approximately 4.5 kcal/mol toward transition state stabilization. The other purines examined fell into two distinct groups: members of the first were effectively hydroxylated by the wild-type enzyme but were strongly affected by the exchange of Arg-310 to methionine (with a reduction in k(red) greater than 10(3)), whereas members of the second were much less effectively hydroxylated by wild-type enzyme but also much less significantly affected by the amino acid exchanges (with a reduction in k(red) less than 50-fold). The effect was such that the 4000-fold range in k(red) seen with wild-type enzyme was reduced to a mere 4-fold in the R310M variant. The data are consistent with a model in which "good" substrates are bound "correctly" in the active site in an orientation that allows Arg-310 to stabilize the transition state for the first step of the overall reaction via an electrostatic interaction at the C-6 position, thereby accelerating the reaction rate. On the other hand, "poor" substrates bound upside down relative to this "correct" orientation. In so doing, they are unable to avail themselves of the additional catalytic power provided by Arg-310 in wild-type enzyme but, for this reason, are significantly less affected by mutations at this position. The kinetic data thus provide a picture of the specific manner in which the physiological substrate xanthine is oriented in the active site relative to Arg-310 and how this residue is used catalytically to accelerate the reaction rate (rather than simply bind substrate) despite being remote from the position that is hydroxylated.
Collapse
Affiliation(s)
- James M Pauff
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Russ Hille
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 333 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210‐1218, USA
| |
Collapse
|