1
|
Islam Sk A, Ghosh A, Kundu K, Murugan I, Kundu PK. Azobenzene-Attached (NHC)Gold(I) and (NHC)Copper(I) Complexes as Photoswitchable Catalysts. Chemistry 2024:e202402381. [PMID: 39228337 DOI: 10.1002/chem.202402381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Photoswitchable (pre)catalysts, N,N'-bis-azobenzene-based (NHC)gold(I) and N,N'-bis-azobenzene-derived (NHC)copper(I) complexes are reported. Trans to cis isomerization of the attached photoswitchable moieties in the Au(I) complex enables four-fold decrement in the rate of oxazoline formation reaction. Whereas the progress of the copper(I) catalyzed, azide-alkyne cycloaddition reaction gets reduced by at least threefold. Alternate exposure to UV and blue light could easily toggle the rate of reactions remotely. The catalytic activity of thermodynamically stable trans-trans isomers is found to be similar to the common N-aryl substituted NHC-Au/Cu(I) complexes. NHC-Au(I) and -Cu(I) compounds bearing (trans)azobenzene moieties were characterized by X-ray diffraction. Photoswitching, recyclability studies, and the metastable isomer's thermal half-life in both complexes were studied via UV-visible spectroscopy. Whereas the extent of photoswitching and concomitant formation of geometrical isomers were investigated by using 1H-NMR spectroscopic study. Calculated percentage buried volumes of the three geometrical isomers show the trend trans-trans
Collapse
Affiliation(s)
- Aminul Islam Sk
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, India
| | - Ayan Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Kshama Kundu
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Indukumari Murugan
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, India
| | - Pintu K Kundu
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, India
| |
Collapse
|
2
|
DiNardi RG, Rasheed S, Capomolla SS, Chak MH, Middleton IA, Macreadie LK, Violi JP, Donald WA, Lusby PJ, Beves JE. Photoswitchable Catalysis by a Self-Assembled Molecular Cage. J Am Chem Soc 2024; 146:21196-21202. [PMID: 39051845 PMCID: PMC11311219 DOI: 10.1021/jacs.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
A heteroleptic [Pd2L2L'2]4+ coordination cage containing a photoswitchable azobenzene-derived ligand catalyzes the Michael addition reaction between methyl vinyl ketone and benzoyl nitromethane within its cavity. The corresponding homoleptic cages are catalytically inactive. The heteroleptic cage can be reversibly disassembled and reassembled using 530 and 405 nm light, respectively, allowing catalysis within the cage to be switched OFF and ON at will.
Collapse
Affiliation(s)
- Ray G. DiNardi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Samina Rasheed
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Man Him Chak
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Isis A. Middleton
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Jake P. Violi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - William A. Donald
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Jonathon E. Beves
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Petrikat RI, Hornbogen J, Schmitt MJP, Resmann E, Wiedemann C, Dilmen NI, Schneider H, Pick AM, Riehn C, Diller R, Becker S. A Photoswitchable Metallocycle Based on Azobenzene: Synthesis, Characterization, and Ultrafast Dynamics. Chemistry 2024; 30:e202400205. [PMID: 38526989 DOI: 10.1002/chem.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The novel photoswitchable ligand 3,3'-Azobenz(metPA)2 (1) is used to prepare a [Cu2(1)2](BF4)2 metallocycle (2), whose photoisomerization was characterized using static and time-resolved spectroscopic methods. Optical studies demonstrate the highly quantitative and reproducible photoinduced cyclic E/Z switching without decay of the complex. Accordingly and best to our knowledge, [Cu2(1)2](BF4)2 constitutes the first reversibly photoswitchable (3d)-metallocycle based on azobenzene. The photoinduced multiexponential dynamics in the sub-picosecond to few picosecond time domain of 1 and 2 have been assessed. These ultrafast dynamics as well as the yield of the respective photostationary state (PSSZ = 65 %) resemble the behavior of archetypical azobenzene. Also, the innovative pump-probe laser technique of gas phase transient photodissociation (τ-PD) in a mass spectrometric ion trap was used to determine the intrinsic relaxation dynamics for the isolated complex. These results are consistent with the results from femtosecond UV/Vis transient absorption (fs-TA) in solution, emphasizing the azobenzene-like dynamics of 2. This unique combination of fs-TA and τ-PD enables valuable insights into the prevailing interplay of dynamics and solvation. Both analyses (in solution and gas phase) and quantum chemical calculations reveal a negligible effect of the metal coordination on the switching mechanism and electronic pathway, which suggests a non-cooperative isomerization process.
Collapse
Affiliation(s)
- Raphael I Petrikat
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Justin Hornbogen
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Marcel J P Schmitt
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Emma Resmann
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Christina Wiedemann
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Nesrin I Dilmen
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Heinrich Schneider
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Annika M Pick
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
- Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Sabine Becker
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| |
Collapse
|
4
|
Sherstiuk A, Lledós A, Lönnecke P, Hernando J, Sebastián RM, Hey-Hawkins E. Dithienylethene-Based Photoswitchable Phosphines for the Palladium-Catalyzed Stille Coupling Reaction. Inorg Chem 2024; 63:7652-7664. [PMID: 38624066 PMCID: PMC11061837 DOI: 10.1021/acs.inorgchem.3c04423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Homogeneous transition metal catalysis is a constantly developing field in chemical sciences. A growing interest in this area is photoswitchable catalysis, which pursues in situ modulation of catalyst activity through noninvasive light irradiation. Phosphorus ligands are excellent targets to accomplish this goal by introducing photoswitchable moieties; however, only a limited number of examples have been reported so far. In this work, we have developed a series of palladium complexes capable of catalyzing the Stille coupling reaction that contain photoisomerizable phosphine ligands based on dithienylethene switches. Incorporation of electron-withdrawing substituents into these dithienylethene moieties allows variation of the electron density on the phosphorus atom of the ligands upon light irradiation, which in turn leads to a modulation of the catalytic properties of the formed complexes and their activity in a model Stille coupling reaction. These results are supported by theoretical computations, which show that the energy barriers for the rate-determining steps of the catalytic cycle decrease when the photoswitchable phosphine ligands are converted to their closed state.
Collapse
Affiliation(s)
- Anastasiia Sherstiuk
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
- Department
of Chemistry, Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Agustí Lledós
- Department
of Chemistry, Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Peter Lönnecke
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| | - Jordi Hernando
- Department
of Chemistry, Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Rosa María Sebastián
- Department
of Chemistry, Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona,Spain
| | - Evamarie Hey-Hawkins
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
5
|
Valentini M, Frateloreto F, Conti M, Cacciapaglia R, Del Giudice D, Di Stefano S. A Doubly Dissipative System Driven by Chemical and Radiative Stimuli. Chemistry 2023; 29:e202301835. [PMID: 37326465 DOI: 10.1002/chem.202301835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
The operation of a dissipative network composed of two or three different crown-ether receptors and an alkali metal cation can be temporally driven by the use (combined or not) of two orthogonal stimuli of a different nature. More specifically, irradiation with light at a proper wavelength and/or addition of an activated carboxylic acid, are used to modulate the binding capability of the above crown-ethers towards the metal ion, allowing to control over time the occupancy of the metal cation in the crown-ether moiety of a given ligand. Thus, application of either or both of the stimuli to an initially equilibrated system, where the metal cation is distributed among the crown-ether receptors depending on the different affinities, causes a programmable change in the receptor occupancies. Consequently, the system is induced to evolve to one or more out-of-equilibrium states with different distributions of the metal cation among the different receptors. When the fuel is exhausted or/and the irradiation interrupted, the system reversibly and autonomously goes back to the initial equilibrium state. Such results may contribute to the achievement of new dissipative systems that, taking advantage of multiple and orthogonal stimuli, are featured with more sophisticated operating mechanisms and time programmability.
Collapse
Affiliation(s)
- Matteo Valentini
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Federico Frateloreto
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Matteo Conti
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Roberta Cacciapaglia
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Daniele Del Giudice
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Stefano Di Stefano
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
6
|
Sahoo SR, Bera D, Saha S, Goswami N. Switchable catalysis and CO 2 sensing by reduction resistant, luminescent copper-thiolate complexes. NANOSCALE 2022; 14:18051-18059. [PMID: 36448343 DOI: 10.1039/d2nr05396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-thiolate complexes have been the focus of research for several years because of their unique photophysical properties and their use as a precursor for synthesizing various well-defined metal nanoclusters. A rational understanding of their structure-property relationship is necessary to realize their full potential in practical applications. Herein, we demonstrate the synthesis of a unique copper-thiolate complex with reversibly switchable catalytic and photoluminescence (PL) properties. The as-synthesized complex at basic pH (Complex B) showed cyan PL with a strong peak at ∼488 nm (cyan) and a small shoulder peak at ∼528 nm (green). When the pH of the complex was changed to acidic (Complex A), the PL was switched to light green. Such pH-responsive PL properties were demonstrated to be useful for pH and CO2 sensing. The switchable properties originate from their two distinct structural states at two different pHs. We found that Complex A was resistant to high concentrations of a strong reducing agent, and had an intermediate oxidation state of copper (Cu+) with good thermodynamic stability. Furthermore, the switchable catalytic property was investigated with a 4-nitrophenol reduction and 3,3',5,5'-tetramethylbenzidine (TMB) oxidation reaction. The reduction kinetics followed pseudo-first-order, where the catalytic activity was enhanced by more than 103 times when Complex B was switched to Complex A. A similar trend was also observed for TMB oxidation. Our design strategy demonstrates that redox switchable metal-thiolate complexes could be a powerful candidate for a plethora of applications.
Collapse
Affiliation(s)
- Satya Ranjan Sahoo
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debkumar Bera
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Gallarati S, Fabregat R, Juraskova V, Inizan TJ, Corminboeuf C. How Robust Is the Reversible Steric Shielding Strategy for Photoswitchable Organocatalysts? J Org Chem 2022; 87:8849-8857. [PMID: 35762705 PMCID: PMC9295146 DOI: 10.1021/acs.joc.1c02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly appealing strategy to modulate a catalyst's activity and/or selectivity in a dynamic and noninvasive way is to incorporate a photoresponsive unit into a catalytically competent molecule. However, the description of the photoinduced conformational or structural changes that alter the catalyst's intrinsic reactivity is often reduced to a handful of intuitive static representations, which can struggle to capture the complexity of flexible organocatalysts. Here, we show how a comprehensive exploration of the free energy landscape of N-alkylated azobenzene-tethered piperidine catalysts is essential to unravel the conformational characteristics of each configurational state and explain the experimentally observed reactivity trends. Mapping the catalysts' conformational space highlights the existence of false ON or OFF states that lower their switching ability. Our findings expose the challenges associated with the realization of a reversible steric shielding for the photocontrol of Brønsted basicity of piperidine photoswitchable organocatalysts.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Raimon Fabregat
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Veronika Juraskova
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Theo Jaffrelot Inizan
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.,National Center for Competence in Research─Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.,National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
8
|
Liu R, Zhang X, Xia F, Dai Y. Azobenzene-based photoswitchable catalysts: State of the art and perspectives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Krishnan CG, Kondo M, Nakamura K, Sasai H, Takizawa S. Photoswitchable Chiral Cation-Binding Catalyst: Photocontrol of Catalytic Activity on Enantioselective Aminal Synthesis. Org Lett 2022; 24:2670-2674. [PMID: 35353533 DOI: 10.1021/acs.orglett.2c00741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of a suitable photoswitchable chiral cation-binding cage for the synthesis of optically active aminals was established using the azobenzene-BINOL hybrid oligoethylene glycol (ABOEG) through E/Z isomerization of the azobenzene unit. Under photoirradiation, both the catalytic activity and enantioselectivity of the generating (Z)-ABOEG are enhanced, in contrast to that of (E)-ABOEG, which can be attributed to the geometrically distinct coordination behavior between the metal cation and the oligoethylene glycols.
Collapse
Affiliation(s)
- Chandu G Krishnan
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Masaru Kondo
- Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, Hitachi-shi, Ibaraki 316-8511, Japan
| | - Kento Nakamura
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
10
|
Elramadi E, Ghosh A, Valiyev I, Biswas P, Paululat T, Schmittel M. Catalytic machinery in motion: Controlling catalysis via speed. Chem Commun (Camb) 2022; 58:8073-8076. [DOI: 10.1039/d2cc02555h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 3-component copper(I)-based slider-on-deck systems served as catalysts for a click reaction showing a higher catalytic activity with increasing sliding speed. Upon addition of brake stones, the motion of the...
Collapse
|
11
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
12
|
Kunfi A, Jablonkai I, Gazdag T, Mayer PJ, Kalapos PP, Németh K, Holczbauer T, London G. A photoresponsive palladium complex of an azopyridyl-triazole ligand: light-controlled solubility drives catalytic activity in the Suzuki coupling reaction. RSC Adv 2021; 11:23419-23429. [PMID: 35479800 PMCID: PMC9036612 DOI: 10.1039/d1ra03838a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Herein, the design and synthesis of a click-derived Pd-complex merged with a photoswitchable azobenzene unit is presented. While in the trans-form of the switch the complex showed limited solubility, the photogenerated cis-form rendered the molecule soluble in polar solvents. This light-controllable solubility was exploited to affect the catalytic activity in the Suzuki coupling reaction. The effect of the substrate and catalyst concentration and light intensity on the proceeding and outcome of the reaction was studied. Dehalogenation of the aryl iodide starting material was found to be a major side reaction; however, its occurrence was dependent on the applied light intensity.
Collapse
Affiliation(s)
- Attila Kunfi
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar tudósok krt. 2. 1117 Budapest Hungary
| | - István Jablonkai
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar tudósok krt. 2. 1117 Budapest Hungary
| | - Tamás Gazdag
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar tudósok krt. 2. 1117 Budapest Hungary
- Institute of Chemistry, Eötvös Loránd University Pázmány Péter stny. 1/A 1117 Budapest Hungary
| | - Péter J Mayer
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar tudósok krt. 2. 1117 Budapest Hungary
- Institute of Chemistry, University of Szeged Rerrich tér 1. 6720 Szeged Hungary
| | - Péter Pál Kalapos
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar tudósok krt. 2. 1117 Budapest Hungary
| | - Krisztina Németh
- Institute of Chemistry, Eötvös Loránd University Pázmány Péter stny. 1/A 1117 Budapest Hungary
- MS Metabolomics Research Group, Instrumentation Center, Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Tamás Holczbauer
- Centre for Structural Science and Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar tudósok krt. 2. 1117 Budapest Hungary
| | - Gábor London
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar tudósok krt. 2. 1117 Budapest Hungary
| |
Collapse
|
13
|
Goswami A, Gaikwad S, Schmittel M. A Switchable Catalyst Duo for Acyl Transfer Proximity Catalysis and Regulation of Substrate Selectivity. Chemistry 2021; 27:2997-3001. [PMID: 33022776 PMCID: PMC7898682 DOI: 10.1002/chem.202004416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Enzymes are encoded with a gamut of information to catalyze a highly selective transformation by selecting the proper reactants from an intricate mixture of constituents. Mimicking biological machinery, two switchable catalysts with differently sized cavities and allosteric control are conceived that allow complementary size-selective acyl transfer in an on/off manner by modulating the effective local concentration of the substrates. Selective activation of one of two catalysts in a mixture of reactants of similar reactivity enabled upregulation of the desired product.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
14
|
Kondo M, Nakamura K, Krishnan CG, Takizawa S, Abe T, Sasai H. Photoswitchable Chiral Phase Transfer Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Masaru Kondo
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Kento Nakamura
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Chandu G. Krishnan
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Tsukasa Abe
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
15
|
Kaler S, McKeown P, Ward BD, Jones MD. Aluminium( iii) and zinc( ii) complexes of azobenzene-containing ligands for ring-opening polymerisation of ε-caprolactone and rac-lactide. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01303j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability to control the outcome of polymerisations using an external stimulus remains a formidable challenge.
Collapse
|
16
|
Heindl AH, Wegner HA. Rational Design of Azothiophenes-Substitution Effects on the Switching Properties. Chemistry 2020; 26:13730-13737. [PMID: 32330338 PMCID: PMC7702042 DOI: 10.1002/chem.202001148] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/22/2022]
Abstract
A series of substituted azothiophenes was prepared and investigated toward their isomerization behavior. Compared to azobenzene (AB), the presented compounds showed red-shifted absorption and almost quantitative photoisomerization to their (Z) states. Furthermore, it was found that electron-withdrawing substitution on the phenyl moiety increases, while electron-donating substitution decreases the thermal half-lives of the (Z)-isomers due to higher or lower stabilization by a lone pair-π interaction. Additionally, computational analysis of the isomerization revealed that a pure singlet state transition state is unlikely in azothiophenes. A pathway via intersystem crossing to a triplet energy surface of lower energy than the singlet surface provided a better fit with experimental data of the (Z)→(E) isomerization. The insights gained in this study provide the necessary guidelines to design effective thiophenylazo-photoswitches for applications in photopharmacology, material sciences, or solar energy harvesting applications.
Collapse
Affiliation(s)
- Andreas H. Heindl
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
17
|
Ushakov EN, Martyanov TP, Vedernikov AI, Efremova AA, Moiseeva AA, Kuz’mina LG, Dmitrieva SN, Howard JAK, Gromov SP. Highly Stable Supramolecular Donor-Acceptor Complexes Involving a Bis(18-Crown-6)azobenzene as Weak Donor: Structure-Property Relationships. ACS OMEGA 2020; 5:25993-26004. [PMID: 33073126 PMCID: PMC7557953 DOI: 10.1021/acsomega.0c03441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The physicochemical properties of highly stable supramolecular donor-acceptor (D-A) complexes of a bis(18-crown-6)azobenzene (weak π-donor) with a series of bis(ammonioalkyl) derivatives of viologen-like molecules (π-acceptors) in acetonitrile were studied using cyclic voltammetry, UV-vis absorption spectroscopy, 1H NMR spectroscopy, and density functional theory (DFT) calculations. The crystalline structures of the bis(crown)azobenzene and its complex with a bis(ammoniopropyl) derivative of 2,7-diazapyrene were determined by X-ray diffraction analysis. In solution, all of the supramolecular D-A complexes studied have a pseudocyclic structure owing to ditopic coordination of the ammonium groups of the acceptor to the crown ether moieties of the donor. These complexes show somewhat lower stability as compared with the previously studied complexes of the related derivative of stilbene (strong π-donor), which is explained by the relatively weak intermolecular charge-transfer (CT) interactions. Time-dependent DFT calculations predict that the low-energy CT transition in the D-A complex of the bis(crown)azobenzene with a bis(ammoniopropyl) derivative of 4,4'-bipyridine lies between the local ππ* and nπ* transitions of the azobenzene. The absorption band associated with the CT transition is indiscernible in the spectrum since it is overlapped with broad and more intense ππ* and nπ* bands. It was found that the E → Z photoisomerization quantum yield of the bis(crown)azobenzene decreases by almost an order of magnitude upon the complexation with the 4,4'-bipyridine derivative. This effect was tentatively attributed to the intermolecular electron transfer that occurs in the 1ππ* excited state of the azobenzene and competes with the 1ππ* → 1 nπ* internal conversion.
Collapse
Affiliation(s)
- Evgeny N. Ushakov
- Institute
of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Chernogolovka 142432, Russian Federation
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
| | - Timofey P. Martyanov
- Institute
of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Chernogolovka 142432, Russian Federation
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
| | - Artem I. Vedernikov
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
| | - Asya A. Efremova
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
| | - Anna A. Moiseeva
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Moscow 119991, Russian Federation
| | - Lyudmila G. Kuz’mina
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy
of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation
| | - Svetlana N. Dmitrieva
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
| | - Judith A. K. Howard
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - Sergey P. Gromov
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Moscow 119991, Russian Federation
| |
Collapse
|
18
|
Cheng R, Xiong W, Qi C, Wang L, Ren Y, Jiang H. Macrocyclization of 3-triflyloxybenzynes with tetrahydrofuran via an anionic thia-Fries rearrangement. Chem Commun (Camb) 2020; 56:6495-6498. [PMID: 32409790 DOI: 10.1039/d0cc00135j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel and uncommon macrocyclization reaction between 3-triflyloxybenzynes and tetrahydrofuran has been developed for the first time, providing a direct method for the synthesis of a range of functionalized 19-membered polyether macrocycles in moderate to good yields. The process was proposed to proceed through an anionic thia-Fris rearrangement under transition metal-free conditions, leading to the formation of four new C-O bonds and one new C-S bond in a single step.
Collapse
Affiliation(s)
- Ruixiang Cheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wenfang Xiong
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China. and State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Yanwei Ren
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
19
|
Islam Sk A, Kundu K, Kundu PK. Azobenzene Isomerization-Induced Photomodulation of Electronic Properties of N-Heterocyclic Carbenes. Chemistry 2020; 26:4214-4219. [PMID: 31943364 DOI: 10.1002/chem.201905161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 11/07/2022]
Abstract
Azobenzene-based protonated N-heterocyclic carbenes (NHCs), N,N'-bis(azobenzene)imidazolium chlorides (IAz-X⋅HCl; X=OMe, Br, H) were successfully synthesized and switching abilities of the attached azobenzene units along with the concomitant photoinduced generation of geometric isomers were studied. Upon irradiation with 365 nm UV light, a p-methoxy-azobenzene derivative get transformed from all-trans isomer to nearly all-cis isomer at the photostationary state. The extent of photomodulation of electronic properties in the NHC ring of the p-methoxy-azobenzene derivative is determined through the Tolman Electronic Parameter (TEP). Iridium complex, [(IAz-OMe)IrCl(CO)2 ] was synthesized and infrared spectra were recorded in dichloromethane solution as film in NaCl crystals and by drop-casting in an ATR crystal. Comparison in averaged carbonyl stretching frequency between all-trans isomer ( ν ˜ t t av ) and all-cis isomer ( ν ˜ c c a v ) indicates a significant decrement of Δtt-cc ν ˜ av =2.7 cm-1 (film) and 3.8 cm-1 (ATR). Therefore, moderate to excellent enhancement of electron density (Δtt-cc TEP=2.3 cm-1 [film] and 3.2 cm-1 [ATR]) at the C-2 position of the NHC is achieved through trans→cis isomerization of the remotely placed azobenzene units. This fine phototuning of electron-donating ability at the catalytic center would pave the way to control NHC/NHC-metal catalyzed organic transformations through external stimuli.
Collapse
Affiliation(s)
- Aminul Islam Sk
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, India
| | - Kshama Kundu
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Pintu K Kundu
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, India
| |
Collapse
|
20
|
Urner LH, Schulze M, Maier YB, Hoffmann W, Warnke S, Liko I, Folmert K, Manz C, Robinson CV, Haag R, Pagel K. A new azobenzene-based design strategy for detergents in membrane protein research. Chem Sci 2020; 11:3538-3546. [PMID: 34109026 PMCID: PMC8152689 DOI: 10.1039/d0sc01022g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/02/2022] Open
Abstract
Mass spectrometry enables the in-depth structural elucidation of membrane protein complexes, which is of great interest in structural biology and drug discovery. Recent breakthroughs in this field revealed the need for design rules that allow fine-tuning the properties of detergents in solution and gas phase. Desirable features include protein charge reduction, because it helps to preserve native features of protein complexes during transfer from solution into the vacuum of a mass spectrometer. Addressing this challenge, we here present the first systematic gas-phase study of azobenzene detergents. The utility of gas-phase techniques for monitoring light-driven changes of isomer ratios and molecular properties are investigated in detail. This leads to the first azobenzene detergent that enables the native mass spectrometry analysis of membrane proteins and whose charge-reducing properties can be tuned by irradiation with light. More broadly, the presented work outlines new avenues for the high-throughput characterization of supramolecular systems and opens a new design strategy for detergents in membrane protein research.
Collapse
Affiliation(s)
- Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Maiko Schulze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Yasmine B Maier
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Waldemar Hoffmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Stephan Warnke
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Kristin Folmert
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Christian Manz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
21
|
Di Stefano S, Capocasa G, Mandolini L. Supramolecular Catalysts Featuring Crown Ethers as Recognition Units. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stefano Di Stefano
- Dipartimento di Chimica; Università di Roma “La Sapienza”, and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione; P.le A. Moro 5 00185 Roma Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica; Università di Roma “La Sapienza”, and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione; P.le A. Moro 5 00185 Roma Italy
| | - Luigi Mandolini
- Dipartimento di Chimica; Università di Roma “La Sapienza”, and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione; P.le A. Moro 5 00185 Roma Italy
| |
Collapse
|
22
|
Niedek D, Erb FR, Topp C, Seitz A, Wende RC, Eckhardt AK, Kind J, Herold D, Thiele CM, Schreiner PR. In Situ Switching of Site-Selectivity with Light in the Acetylation of Sugars with Azopeptide Catalysts. J Org Chem 2020; 85:1835-1846. [PMID: 31763833 DOI: 10.1021/acs.joc.9b01913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel concept for the in situ control of site-selectivity of catalytic acetylations of partially protected sugars using light as external stimulus and oligopeptide catalysts equipped with an azobenzene moiety. The isomerizable azobenzene-peptide backbone defines the size and shape of the catalytic pocket, while the π-methyl-l-histidine (Pmh) moiety transfers the electrophile. Photoisomerization of the E- to the Z-azobenzene catalyst (monitored via NMR) with an LED (λ = 365 nm) drastically changes the chemical environment around the catalytically active Pmh moiety, so that the light-induced change in the catalyst shape alters site-selectivity. As a proof of principle, we employed (4,6-O-benzylidene)methyl-α-d-pyranosides, which provide a change in regioselectivity from 2:1 (E) to 1:5 (Z) for the monoacetylated products at room temperature. The validity of this new catalyst-design concept is further demonstrated with the regioselective acetylation of the natural product quercetin. In situ irradiation NMR spectroscopy was used to quantify photostationary states under continuous irradiation with UV light.
Collapse
Affiliation(s)
- Dominik Niedek
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Frederik R Erb
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Christopher Topp
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Alexander Seitz
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Raffael C Wende
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
23
|
Grewal S, Roy S, Kumar H, Saraswat M, Bari NK, Sinha S, Venkataramani S. Temporal control in tritylation reactions through light-driven variation in chloride ion binding catalysis – a proof of concept. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01090a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A proof-of-concept on temporal control in the tritylation reactions has been demonstrated using a designed tripodal triazole-linked azo(hetero)arene-based photoswitchable catalyst.
Collapse
Affiliation(s)
- Surbhi Grewal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Saonli Roy
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Himanshu Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Mayank Saraswat
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| | - Naimat K. Bari
- Institute of Nano Science and Technology (INST)
- Mohali-160 062
- India
| | - Sharmistha Sinha
- Institute of Nano Science and Technology (INST)
- Mohali-160 062
- India
| | - Sugumar Venkataramani
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali
- India
| |
Collapse
|
24
|
Abstract
Photoswitchable catalysis using organometallic complexes: a ligand design perspective.
Collapse
Affiliation(s)
- Zoraida Freixa
- Department of Applied Chemistry
- University of the Basque Country (UPV-EHU)
- San Sebastián
- Spain
- IKERBASQUE
| |
Collapse
|
25
|
Mizutsu R, Asato R, Martin CJ, Yamada M, Nishikawa Y, Katao S, Yamada M, Nakashima T, Kawai T. Photo-Lewis Acid Generator Based on Radical-Free 6π Photo-Cyclization Reaction. J Am Chem Soc 2019; 141:20043-20047. [PMID: 31814390 DOI: 10.1021/jacs.9b11821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present here a new photo-active molecule which acts as a photo-Lewis acid generator (PLAG) based on photo-chemical 6π-percyclization. Photo-illumination of the PLAG molecule produces a condensed aromatic carbocation with a triflate counteranion, which exhibits Lewis acid chemical catalytic reactivity such as initiation of the polymerization of epoxy monomers and catalysis of Mukaiyama-aldol reactions. The terminal-end structure in the epoxy polymerization was modified with the Lewis acid fragment. The carbocation induced the Mukaiyama-aldol reaction as a new photo-gated system with remarkably high catalytic reactivity and turnover numbers higher than 60. The photo-chemical quantum yield of the carbocation generation is 50%, which is considerably higher than obtained with most Brønsted photo-acid generators.
Collapse
Affiliation(s)
- Ryo Mizutsu
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Ryosuke Asato
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan.,NAIST-CEMES International Collaborative Laboratory for Supraphotoactive Systems , NAIST, CEMES-UPR 8011 CNRS , 29, rue Jeanne Marvig , BP 94347, 31055 Toulouse Cedex 4 , France
| | - Colin J Martin
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan.,NAIST-CEMES International Collaborative Laboratory for Supraphotoactive Systems , NAIST, CEMES-UPR 8011 CNRS , 29, rue Jeanne Marvig , BP 94347, 31055 Toulouse Cedex 4 , France
| | - Mihoko Yamada
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Yoshiko Nishikawa
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Shohei Katao
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Miku Yamada
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Takuya Nakashima
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan
| | - Tsuyoshi Kawai
- Division of Materials Science , Nara Institute of Science and Technology (NAIST) , Ikoma , Nara 630-0192 , Japan.,NAIST-CEMES International Collaborative Laboratory for Supraphotoactive Systems , NAIST, CEMES-UPR 8011 CNRS , 29, rue Jeanne Marvig , BP 94347, 31055 Toulouse Cedex 4 , France
| |
Collapse
|
26
|
Benda L, Doistau B, Rossi-Gendron C, Chamoreau LM, Hasenknopf B, Vives G. Substrate-dependent allosteric regulation by switchable catalytic molecular tweezers. Commun Chem 2019. [DOI: 10.1038/s42004-019-0246-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractAllosteric regulation is exploited by biological systems to regulate the activity and/or selectivity of enzymatic reactions but remains a challenge for artificial catalysts. Here we report switchable terpy(Zn-salphen)2 molecular tweezers and their metal-dependent allosteric regulation of the acetylation of pyridinemethanol isomers. Zinc-salphen moieties can both act as a Lewis acid to activate the anhydride reagents and provide a binding site for pyridinemethanol substrates. The tweezers’ conformation can be reversibly switched between an open and a closed form by a metal ion stimulus. Both states offer distinct catalytic profiles, with closed tweezers showing superior catalytic activity towards ortho substrates, while open tweezers presenting higher rate for the acetylation of meta and para substrates. This notable substrate dependent allosteric response is rationalized by a combination of experimental results and calculations supporting a bimetallic reaction in the closed form for ortho substrate and an inhibition of the cavity for meta and para substrates.
Collapse
|
27
|
Dorel R, Feringa BL. Stereodivergent Anion Binding Catalysis with Molecular Motors. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruth Dorel
- Stratingh Institute for ChemistryZernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryZernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
28
|
Dorel R, Feringa BL. Stereodivergent Anion Binding Catalysis with Molecular Motors. Angew Chem Int Ed Engl 2019; 59:785-789. [PMID: 31736200 PMCID: PMC7004205 DOI: 10.1002/anie.201913054] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 12/16/2022]
Abstract
A photoresponsive chiral catalyst based on an oligotriazole‐functionalized unidirectional molecular motor has been developed for stereodivergent anion binding catalysis. The motor function controls the helical chirality of supramolecular assemblies with chloride anions, which by means of chirality transfer enables the enantioselective addition of a silyl ketene acetal nucleophile to oxocarbenium cations. Reversal of stereoselectivity (up to 142 % Δee) was achieved through rotation of the motor core induced by photochemical and thermal isomerization steps.
Collapse
Affiliation(s)
- Ruth Dorel
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| |
Collapse
|
29
|
Ren CZJ, Solís Muñana P, Dupont J, Zhou SS, Chen JLY. Reversible Formation of a Light-Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019; 58:15254-15258. [PMID: 31414710 DOI: 10.1002/anie.201907078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Indexed: 12/20/2022]
Abstract
A photoresponsive system where structure formation is coupled to catalytic activity is presented. The observed catalytic activity is reliant on intermolecular cooperative effects that are present when amphiphiles assemble into vesicular structures. Photoresponsive units within the amphiphilic pre-catalysts allow for switching between assembled and disassembled states, thereby modulating the catalytic activity. The ability to reversibly form cooperative catalysts within a dynamic self-assembled system represents a conceptually new tool for the design of complex artificial systems in water.
Collapse
Affiliation(s)
- Chloe Z-J Ren
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jack L-Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
30
|
Ren CZ, Solís Muñana P, Dupont J, Zhou SS, Chen JL. Reversible Formation of a Light‐Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chloe Z.‐J. Ren
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Jack L.‐Y. Chen
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
31
|
Ono K, Niibe M, Iwasawa N. A K +-promoted Diels-Alder reaction by using a self-assembled macrocyclic boronic ester containing two crown ether moieties. Chem Sci 2019; 10:7627-7632. [PMID: 31588314 PMCID: PMC6761878 DOI: 10.1039/c9sc01597c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
A K+-promoted Diels-Alder reaction of 1,4,9,10-anthradiquinone with various dienes is achieved in the presence of a self-assembled macrocyclic boronic ester [2+2]crown containing two crown ether moieties. The reaction rate is remarkably accelerated (up to 206-fold) compared to that in the absence of the promoter. Furthermore, the reaction proceeds regioselectively to yield an internal adduct. The self-assembly protocol was also demonstrated.
Collapse
Affiliation(s)
- Kosuke Ono
- Department of Chemistry , Tokyo Institute of Technology , O-okayama, Meguro-ku , Tokyo 152-8551 , Japan .
| | - Morikazu Niibe
- Department of Chemistry , Tokyo Institute of Technology , O-okayama, Meguro-ku , Tokyo 152-8551 , Japan .
| | - Nobuharu Iwasawa
- Department of Chemistry , Tokyo Institute of Technology , O-okayama, Meguro-ku , Tokyo 152-8551 , Japan .
| |
Collapse
|
32
|
Wang X, Liu WG, Tung CH, Wu LZ, Cong H. A Monophosphine Ligand Derived from Anthracene Photodimer: Synthetic Applications for Palladium-Catalyzed Coupling Reactions. Org Lett 2019; 21:8158-8163. [PMID: 31403303 DOI: 10.1021/acs.orglett.9b02414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present an air-stable dianthracenyl monophosphine ligand (diAnthPhos) which can be prepared in two steps from commercially available anthracene derivatives. The ligand exhibits excellent efficiency for palladium-catalyzed coupling reactions. In particular, Miyaura borylation of heterocycle-containing electrophiles can be facilitated employing the diAnthPhos ligand with a broad substrate scope and low catalyst loading. The valuable synthetic utility of the new ligand is further demonstrated by a one-pot Miyaura borylation/Suzuki coupling protocol for heteroaryl-containing substrates.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing , 100190 , China
| | - Wei-Gang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing , 100190 , China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing , 100190 , China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing , 100190 , China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing , 100190 , China
| |
Collapse
|
33
|
Saha M, Bandyopadhyay S. Reversible photoresponsive activity of a carbonic anhydrase mimic. Chem Commun (Camb) 2019; 55:3294-3297. [PMID: 30810568 DOI: 10.1039/c9cc00018f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carbonic anhydrase (CA) enzyme reversibly transforms carbon dioxide and water to a carbonate ion and a proton. Photoresponsive enzyme mimics, where the CA-activity can be turned on and off reversibly with light, have not been reported so far. We have designed an active site mimic that offers reversible control of the catalytic activity using light. Moreover, in the presence of a cationic polymer, we have demonstrated that the CA-activity was further enhanced by stabilizing the transition state with the cis-form of the enzyme mimic which can catalyze the hydration of gaseous CO2.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India.
| | | |
Collapse
|
34
|
Wollschläger JM, Schalley CA. Ion Mobility Mass Spectrometric Investigation on the Photoisomerization of a 4,4’‐Diamidoazobenzene Model. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jan M. Wollschläger
- Institut für Chemie und Biochemie der Freien Universität Berlin Takustr 3 14195 Berlin Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie der Freien Universität Berlin Takustr 3 14195 Berlin Germany
| |
Collapse
|
35
|
Dorel R, Feringa BL. Photoswitchable catalysis based on the isomerisation of double bonds. Chem Commun (Camb) 2019; 55:6477-6486. [DOI: 10.1039/c9cc01891c] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoswitchable catalysis is a young but rapidly evolving field that offers great potential for non-invasive dynamic control of both activity and selectivity in catalysis. This Feature Article summarises the key developments accomplished over the past years through the incorporation of photoswitchable double bonds into the structure of catalytically competent molecules.
Collapse
Affiliation(s)
- Ruth Dorel
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
36
|
Geng WC, Sun H, Guo DS. Macrocycles containing azo groups: recognition, assembly and application. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0819-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Eisenreich F, Kathan M, Dallmann A, Ihrig SP, Schwaar T, Schmidt BM, Hecht S. A photoswitchable catalyst system for remote-controlled (co)polymerization in situ. Nat Catal 2018. [DOI: 10.1038/s41929-018-0091-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
van Dijk L, Tilby MJ, Szpera R, Smith OA, Bunce HAP, Fletcher SP. Molecular machines for catalysis. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0117] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Szewczyk M, Sobczak G, Sashuk V. Photoswitchable Catalysis by a Small Swinging Molecule Confined on the Surface of a Colloidal Particle. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00328] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Magdalena Szewczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz Sobczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
40
|
Arif T, Cazorla C, Bogliotti N, Saleh N, Blanchard F, Gandon V, Métivier R, Xie J, Voituriez A, Marinetti A. Bimetallic gold(i) complexes of photoswitchable phosphines: synthesis and uses in cooperative catalysis. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01614j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first photoswitchable bimetallic gold catalysts based on an azobenzene backbone have been synthesized and their catalytic properties have been investigated.
Collapse
|
41
|
Tylkowski B, Trojanowska A, Marturano V, Nowak M, Marciniak L, Giamberini M, Ambrogi V, Cerruti P. Power of light – Functional complexes based on azobenzene molecules. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Liu Y, Pan T, Fang Y, Ma N, Qiao S, Zhao L, Wang R, Wang T, Li X, Jiang X, Shen F, Luo Q, Liu J. Construction of Smart Glutathione S-Transferase via Remote Optically Controlled Supramolecular Switches. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao Liu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Tiezheng Pan
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
- School
of Life Sciences, Northwestern Polytechnical University, 127 Youyi
West Road, Xi’an, 710072, China
| | - Yu Fang
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Ningning Ma
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Shanpeng Qiao
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Linlu Zhao
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Ruidi Wang
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Tingting Wang
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Xiumei Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Xiaojia Jiang
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Fangzhong Shen
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Quan Luo
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Junqiu Liu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| |
Collapse
|
43
|
Volchkov VV, Rusalov MV, Gostev FE, Shelaev IV, Nadtochenko VA, Vedernikov AI, Efremova AA, Kuz'mina LG, Gromov SP, Alfimov MV, Ya. Melnikov M. Complexation of bis-crown stilbene with alkali and alkaline-earth metal cations. Ultrafast excited state dynamics of the stilbene-viologen analogue charge transfer complex. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Valery V. Volchkov
- Chemistry Department; M. V. Lomonosov Moscow State University; Moscow Russian Federation
| | - Mikhail V. Rusalov
- Chemistry Department; M. V. Lomonosov Moscow State University; Moscow Russian Federation
| | - Fedor E. Gostev
- N. N. Semenov Institute of Chemical Physics; Russian Academy of Sciences; Moscow Russian Federation
| | - Ivan V. Shelaev
- N. N. Semenov Institute of Chemical Physics; Russian Academy of Sciences; Moscow Russian Federation
| | - Viktor A. Nadtochenko
- Chemistry Department; M. V. Lomonosov Moscow State University; Moscow Russian Federation
- N. N. Semenov Institute of Chemical Physics; Russian Academy of Sciences; Moscow Russian Federation
| | - Artem I. Vedernikov
- Photochemistry Center; Russian Academy of Sciences; Moscow Russian Federation
| | - Asya A. Efremova
- Photochemistry Center; Russian Academy of Sciences; Moscow Russian Federation
| | - Lyudmila G. Kuz'mina
- N. S. Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Moscow Russian Federation
| | - Sergey P. Gromov
- Chemistry Department; M. V. Lomonosov Moscow State University; Moscow Russian Federation
- Photochemistry Center; Russian Academy of Sciences; Moscow Russian Federation
| | - Michael V. Alfimov
- Photochemistry Center; Russian Academy of Sciences; Moscow Russian Federation
| | - Mikhail Ya. Melnikov
- Chemistry Department; M. V. Lomonosov Moscow State University; Moscow Russian Federation
| |
Collapse
|
44
|
Pescher MD, van Wilderen LJGW, Grützner S, Slavov C, Wachtveitl J, Hecht S, Bredenbeck J. Ultrafast Light-Driven Substrate Expulsion from the Active Site of a Photoswitchable Catalyst. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manuel D. Pescher
- Institute for Biophysics; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| | | | - Susanne Grützner
- Department of Chemistry; Humboldt-Universität zu Berlin; Berlin Germany
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| | - Stefan Hecht
- Department of Chemistry; Humboldt-Universität zu Berlin; Berlin Germany
| | - Jens Bredenbeck
- Institute for Biophysics; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| |
Collapse
|
45
|
De Bo G, Leigh DA, McTernan CT, Wang S. A complementary pair of enantioselective switchable organocatalysts. Chem Sci 2017; 8:7077-7081. [PMID: 29147536 PMCID: PMC5637462 DOI: 10.1039/c7sc02462b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
A pair of enantioselective switchable bifunctional catalysts are shown to promote a range of conjugate addition reactions in up to 95 : 5 e.r. and 95% conversion. Each catalyst can be switched OFF using conditions that switch the other catalyst ON. Catalyst ON : OFF ratios of up to 98 : 2 and 1 : 99 were achieved, with a ratio of reaction rates of up to 16 : 1 between the ON and OFF states, maintained over complete ON-OFF-ON and OFF-ON-OFF cycles. However, simultaneous operation of the catalyst pair in the same reaction vessel, which in principle could allow product handedness to be switched by simple E-Z isomerisation of the catalyst pair, was unsuccessful. In this first generation complementary pair of enantioselective switchable organocatalysts, the OFF state of one catalyst inhibits the ON state of the other.
Collapse
Affiliation(s)
- Guillaume De Bo
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Charlie T McTernan
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Shoufeng Wang
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| |
Collapse
|
46
|
Pescher MD, van Wilderen LJGW, Grützner S, Slavov C, Wachtveitl J, Hecht S, Bredenbeck J. Ultrafast Light-Driven Substrate Expulsion from the Active Site of a Photoswitchable Catalyst. Angew Chem Int Ed Engl 2017; 56:12092-12096. [DOI: 10.1002/anie.201702861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Manuel D. Pescher
- Institute for Biophysics; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| | | | - Susanne Grützner
- Department of Chemistry; Humboldt-Universität zu Berlin; Berlin Germany
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| | - Stefan Hecht
- Department of Chemistry; Humboldt-Universität zu Berlin; Berlin Germany
| | - Jens Bredenbeck
- Institute for Biophysics; Johann-Wolfgang-Goethe Universität; Frankfurt am Main Germany
| |
Collapse
|
47
|
Micheau JC, Coudret C. Enhanced photo-responsiveness in a photoswitchable system model: emergent hormetic catalysis. Phys Chem Chem Phys 2017; 19:12890-12897. [PMID: 28474024 DOI: 10.1039/c7cp01470h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Michaelis Menten catalysis by a T-photochromic system has been analyzed numerically. Using an appropriate set of rate constants and quantum yields, we have evidenced an enhanced photo-responsiveness at a medium light intensity: the plot of the initial rate vs. light intensity is bell-shaped. This emergent phenomenon can be qualified as hormetic catalysis. The analysis of the chemical flows shows that a directional rotation occurs within the cyclic scheme. Non equilibrium conditions are provided by two independent sources: the chemical energy dissipation from the irreversible exergonic reaction and the steady transformation of light into heat by T-photochromism. A literature survey, showing that most of the required kinetic features are not so rare, let us anticipate its practical feasibility.
Collapse
Affiliation(s)
- J-C Micheau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | | |
Collapse
|
48
|
Pizzolato SF, Collins BSL, van Leeuwen T, Feringa BL. Bifunctional Molecular Photoswitches Based on Overcrowded Alkenes for Dynamic Control of Catalytic Activity in Michael Addition Reactions. Chemistry 2017; 23:6174-6184. [PMID: 27880015 DOI: 10.1002/chem.201604966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 12/21/2022]
Abstract
The emerging field of artificial photoswitchable catalysis has recently shown striking examples of functional light-responsive systems allowing for dynamic control of activity and selectivity in organocatalysis and metal-catalysed transformations. While our group has already disclosed systems featuring first generation molecular motors as the switchable central core, a design based on second generation molecular motors is lacking. Here, the syntheses of two bifunctionalised molecular switches based on a photoresponsive tetrasubstituted alkene core are reported. They feature a thiourea substituent as hydrogen-donor moiety in the upper half and a basic dimethylamine group in the lower half. This combination of functional groups offers the possibility for application of these molecules in photoswitchable catalytic processes. The light-responsive central cores were synthesized by a Barton-Kellogg coupling of the prefunctionalized upper and lower halves. Derivatization using Buchwald-Hartwig amination and subsequent introduction of the thiourea substituent afforded the target compounds. Control of catalytic activity in the Michael addition reaction between (E)-3-bromo-β-nitrostyrene and 2,4-pentanedione is achieved upon irradiation of stable-(E) and stable-(Z) isomers of the bifunctional catalyst 1. Both isomers display a decrease in catalytic activity upon irradiation to the metastable state, providing systems with the potential to be applied as ON/OFF catalytic photoswitches.
Collapse
Affiliation(s)
- Stefano F Pizzolato
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Beatrice S L Collins
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Thomas van Leeuwen
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
49
|
Xiao XD, Liu JQ, Bai YL, Wang RH, Wang JW. Pillar[5]arene-based N-heterocyclic carbene ligand for Pd-catalysed Suzuki reaction. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0673-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Vlatković M, Collins BSL, Feringa BL. Dynamic Responsive Systems for Catalytic Function. Chemistry 2016; 22:17080-17111. [DOI: 10.1002/chem.201602453] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Matea Vlatković
- Stratingh Institute for Chemistry; Synthetic Organic Chemistry Unit; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborg 4 9747 Groningen The Netherlands
| | - Beatrice S. L. Collins
- Stratingh Institute for Chemistry; Synthetic Organic Chemistry Unit; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborg 4 9747 Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; Synthetic Organic Chemistry Unit; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborg 4 9747 Groningen The Netherlands
| |
Collapse
|