1
|
Rani K, Sengupta S. Metal-free FRET macrocycles of perylenediimide and aza-BODIPY for multifunctional sensing. Chem Commun (Camb) 2023; 59:1042-1045. [PMID: 36602269 DOI: 10.1039/d2cc06225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two multichromophoric FRET macrocycles M1 [1+1] and M2 [2+2] with red emission (λem ∼ 721 nm) composed of perylenediimide (PDI) as the energy donor and aza-BODIPY (ABDP) as the energy acceptor were synthesized by click reaction in a metal-free fashion. M1 and M2 exhibited distinct reversible ratiometric temperature responsive emission with temperature sensitivities of 0.09-0.14% °C-1 and owing to the redox active chromophores, they showed solution phase redox responsive reversible colour changes.
Collapse
Affiliation(s)
- Kavita Rani
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India.
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India.
| |
Collapse
|
2
|
Lin HY, Zhou LY, Xu L. Photocatalysis in Supramolecular Fluorescent Metallacycles and Metallacages. Chem Asian J 2021; 16:3805-3816. [PMID: 34529337 DOI: 10.1002/asia.202100942] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Indexed: 11/08/2022]
Abstract
The utilization of photocatalytic techniques for achieving light-to-fuel conversion is a promising way to ease the shortage of energy and degradation of the ecological environment. Fluorescent metallacycles and metallacages have drawn considerable attention and have been used in widespread fields due to easy preparation and their abundant functionality including photocatalysis. This review covers recent advances in photocatalysis in discrete supramolecular fluorescent metallacycles and metallacages. The developments in the utilization of the metallacycles skeletons and the effect of fluorescence-resonance energy transfer for photocatalysis are discussed. Furthermore, the use of the ligands decorated by organic chromophores or redox metal sites in metallacages as photocatalysts and their ability to encapsulate appropriate catalytic cofactors for photocatalysis are summarized. For the sake of brevity, macrocycles and cages with inorganic coordination complexes such as ruthenium complexes and iridium complexes are not included in this minireview.
Collapse
Affiliation(s)
- Hong-Yu Lin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Le-Yong Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
3
|
High visible-light catalytic activity of Bis-PDI-T@TiO2 for activating persulfate toward efficient degradation of carbamazepine. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Keshri SK, Ishizuka T, Kojima T, Matsushita Y, Takeuchi M. Long-Range Order in Supramolecular π Assemblies in Discrete Multidecker Naphthalenediimides. J Am Chem Soc 2021; 143:3238-3244. [PMID: 33600719 DOI: 10.1021/jacs.0c13389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein the solution and solid-state studies of conformationally flexible multidecker naphthalenediimides (NDIs) in which the chromophoric NDI units intramolecularly assemble into a series of discrete π-stacks. The X-ray crystallography reveals the existence of exclusively all-syn NDIs orientations in lower congeners while all-anti in a higher congener, suggesting short- to long-range π···π interactions throughout the slipped πNDI chromophoric array. The UV/vis and fluorescence spectra evaluate the discrete π-stacks by remarkable optical changes upon cooling in solution. Furthermore, we carried out a systematic electrochemical investigation to gain an insight into redox properties of the long-range π-stacked structures. The higher congener (5NDI) shows a ten-electron reversible reduction process in a small working potential window (∼0.8 V). To our knowledge, this is an unusual observation in an organic molecular system to undergo up to ten-electron reduction. These results pave the way to design multidecker π-stacks in which structural control with specific electronic properties would be engineered.
Collapse
Affiliation(s)
- Sudhir Kumar Keshri
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure & Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8477, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure & Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8477, Japan
| | - Yoshitaka Matsushita
- Materials Analysis Station, Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| |
Collapse
|
5
|
Goeb S, Sallé M. Electron-rich Coordination Receptors Based on Tetrathiafulvalene Derivatives: Controlling the Host-Guest Binding. Acc Chem Res 2021; 54:1043-1055. [PMID: 33528243 DOI: 10.1021/acs.accounts.0c00828] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coordination-driven self-assembly methodology has emerged over the last few decades as an extraordinarily versatile synthetic tool for obtaining discrete macrocyclic or cage structures. Rational approaches using large libraries of ligands and metal complexes have allowed researchers to reach more and more sophisticated discrete structures such as interlocked, chiral, or heteroleptic cages, and some of them are designed for guest binding applications. Efforts have been notably produced in controlling host-guest affinity with, in particular, an evident interest in targeting substrate transportation and subsequent delivering. Recent accomplishments in this direction were described from functional cages which can be addressed with light, pH, or through a chemical exchange. The case of a redox-stimulation has been much less explored. In this case, the charge state of the redox-active cavity can be controlled through an applied electrical potential or introduction of an appropriate oxidizing/reducing chemical agent. Beyond possible applications in electrochemical sensing for environmental and medical sciences as well as for redox catalysis, controlling the cavity charge offers the possibility to modulate the host-guest binding affinity through electrostatic interactions, up to the point of disassembly of the host-guest complex, i.e., releasing of the guest molecule from the host cavity.This Account highlights the key studies that we carried out at Angers, related to discrete redox-active coordination-based architectures (i.e., metalla-rings, -cages, and -tweezers). These species are built upon metal-driven self-assembly between electron-rich ligands, based on the tetrathiafulvalene (TTF) moiety (as well as some of its S-rich derivatives), and various metal complexes. Given the high π-donating character of those ligands, the corresponding host structures exhibit a high electronic density on the cavity panels. This situation is favorable to bind complementary electron-poor guests, as it was illustrated with bis(pyrrolo)tetrathiafulvalene (BPTTF)-based cavities, which exhibit hosting properties for C60 or tetrafluorotetracyanoquinodimethane (TCNQ-F4). In addition to the pristine tetrathiafulvalene, which was successfully incorporated into palladium- or ruthenium-based architectures, the case of the so-called extended tetrathiafulvalene (exTTF) appears particularly fascinating. A series of related polycationic and neutral M4L2 ovoid containers, as well as a M6L3 cage, were synthesized, and their respective binding abilities for neutral and anionic guests were studied. Remarkably, such structures allow to control of the binding of the guest upon a redox-stimulation, through two distinctive processes: (i) cage disassembling or (ii) guest displacement. As an extension of this approach, metalla-assembled electron-rich tweezers were designed, which are able to trigger the guest release through an original process based on supramolecular dimerization activated through a redox stimulus. This ensemble of results illustrates the remarkable ability of electron-rich, coordination-based self-assembled cavities to bind various types of guests and, importantly, to trigger their release through a redox-stimulus.
Collapse
Affiliation(s)
- Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 2 bd Lavoisier, F-49000 Angers, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 2 bd Lavoisier, F-49000 Angers, France
| |
Collapse
|
6
|
Flexible perylenediimide/GaN organic-inorganic hybrid system with exciting optical and interfacial properties. Sci Rep 2020; 10:10480. [PMID: 32591627 PMCID: PMC7319992 DOI: 10.1038/s41598-020-67531-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022] Open
Abstract
We report the band gap tuning and facilitated charge transport at perylenediimide (PDI)/GaN interface in organic–inorganic hybrid nanostructure system over flexible titanium (Ti) foil. Energy levels of the materials perfectly align and facilitate high efficiency charge transfer from electron rich n-GaN to electron deficient PDI molecules. Proper interface formation resulted in band gap tuning as well as facilitated electron transport as evident in I–V characteristics. Growth of PDI/GaN hybrid system with band gap tuning from ultra-violet to visible region and excellent electrical properties open up new paradigm for fabrication of efficient optoelectronics devices on flexible substrates.
Collapse
|
7
|
Hieulle J, Silly F. Two-Dimensional Hydrogen-Bonded Nanoarchitecture Composed of Rectangular 3,4,9,10-Perylenetetracarboxylic Diimide and Boomerang-Shaped Molecules Resulting from the Dissociation of 1,3,5-Tris(4-aminophenyl)benzene. ACS OMEGA 2020; 5:3964-3968. [PMID: 32149223 PMCID: PMC7057330 DOI: 10.1021/acsomega.9b03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The self-assembly of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) with the star-shaped 1,3,5-tris(4-aminophenyl)benzene (TAPB) on Au(111) is investigated using scanning tunneling microscopy. PTCDI forms a compact canted arrangement on the gold surface. When TAPB is sublimated at a high temperature, the molecule dissociates into a 4-aminophenyl group and a boomerang-shaped compound. The boomerang molecule self-assembles with PTCDI to create a two-dimensional (2D) nanoarchitecture stabilized by N-H···O-C hydrogen bonds between the dissociated TAPB and PTCDI. The molecular ratio of this multicomponent structure is 1:1.
Collapse
Affiliation(s)
| | - Fabien Silly
- E-mail: . Phone: +33(0)169088019. Fax: +33(0)169088446
| |
Collapse
|
8
|
Shukla J, Singh VP, Mukhopadhyay P. Molecular and Supramolecular Multiredox Systems. ChemistryOpen 2020; 9:304-324. [PMID: 32154051 PMCID: PMC7050954 DOI: 10.1002/open.201900339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
The design and synthesis of molecular and supramolecular multiredox systems have been summarized. These systems are of great importance as they can be employed in the next generation of materials for energy storage, energy transport, and solar fuel production. Nature provides guiding pathways and insights to judiciously incorporate and tune the various molecular and supramolecular design aspects that result in the formation of complex and efficient systems. In this review, we have classified molecular multiredox systems into organic and organic-inorganic hybrid systems. The organic multiredox systems are further classified into multielectron acceptors, multielectron donors and ambipolar molecules. Synthetic chemists have integrated different electron donating and electron withdrawing groups to realize these complex molecular systems. Further, we have reviewed supramolecular multiredox systems, redox-active host-guest recognition, including mechanically interlocked systems. Finally, the review provides a discussion on the diverse applications, e. g. in artificial photosynthesis, water splitting, dynamic random access memory, etc. that can be realized from these artificial molecular or supramolecular multiredox systems.
Collapse
Affiliation(s)
- Jyoti Shukla
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| | - Vijay Pal Singh
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
9
|
Zhu JL, Ling QH, Wu A, Xu L. Coordination-driven self-assembly of discrete supramolecular double-metallacycles. Dalton Trans 2020; 49:17511-17519. [DOI: 10.1039/d0dt03186k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review comprehensively summarizes the recent advances in the coordination-driven self-assembly of discrete supramolecular double-metallacycles.
Collapse
Affiliation(s)
- Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Aibin Wu
- School of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou
- China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
10
|
Bhardwaj K, Kumar R, Kindo NJ, Vashistha N, Patel AK, Kumar M, Kumar P. Synthesis of graphene oxide with a lower band gap and study of charge transfer interactions with perylenediimide. NEW J CHEM 2020. [DOI: 10.1039/d0nj01906b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The optical and electrical properties of graphene oxide (GO) have been modulated by using different chemical and physical routes.
Collapse
Affiliation(s)
- Komal Bhardwaj
- Photovoltaic Metrology Group, Advanced Materials and Devices Metrology Division
- CSIR-National Physical Laboratory
- Dr. K. S. Krishnan Marg
- India
- Academy of Scientific and Innovative Research
| | - Rachana Kumar
- Photovoltaic Metrology Group, Advanced Materials and Devices Metrology Division
- CSIR-National Physical Laboratory
- Dr. K. S. Krishnan Marg
- India
- Academy of Scientific and Innovative Research
| | - Naveen Joy Kindo
- Photovoltaic Metrology Group, Advanced Materials and Devices Metrology Division
- CSIR-National Physical Laboratory
- Dr. K. S. Krishnan Marg
- India
| | - Nikita Vashistha
- Academy of Scientific and Innovative Research
- HRDC Campus
- Ghaziabad-201002
- India
- Photonics Materials Metrology Group
| | - Akhilesh Kumar Patel
- Magnetic Materials Laboratory, Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Mahesh Kumar
- Academy of Scientific and Innovative Research
- HRDC Campus
- Ghaziabad-201002
- India
- Photonics Materials Metrology Group
| | - Pramod Kumar
- Spintronics and Magnetic Materials Laboratory
- Indian Institute of Information Technology
- Allahabad
- India
| |
Collapse
|
11
|
Naqvi S, Kumar M, Kumar R. Facile Synthesis and Evaluation of Electron Transport and Photophysical Properties of Photoluminescent PDI Derivatives. ACS OMEGA 2019; 4:19735-19745. [PMID: 31788605 PMCID: PMC6881832 DOI: 10.1021/acsomega.9b02514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Perylenediimides (PDIs) have emerged as potential materials for optoelectronic applications. In the current work, four PDI derivatives, substituted at imide nitrogen with 2,6-diisopropyl phenyl, 2-nitrophenyl, diphenylmethylene, and pentafluorophenyl groups, have been synthesized from perylene 3,4,9,10-tetracarboxylic dianhydride using a facile imidization synthesis process. PDI derivatives have been spectroscopically characterized for their structure and optical properties. Temperature-variable absorption and emission spectroscopy study confirmed the H-aggregation property. H-aggregation along with strong emission suggests the slipped π-π stacking of PDI molecules. Electrochemical analysis was performed for their redox behavior and calculation of lowest unoccupied molecular orbital and highest occupied molecular orbital energy levels. Scanning electron microscopy showed the formation of ordered structures. The PDI derivatives showed excellent electron conductivity without doping and 5-10× higher electron mobility than that of state-of-the-art fullerene acceptor phenyl-C61-butyric acid methyl ester (PC61BM). Finally, the charge generation and charge transfer phenomenon was studied by transient absorption spectroscopy (TAS). TAS showed ultrafast charge transfer from the poly(3-hexyl)thiophene (P3HT) donor polymer to PDI and formation of long-lived charge-separated states similar to fullerene derivative PC61BM/P3HT blends. Such PDI derivatives with excellent solubility and photophysical and electronic properties are potential n-type materials to be used in organic electronic devices.
Collapse
Affiliation(s)
- Samya Naqvi
- Advanced
Materials and Devices Metrology Division, Photovoltaic Metrology
Group and Advanced Materials and Devices Metrology Division, Photonics Materials
Metrology Group, CSIR-National Physical
Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Mahesh Kumar
- Advanced
Materials and Devices Metrology Division, Photovoltaic Metrology
Group and Advanced Materials and Devices Metrology Division, Photonics Materials
Metrology Group, CSIR-National Physical
Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Rachana Kumar
- Advanced
Materials and Devices Metrology Division, Photovoltaic Metrology
Group and Advanced Materials and Devices Metrology Division, Photonics Materials
Metrology Group, CSIR-National Physical
Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
12
|
Redox‐mediated Negative Differential Resistance (NDR) Behavior in Perylenediimide Derivative: A Supramolecular Approach. Chemistry 2019; 25:13939-13944. [DOI: 10.1002/chem.201902641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Indexed: 12/19/2022]
|
13
|
Zhu J, Liu X, Huang J, Xu L. Our expedition in the construction of fluorescent supramolecular metallacycles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Wang H, Li Y, Yu H, Song B, Lu S, Hao XQ, Zhang Y, Wang M, Hla SW, Li X. Combining Synthesis and Self-Assembly in One Pot To Construct Complex 2D Metallo-Supramolecules Using Terpyridine and Pyrylium Salts. J Am Chem Soc 2019; 141:13187-13195. [PMID: 31345024 DOI: 10.1021/jacs.9b05682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multicomponent self-assembly in one pot provides an efficient way for constructing complex architectures using multiple types of building blocks with different levels of interactions orthogonally. The preparation of multiple types of building blocks typically includes tedious synthesis. Here, we developed a multicomponent synthesis/self-assembly strategy, which combined covalent interaction (C-N bond, formed through condensation of pyrylium salt with primary amine) and metal-ligand interaction (N → Zn bond, formed through 2,2':6',2″-terpyridine-Zn coordination) in one pot. The high compatibility of this pair of interactions smoothly and efficiently converted three and four types of components into the desired complex structures, which are supramolecular Kandinsky Circles and spiderwebs, respectively.
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Yiming Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Bo Song
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Yuan Zhang
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Saw-Wai Hla
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
15
|
Liu H, Wang H, Liu G, Pu S, Zhang H. Ultrasensitive sensing of hydrazine vapor at sub-ppm level with pyrimidine-substituted perylene diimide film device. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Li B, He T, Fan Y, Yuan X, Qiu H, Yin S. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem Commun (Camb) 2019; 55:8036-8059. [PMID: 31206102 DOI: 10.1039/c9cc02472g] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular polymers have received considerable attention during the last few decades due to their scientific value in polymer chemistry and profound implications for future developments of advanced materials. Discrete supramolecular coordination complexes (SCCs) with well-defined size, shape, and geometry have been widely employed to construct hierarchical systems by coordination-driven self-assembly with the spontaneous formation of metal-ligand bonds, which results in the formation of well-defined two-dimensional (2D) metallacycles or three-dimensional (3D) metallacages with high functionalities. The incorporation of discrete SCCs into supramolecular polymers by the orthogonal combination of metal-ligand coordination and other noncovalent interactions or covalent bonding could further facilitate the construction of novel supramolecular polymers with hierarchical architectures and multiple functions including controllable uptake and release of guest molecules, providing a flexible platform for the development of smart materials. In this review, the recent progress in metallacycle/metallacage-cored supramolecular polymers that were constructed by the combination of metal-ligand interactions and other orthogonal interactions (including hydrophobic or hydrophilic interactions, hydrogen bonding, van der Waals forces, π-π stacking, electrostatic interactions, host-guest interactions and covalent bonding) has been discussed. In addition, the potential applications of metallacycle/metallacage-cored supramolecular polymers in the areas of light emitting, sensing, bio-imaging, delivery and release, etc., are also presented.
Collapse
Affiliation(s)
- Bo Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Rota Martir D, Zysman-Colman E. Photoactive supramolecular cages incorporating Ru(ii) and Ir(iii) metal complexes. Chem Commun (Camb) 2019; 55:139-158. [DOI: 10.1039/c8cc08327d] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cage compounds incorporating phosphorescent Ru(ii) and Ir(iii) metal complexes possess a highly desirable set of optoelectronic and physical properties. This feature article summarizes the recent work on cage assemblies containing these metal complexes as photoactive units, highlighting our contribution to this growing field.
Collapse
Affiliation(s)
- Diego Rota Martir
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| |
Collapse
|
18
|
Wu GY, Chen LJ, Xu L, Zhao XL, Yang HB. Construction of supramolecular hexagonal metallacycles via coordination-driven self-assembly: Structure, properties and application. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
El-Refaey A, Shaban SY, El-Kemary M, El-Khouly ME. A light harvesting perylene derivative - zinc phthalocyanine complex in water: spectroscopic and thermodynamic studies. Photochem Photobiol Sci 2018; 16:861-869. [PMID: 28379265 DOI: 10.1039/c7pp00055c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A perylene derivative, namely N,N'-bis(2(trimethylammonium iodide)ethylene)perylene-3,4,9,10-tetracarboxyldiimide (TAIPDI) forms nanoscale columnar stacks in water that have been characterized by using optical absorption and emission measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). This behaviour was compared with that of unstacked TAIPDI in methanol. Assembly formation between the one-dimensional TAIPDI stacks and zinc phthalocyanine tetrasulphonic groups (ZnPcS4) via strong π-π and ionic interactions has been described in an aqueous medium. The formation constant of the supramolecular dyad has been determined as 2.94 × 104 M-1 from both the absorption and fluorescence measurements. Upon addition of ZnPcS4, the fluorescence quenching of the singlet-excited state of TAIPDI was observed because of the electron transfer process from ZnPcS4 to TAIPDI via the singlet-excited states of ZnPcS4 and TAIPDI entities. The electrochemical studies supported the electron transfer pathways via the singlet states of ZnPcS4 and TAIPDI. The thermodynamic parameters of the supramolecular complex have been determined from stopped-flow measurements. The interaction between ZnPcS4 and TAIPDI occurs in two steps, where the rate constant of the second step with TAIPDI (207 ± 8 M-1 s-1) is much slower than the first one (3515 ± 101 M-1 s-1). Activation parameters for the complex formation (ΔH# = 76 ± 11 kJ mol-1 and ΔS# = 83 ± 37 J K-1 mol-1, and ΔH# = 221 ± 15 kJ mol-1 and ΔS# = 540 ± 50 J K-1 mol-1) were determined from variable temperature studies for the first and second steps, respectively. The significantly positive ΔS# values found for both steps of the interaction reactions are consistent with a dissociative mechanism.
Collapse
Affiliation(s)
- Ahmed El-Refaey
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | | | | | | |
Collapse
|
20
|
Ishiwari F, Shoji Y, Fukushima T. Supramolecular scaffolds enabling the controlled assembly of functional molecular units. Chem Sci 2018; 9:2028-2041. [PMID: 29719683 PMCID: PMC5896469 DOI: 10.1039/c7sc04340f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
To assemble functional molecular units into a desired structure while controlling positional and orientational order is a key technology for the development of high-performance organic materials that exhibit electronic, optoelectronic, biological and even dynamic functions. For this purpose, we cannot rely simply on the inherent self-assembly properties of the target functional molecular units, since it is difficult to predict, based solely on the molecular structure, what structure will be achieved upon assembly. To address this issue, it would be useful to employ molecular building blocks with self-assembly structures that can be clearly predicted and defined, to make target molecular units assemble into a desired structure. To date, various motifs of molecular assemblies, polymers, discrete and/or three-dimensional metal-organic complexes, nanoparticles and metal/metal oxide substrates have been developed to create materials with particular structures and dimensionalities. In this perspective, we define such assembly motifs as "supramolecular scaffolds". The structure of supramolecular scaffolds can be classified in terms of dimensionality, and they range in size from nano- to macroscopic scales. Functional molecular units, when attached to supramolecular scaffolds either covalently or non-covalently, can be assembled into specific structures, thus enabling the exploration of new properties, which cannot be achieved with the target molecular units alone. Through the classification and overview of reported examples, we shed new light on supramolecular scaffolds for the rational design of organic and polymeric materials.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| |
Collapse
|
21
|
Gupta V, Mandal SK. Coordination driven self-assembly of [2 + 2 + 2] molecular squares: synthesis, crystal structures, catalytic and luminescence properties. Dalton Trans 2018; 47:9742-9754. [DOI: 10.1039/c8dt01367e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ten molecular squares were prepared through coordination-driven self-assembly and their catalytic activity and luminescence properties are reported.
Collapse
Affiliation(s)
- Vijay Gupta
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| | - Sanjay K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| |
Collapse
|
22
|
Işık Büyükekşi S, Şengül A, Erdönmez S, Altındal A, Orman EB, Özkaya AR. Spectroscopic, electrochemical and photovoltaic properties of Pt(ii) and Pd(ii) complexes of a chelating 1,10-phenanthroline appended perylene diimide. Dalton Trans 2018; 47:2549-2560. [DOI: 10.1039/c7dt04713d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The triads exhibit pronounced semiconducting properties and have the potential for use in DSSCs as a sensitizer.
Collapse
Affiliation(s)
- Sebile Işık Büyükekşi
- Department of Chemistry
- Faculty of Arts and Sciences
- Bülent Ecevit University
- TR-67100 Zonguldak
- Turkey
| | - Abdurrahman Şengül
- Department of Chemistry
- Faculty of Arts and Sciences
- Bülent Ecevit University
- TR-67100 Zonguldak
- Turkey
| | - Seda Erdönmez
- Department of Physics
- Yıldız Technical University
- Istanbul
- Turkey
| | - Ahmet Altındal
- Department of Physics
- Yıldız Technical University
- Istanbul
- Turkey
| | | | | |
Collapse
|
23
|
Irfan M, Mahar J, Saeed A, Belfield KD, Siddiq M. Perylene-based Solution-processable Conjugated Molecules for Optoelectronic Applications: Synthesis and Comparison of Different Substituents on the Optical, Thermal, and Electrochemical Properties. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madiha Irfan
- Department of Chemistry; Quaid-i-Azam University; Islamabad 44000 Pakistan
- Department of Basic Sciences and Humanities; Khwaja FareedUniversity of Engineering and Information Technology (KFUEIT); Rahim Yar Khan 64200 Pakistan
| | - Jamaluddin Mahar
- Department of Chemistry; Quaid-i-Azam University; Islamabad 44000 Pakistan
| | - Aamer Saeed
- Department of Chemistry; Quaid-i-Azam University; Islamabad 44000 Pakistan
| | - Kevin D. Belfield
- Department of Chemistry; University of Central Florida (UCF); Orlando 162366, FL USA
- College of Science and Liberal Arts; New Jersey Institute of Technology, University Heights; Newark 07102, NJ USA
| | - Muhammad Siddiq
- Department of Chemistry; Quaid-i-Azam University; Islamabad 44000 Pakistan
| |
Collapse
|
24
|
|
25
|
Zhang Z, Wang H, Wang X, Li Y, Song B, Bolarinwa O, Reese RA, Zhang T, Wang XQ, Cai J, Xu B, Wang M, Liu C, Yang HB, Li X. Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped Supramolecules. J Am Chem Soc 2017; 139:8174-8185. [PMID: 28558196 DOI: 10.1021/jacs.7b01326] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the goal of increasing the complexity of metallo-supramolecules, two rhombus star-shaped supramolecular architectures, namely, supersnowflakes, were designed and assembled using multiple 2,2':6',2″-terpyridine (tpy) ligands in a stepwise manner. In the design of multicomponent self-assembly, ditopic and tritopic ligands were bridged through Ru(II) with strong coordination to form metal-organic ligands for the subsequent self-assembly with a hexatopic ligand and Zn(II). The combination of Ru(II)-organic ligands with high stability and Zn(II) ions with weak coordination played a key role in the self-assembly of giant heteroleptic supersnowflakes, which encompassed three types of tpy-based organic ligands and two metal ions. With such a stepwise strategy, the self-sorting of individual building blocks was prevented from forming the undesired assemblies, e.g., small macrocycles and coordination polymers. Furthermore, the intra- and intermolecular dynamic exchange study of two supersnowflakes by NMR and mass spectrometry revealed the remarkable stability of these giant supramolecular complexes.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China.,Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Heng Wang
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Xu Wang
- Department of Chemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Bo Song
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Olapeju Bolarinwa
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - R Alexander Reese
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia , Athens, Georgia 30602, United States
| | - Tong Zhang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia , Athens, Georgia 30602, United States
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University , Shanghai 200062, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia , Athens, Georgia 30602, United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun, Jilin 130012, China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University , Shanghai 200062, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| |
Collapse
|
26
|
Photo- and redoxfunctional cyclophanes, macrocycles, and catenanes based on aromatic bisimides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Pagano P, Pelagatti P, Bacchi A, Chierotti MR, Bourne SA, Mehlana G. Sorption properties toward environmentally important VOCs of half-sandwich Ru(II) complexes containing perylene bisimide ligands. INORG NANO-MET CHEM 2016. [DOI: 10.1080/15533174.2016.1186068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Paolo Pagano
- Dipartimento di Chimica, Università degli Studi di Parma, Parma, Italy
| | - Paolo Pelagatti
- Dipartimento di Chimica, Università degli Studi di Parma, Parma, Italy
| | - Alessia Bacchi
- Dipartimento di Chimica, Università degli Studi di Parma, Parma, Italy
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre of Excellence, University of Torino, Torino, Italy
| | - Susan A. Bourne
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Gift Mehlana
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Frank M, Ahrens J, Bejenke I, Krick M, Schwarzer D, Clever GH. Light-Induced Charge Separation in Densely Packed Donor–Acceptor Coordination Cages. J Am Chem Soc 2016; 138:8279-87. [DOI: 10.1021/jacs.6b04609] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marina Frank
- Institute
for Inorganic Chemistry, Georg-August University Göttingen, Tammannstraße
4, 37077 Göttingen, Germany
| | - Jennifer Ahrens
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Isabel Bejenke
- Institute
for Inorganic Chemistry, Georg-August University Göttingen, Tammannstraße
4, 37077 Göttingen, Germany
| | - Marcel Krick
- Institute
for Inorganic Chemistry, Georg-August University Göttingen, Tammannstraße
4, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Guido H. Clever
- Institute
for Inorganic Chemistry, Georg-August University Göttingen, Tammannstraße
4, 37077 Göttingen, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße
6, 44227 Dortmund, Germany
| |
Collapse
|
29
|
Horinouchi H, Sakai H, Araki Y, Sakanoue T, Takenobu T, Wada T, Tkachenko NV, Hasobe T. Controllable Electronic Structures and Photoinduced Processes of Bay-Linked Perylenediimide Dimers and a Ferrocene-Linked Triad. Chemistry 2016; 22:9631-41. [DOI: 10.1002/chem.201601058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Haruki Horinouchi
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| | - Hayato Sakai
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University; 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Tomo Sakanoue
- Department of Applied Physics; Waseda University; 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Taishi Takenobu
- Department of Applied Physics; Waseda University; 3-4-1, Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University; 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Nikolai V. Tkachenko
- Department of Chemistry and Bioengineering; Tampere University of Technology; P.O. Box 541 33101 Tampere Finland
| | - Taku Hasobe
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
30
|
Pradhan S, John RP. Self-assembled Pd6L4 cage and Pd4L4 square using hydrazide based ligands: synthesis, characterization and catalytic activity in Suzuki–Miyaura coupling reactions. RSC Adv 2016. [DOI: 10.1039/c6ra00055j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A new self-assembled Td-symmetric cage, Pd6L4, and a square assembly, Pd4L4, were constructed using hydrazide based ligands and cis-blocked palladium(ii). Both act as efficient heterogeneous catalysts for Suzuki–Miyaura coupling.
Collapse
Affiliation(s)
- Subhashis Pradhan
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad – 826004
- India
| | - Rohith P. John
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad – 826004
- India
| |
Collapse
|
31
|
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 2015; 116:962-1052. [PMID: 26270260 DOI: 10.1021/acs.chemrev.5b00188] [Citation(s) in RCA: 977] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Chantu R Saha-Möller
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Pawaret Leowanawat
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
32
|
Cherutoi JK, Sandifer JD, Pokharel UR, Fronczek FR, Pakhomova S, Maverick AW. Externally and Internally Functionalized Copper(II) β-Diketonate Molecular Squares. Inorg Chem 2015; 54:7791-802. [DOI: 10.1021/acs.inorgchem.5b00792] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jackson K. Cherutoi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jace D. Sandifer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Uttam R. Pokharel
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Svetlana Pakhomova
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andrew W. Maverick
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
33
|
Xu WR, Xia GJ, Chow HF, Cao XP, Kuck D. Facile Assembly of Chiral Metallosquares by Using Enantiopure Tribenzotriquinacene Corner Motifs. Chemistry 2015; 21:12011-7. [PMID: 26126897 DOI: 10.1002/chem.201501556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Wen-Rong Xu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and The Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin (Hong Kong)
| | - Guang-Jie Xia
- Department of Chemistry, Center of Scientific Modelling and Computation, The Chinese University of Hong Kong, Shatin (Hong Kong)
| | - Hak-Fun Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and The Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin (Hong Kong).
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou (P. R. China).
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld (Germany).
| |
Collapse
|
34
|
Xu L, Wang YX, Chen LJ, Yang HB. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions. Chem Soc Rev 2015; 44:2148-67. [PMID: 25723131 DOI: 10.1039/c5cs00022j] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, the construction of discrete multiferrocenyl organometallic structures via coordination-driven self-assembly has attracted considerable attention because of their interesting electrochemical properties and wide range of applications in the areas of organometallic chemistry, electrochemistry, and materials science. Coordination-driven self-assembly has proven to be a simple yet highly efficient approach for the preparation of various multiferrocenyl metallacycles and metallacages with predetermined shapes and sizes as well as the distribution and total number of ferrocenes. This review focuses on the recent progress in the construction of a variety of discrete multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly. The characterization, the structure-related electrochemical properties, and the applications of these multiferrocenyl supramolecular architectures are also discussed.
Collapse
Affiliation(s)
- Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, People's Republic of China.
| | | | | | | |
Collapse
|
35
|
Xu L, Wang YX, Yang HB. Recent advances in the construction of fluorescent metallocycles and metallocages via coordination-driven self-assembly. Dalton Trans 2015; 44:867-90. [PMID: 25429665 DOI: 10.1039/c4dt02996h] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last few years, the construction of fluorescent metallocycles and metallocages has attracted considerable attention because of their wide applications in fluorescence detection of metal ions, anions, or small molecules, mimicking complicated natural photo-processes, and preparing photoelectric devices, etc. This perspective focuses on the recent advances in the construction of a variety of fluorescent metallocycles and metallocages via coordination-driven self-assembly. In addition, the fluorescence properties and the applications of these organometallic architectures have also been discussed.
Collapse
Affiliation(s)
- Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, People's Republic of China.
| | | | | |
Collapse
|
36
|
Gupta RK, Pathak SK, Pradhan B, Shankar Rao DS, Krishna Prasad S, Achalkumar AS. Self-assembly of luminescent N-annulated perylene tetraesters into fluid columnar phases. SOFT MATTER 2015; 11:3629-3636. [PMID: 25812168 DOI: 10.1039/c5sm00463b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new class of N-annulated perylene tetraesters and their N-alkylated derivatives has been synthesized. N-Annulated perylene tetraesters stabilize a hexagonal columnar phase over a broad temperature range. The hexagonal columnar phase exhibited by these compounds shows good homeotropic alignment with few defects. Annulation in the bay region of the perylene tetraesters enhanced the width of the mesophase compared with the parent tetraesters. N-Alkylation of these compounds perturbed the self-assembly behaviour and the resulting compounds were non-mesomorphic. A bright green luminescence was visible under long wavelength UV light. These properties suggest that these materials may have promising applications in organic electronics.
Collapse
Affiliation(s)
- Ravindra Kumar Gupta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | | | | | | | | | | |
Collapse
|
37
|
Karthikeyan S, Nagarajaprakash R, Satheesh G, Ashok Kumar C, Manimaran B. Self-assembly of a fac-Mn(CO)3-core containing dinuclear metallacycles using flexible ditopic linkers. Dalton Trans 2015; 44:17389-98. [DOI: 10.1039/c5dt01866h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flexible dimanganese metallacycles have been achieved using Mn(CO)5Br and adaptable ditopic pyridyl linkers. The host–guest chemistry of Mn(i)-dinuclear metallacycles has been explored.
Collapse
Affiliation(s)
- S. Karthikeyan
- Department of Chemistry
- Pondicherry University
- Puducherry
- India
| | | | | | | | - Bala. Manimaran
- Department of Chemistry
- Pondicherry University
- Puducherry
- India
| |
Collapse
|
38
|
Croué V, Goeb S, Sallé M. Metal-driven self-assembly: the case of redox-active discrete architectures. Chem Commun (Camb) 2015; 51:7275-89. [DOI: 10.1039/c5cc00597c] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The growing family of redox-active rings and cages prepared using the coordination-driven self-assembly strategy is reviewed.
Collapse
Affiliation(s)
- V. Croué
- Université d'Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou, 2 bd Lavoisier
- 49045 ANGERS cedex
- France
| | - S. Goeb
- Université d'Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou, 2 bd Lavoisier
- 49045 ANGERS cedex
- France
| | - M. Sallé
- Université d'Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou, 2 bd Lavoisier
- 49045 ANGERS cedex
- France
| |
Collapse
|
39
|
Saibal B, Ashar AZ, Devi RN, Narayan KS, Asha SK. Nanostructured donor-acceptor self assembly with improved photoconductivity. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19434-19448. [PMID: 25283356 DOI: 10.1021/am5055542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly.
Collapse
Affiliation(s)
- B Saibal
- Polymer Science and Engineering Division, ‡Catalysis & Inorganic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, India
| | | | | | | | | |
Collapse
|
40
|
Albrecht M, Isaak E, Moha V, Raabe G, Fröhlich R. Stereocontrol in dinuclear triple lithium-bridged titanium(IV) complexes: solving some stereochemical mysteries. Chemistry 2014; 20:6650-8. [PMID: 24782405 DOI: 10.1002/chem.201402370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 11/07/2022]
Abstract
Compounds 1 a-f-H2 form "monomeric" triscatecholate titanium(IV) complexes [Ti(1 a-f)3](2-), which in the presence of Li cations are in equilibrium with the triple lithium-bridged "dimers" [Li3(Ti(1 a-f)3)2](-). The equilibrium strongly depends on the donor ability of the solvent. Usually, in solvents with high donor ability, the stereochemically labile monomer is preferred, whereas in nondonor solvents, the dimer is the major species. In the latter, the stereochemistry at the complex units is "locked". The configuration at the titanium(IV) triscatecholates is influenced by addition of chiral ammonium countercations. In this case, the induced stereochemical information at the monomer is transferred to the dimer. Alternatively, the configuration at the metal complexes can be controlled by enantiomerically pure ester side chains. Due to the different orientation of the ester groups in the monomer or dimer, opposite configurations of the triscatecholates were observed by circular dichroism (CD) spectroscopy for [Ti(1 c-e)3](2-) or [Li3(Ti(1 c-e)3)2](-). A surprising exception was found for the dimer [Li3(Ti(1 f)3)2](-). Herein, the dimer is the dominating species in weak donor (methanol), as well as strong donor (DMSO), solvents. This is due to the bulkiness of the ester substituent destabilizing the monomer. Due to the size of the substituent in [Li3(Ti(1 f)3)2](-) the esters have to adopt an unusual conformation in the dimer resulting in a stereocontrol of the small methyl group. Following this, opposite stereocontrol mechanisms were observed for the central metal-complex units of [Li3(Ti(1 c-e)3)2](-) or [Li3(Ti(1 f)3)2](-).
Collapse
Affiliation(s)
- Markus Albrecht
- Institut für Organische Chemie, RWTH Aachen, Landoltweg 1, 52074 Aachen (Germany).
| | | | | | | | | |
Collapse
|
41
|
Wang M, Wang C, Hao XQ, Liu J, Li X, Xu C, Lopez A, Sun L, Song MP, Yang HB, Li X. Hexagon Wreaths: Self-Assembly of Discrete Supramolecular Fractal Architectures Using Multitopic Terpyridine Ligands. J Am Chem Soc 2014; 136:6664-71. [DOI: 10.1021/ja501417g] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ming Wang
- Department
of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Chao Wang
- Department
of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Xin-Qi Hao
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Jingjing Liu
- Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xiaohong Li
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chenglong Xu
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Alberto Lopez
- Department
of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Luyi Sun
- Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mao-Ping Song
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, East China Normal University, Shanghai 200062, P. R. China
| | - Xiaopeng Li
- Department
of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| |
Collapse
|
42
|
Goeb S, Bivaud S, Croué V, Vajpayee V, Allain M, Sallé M. A Self-Assembled Electro-Active M8L4 Cage Based on Tetrathiafulvalene Ligands. MATERIALS 2014; 7:611-622. [PMID: 28788478 PMCID: PMC5453136 DOI: 10.3390/ma7010611] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
Two self-assembled redox-active cages are presented. They are obtained by coordination-driven self-assembly of a tetra-pyridile tetrathiafulvalene ligand with cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1′-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both species are fully characterized and are constituted of 12 electro-active subunits that can be reversibly oxidized.
Collapse
Affiliation(s)
- Sébastien Goeb
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers Cedex, France.
| | - Sébastien Bivaud
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers Cedex, France.
| | - Vincent Croué
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers Cedex, France.
| | - Vaishali Vajpayee
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers Cedex, France.
| | - Magali Allain
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers Cedex, France.
| | - Marc Sallé
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers Cedex, France.
| |
Collapse
|
43
|
Marcia M, Singh P, Hauke F, Maggini M, Hirsch A. Novel EDTA-ligands containing an integral perylene bisimide (PBI) core as an optical reporter unit. Org Biomol Chem 2014; 12:7045-58. [DOI: 10.1039/c4ob01007h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, characterization and metal complexation of a new class of perylene bisimides (PBIs) as an integral part of ethylenediaminetetraacetic acid (EDTA) are reported.
Collapse
Affiliation(s)
- Mario Marcia
- Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP)
- Friedrich-Alexander University Erlangen – Nürnberg
- 91054 Erlangen, Germany
| | - Prabhpreet Singh
- Department of Chemistry
- UGC Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar 143005, India
| | - Frank Hauke
- Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP)
- Friedrich-Alexander University Erlangen – Nürnberg
- 91054 Erlangen, Germany
| | - Michele Maggini
- Department of Chemical Sciences
- University of Padua
- 35126 Padua, Italy
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP)
- Friedrich-Alexander University Erlangen – Nürnberg
- 91054 Erlangen, Germany
| |
Collapse
|
44
|
Mahata K, Frischmann PD, Würthner F. Giant electroactive M4L6 tetrahedral host self-assembled with Fe(II) vertices and perylene bisimide dye edges. J Am Chem Soc 2013; 135:15656-61. [PMID: 24059438 DOI: 10.1021/ja4083039] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembly of octahedral Fe(II) ions and linear perylene bisimide (PBI) dyes with 2,2'-bipyridine groups covalently attached at the imide positions quantitatively yields an Fe4(PBI)6 tetrahedron by the directional bonding approach. With an edge length of 3.9 nm and estimated internal volume >950 Å(3), tetrahedron T is one of the largest M4L6 tetrahedra ever reported. Importantly, many of the desirable photo- and electroactive properties of the PBI ligands are transferred to the nanoscale metallosupramolecule. Tetrahedron T absorbs strongly across the visible spectrum out to 650 nm and exhibits a total of 7 highly reversible electrochemical oxidation and reduction waves spanning a 3.0 V range. This facile cycling of 34 electrons between +18 and -16 charged species is likely enabled due to the porous nature of the tetrahedron that allows the necessary counterions to freely flow in and out of the host. Host-guest encapsulation of C60 by T in acetonitrile was studied by (13)C NMR spectroscopy, UV-vis spectroscopy, and ESI-MS, confirming that the tetrahedron is a suitable host for large, functional guest molecules.
Collapse
Affiliation(s)
- Kingsuk Mahata
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
45
|
He M, Han Q, He J, Li Q, Abliz Z, Tan H, Xu L, Yang H. Self-assembly of Pyrene-modified Rhomboidal MetallodendrimersviaDirectional Metal-ligand Bonding Approach. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Dubey RK, Niemi M, Kaunisto K, Efimov A, Tkachenko NV, Lemmetyinen H. Direct Evidence of Significantly Different Chemical Behavior and Excited-State Dynamics of 1,7- and 1,6-Regioisomers of Pyrrolidinyl-Substituted Perylene Diimide. Chemistry 2013; 19:6791-806. [DOI: 10.1002/chem.201203387] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/01/2013] [Indexed: 11/12/2022]
|
47
|
Cook TR, Zheng YR, Stang PJ. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev 2013; 113:734-77. [PMID: 23121121 PMCID: PMC3764682 DOI: 10.1021/cr3002824] [Citation(s) in RCA: 2133] [Impact Index Per Article: 193.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy R. Cook
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112
| | - Yao-Rong Zheng
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah, 84112
| |
Collapse
|
48
|
Jiang F, Wang J, Li J, Wang N, Bao X, Wang T, Yang Y, Lan Z, Yang R. Supramolecular Assemblies with Symmetrical Octahedral Structures - Synthesis, Characterization, and Electrochemical Properties. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Han Q, Chen LJ, Yang HB, Li QJ, He J, Tan H, Abliz Z, Wang CH. Synthesis and characterization of dendritic platinum bisferrocenylacetylide complexes. CAN J CHEM 2012. [DOI: 10.1139/v11-159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of new dendritic platinum bisferrocenylacetylide complexes have been synthesized utilizing the coupling reaction of trans-Pt complexes with C–H bonds in alkynes as key steps. These new bimetallic dendrimers were fully characterized by multinuclear NMR (1H, 13C, and 31P) and mass spectrometry (MALDI-TOF-MS and CSI-TOF-MS). Electrochemical studies of these complexes were carried out and revealed that all of the redox moieties are stable, independent, and electrochemically active. In addition, all metallodendrimers show one-electron reaction responses, and the increased sizes of these complexes did not exhibit a dramatic influence on the diffusion coefficient.
Collapse
Affiliation(s)
- Qing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| | - Quan-Jie Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Jiuming He
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Hongwei Tan
- Department of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Zeper Abliz
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Cui-Hong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
50
|
Karthikeyan S, Velavan K, Sathishkumar R, Varghese B, Manimaran B. Self-Assembly of Manganese(I)-Based Molecular Squares: Synthesis and Spectroscopic and Structural Characterization. Organometallics 2012. [DOI: 10.1021/om201244a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S. Karthikeyan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - K. Velavan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Ranganathan Sathishkumar
- Solid State and Structural Chemistry
Unit, Indian Institute of Science, Bangalore,
560012, India
| | - Babu Varghese
- Sophisticated
Analytical Instruments
Facility, Indian Institute of Technology-Madras, Chennai, 600036, India
| | - Bala. Manimaran
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| |
Collapse
|