1
|
Hontani Y, Broser M, Luck M, Weißenborn J, Kloz M, Hegemann P, Kennis JTM. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J Am Chem Soc 2020; 142:11464-11473. [PMID: 32475117 PMCID: PMC7315636 DOI: 10.1021/jacs.0c03229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
UV-absorbing rhodopsins are essential
for UV vision and sensing
in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins,
which bind a protonated retinal Schiff base for light absorption,
UV-absorbing rhodopsins bind an unprotonated retinal Schiff base.
Thus far, the photoreaction dynamics and mechanisms of UV-absorbing
rhodopsins have remained essentially unknown. Here, we report the
complete excited- and ground-state dynamics of the UV form of histidine
kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond
stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy,
covering time scales from femtoseconds to milliseconds. We found that
energy-level ordering is inverted with respect to visible-absorbing
rhodopsins, with an optically forbidden low-lying S1 excited
state that has Ag– symmetry and a higher-lying UV-absorbing
S2 state of Bu+ symmetry. UV-photoexcitation
to the S2 state elicits a unique dual-isomerization reaction:
first, C13=C14 cis–trans isomerization occurs during S2–S1 evolution
in <100 fs. This very fast reaction features the remarkable property
that the newly formed isomer appears in the excited state rather than
in the ground state. Second, C15=N16 anti–syn isomerization occurs on the S1–S0 evolution to the ground state in 4.8 ps. We detected two
ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground
state. These isomers become protonated in 58 μs and 3.2 ms,
respectively, resulting in formation of the blue-absorbing form of
HKR1. Our results constitute a benchmark of UV-induced photochemistry
of animal and microbial rhodopsins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Matthias Broser
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Meike Luck
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands.,ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
2
|
Roy PP, Abe-Yoshizumi R, Kandori H, Buckup T. Point Mutation of Anabaena Sensory Rhodopsin Enhances Ground-State Hydrogen Out-of-Plane Wag Raman Activity. J Phys Chem Lett 2019; 10:1012-1017. [PMID: 30742765 DOI: 10.1021/acs.jpclett.8b03805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interaction between the retinal protonated Schiff base (RPSB) and surrounding protein residues inside the retinal pocket is believed to play a major role in the ultrafast isomerization of the former. Coherent time-resolved vibrational spectroscopic techniques are applied to reveal the effect of changes in the protein architecture by point mutations (V112N and L83Q) close to the RPSB in Anabaena sensory rhodopsin (ASR). Our study reveals that such point mutations have a minor effect on the low-frequency (<400 cm-1) torsional modes but dramatically influence the ground-state vibrational Raman activity of the C14-H out-of-plane (HOOP) wag mode (800-820 cm-1). In mutated ASR, the increase of HOOP Raman activity in the ground state is experimentally observed for the all- trans RPSB, which has shorter excited-state lifetime than in wild-type ASR. This indicates that predistortion of the RPSB inside the mutated retinal pocket is a major factor in the acceleration of the isomerization rate.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69120 Heidelberg , Germany
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
- OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69120 Heidelberg , Germany
| |
Collapse
|
3
|
Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferré N, Kandori H, Buckup T. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2018; 20:30159-30173. [PMID: 30484447 DOI: 10.1039/c8cp05469j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discrepancies in the isomerization dynamics and quantum yields of the trans and cis retinal protonated Schiff base is a well-known issue in the context of retinal photochemistry. Anabaena Sensory Rhodopsin (ASR) is a microbial retinal protein that comprises a retinal chromophore in two ground state (GS) conformations: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). In this study, we applied impulsive vibrational spectroscopic techniques (DFWM, pump-DFWM and pump-IVS) to ASR to shed more light on how the structural changes take place in the excited state within the same protein environment. Our findings point to distinct features in the ground state structural conformations as well as to drastically different evolutions in the excited state manifold. The ground state vibrational spectra show stronger Raman activity of the C14-H out-of-plane wag (at about 805 cm-1) for the 13C isomer than that for the AT isomer, which hints at a pre-distortion of 13C in the ground state. Evolution of the Raman frequency after interaction with the actinic pulse shows a blue-shift for the C[double bond, length as m-dash]C stretching and CH3 rocking mode for both isomers. For AT, however, the blue-shift is not instantaneous as observed for the 13C isomer, rather it takes more than 200 fs to reach the maximum frequency shift. This frequency blue-shift is rationalized by a decrease in the effective conjugation length during the isomerization reaction, which further confirms a slower formation of the twisted state for the AT isomer and corroborates the presence of a barrier in the excited state trajectory previously predicted by quantum chemical calculations.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
4
|
Grabarek D, Andruniów T. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations. J Comput Chem 2018; 39:1720-1727. [PMID: 29727036 DOI: 10.1002/jcc.25346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 11/07/2022]
Abstract
The initial S1 excited-state relaxation of retinal protonated Schiff base (RPSB) analog with central C11C12 double bond locked by eight-membered ring (locked-11.8) was investigated by means of multireference perturbation theory methods (XMCQDPT2, XMS-CASPT2, MS-CASPT2) as well as single-reference coupled-cluster CC2 method. The analysis of XMCQDPT2-based geometries reveals rather weak coupling between in-plane and out-of-plane structural evolution and minor energetical relaxation of three locked-11.8 conformers. Therefore, a strong coupling between bonds length inversion and backbone out-of-plane deformation resulting in a very steep S1 energy profile predicted by CASSCF/CASPT2 calculations is in clear contradiction with the reference XMCQDPT2 results. Even though CC2 method predicts good quality ground-state structures, the excited-state structures display more advanced torsional deformation leading to ca. 0.2 eV exaggerated energy relaxation and significantly red shifted (0.4-0.7 eV) emission maxima. According to our findings, the initial photoisomerization process in locked-11.8, and possibly in other RPSB analogs, studied fully (both geometries and energies) by multireference perturbation theory may be somewhat slower than predicted by CASSCF/CASPT2 or CC2 methods. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
5
|
Conyard J, Heisler IA, Chan Y, Bulman Page PC, Meech SR, Blancafort L. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple. Chem Sci 2018; 9:1803-1812. [PMID: 29675225 PMCID: PMC5892128 DOI: 10.1039/c7sc04091a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamics of a nonplanar GFP chromophore are studied experimentally and theoretically. Coupled torsional motion is responsible for the ultrafast decay.
The simple structure of the chromophore of the green fluorescent protein (GFP), a phenol and an imidazolone ring linked by a methyne bridge, supports an exceptionally diverse range of excited state phenomena. Here we describe experimentally and theoretically the photochemistry of a novel sterically crowded nonplanar derivative of the GFP chromophore. It undergoes an excited state isomerization reaction accompanied by an exceptionally fast (sub 100 fs) excited state decay. The decay dynamics are essentially independent of solvent polarity and viscosity. Excited state structural dynamics are probed by high level quantum chemical calculations revealing that the fast decay is due to a conical intersection characterized by a twist of the rings and pyramidalization of the methyne bridge carbon. The intersection can be accessed without a barrier from the pre-twisted Franck–Condon structure, and the lack of viscosity dependence is due to the fact that the rings twist in the same direction, giving rise to a volume-conserving decay coordinate. Moreover, the rotation of the phenyl, methyl and imidazolone groups is coupled in the sterically crowded structure, with the methyl group translating the rotation of one ring to the next. As a consequence, the excited state dynamics can be viewed as a torsional couple, where the absorbed photon energy leads to conversion of the out-of-plane orientation from one ring to the other in a volume conserving fashion. A similar modification of the range of methyne dyes may provide a new family of devices for molecular machines, specifically torsional couples.
Collapse
Affiliation(s)
- Jamie Conyard
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Ismael A Heisler
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Yohan Chan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Philip C Bulman Page
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Stephen R Meech
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi , Departament de Química , Facultat de Ciències , Universitat de Girona , C/ M. A. Capmany 69 , 17003 Girona , Spain .
| |
Collapse
|
6
|
Szefczyk B, Grabarek D, Walczak E, Andruniów T. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2. J Comput Chem 2017; 38:1799-1810. [PMID: 28512740 DOI: 10.1002/jcc.24821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022]
Abstract
This study provides gas-phase S1 excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S1 minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods. However, for those which were found: one planar and two twisted minima, there is an excellent agreement between CASSCF and CASPT2 results in terms of geometrical parameters, one-electron properties, as well as emission and adiabatic energies. CC2 performs well for in-plane S1 minima and their spectroscopic and electronic properties. However, this picture deteriorates for twisted minima. As expected, the CC2 description of the S2 electronic state, with strong multireference and significant double excitation character, is very poor, exhibiting errors in transition energies exceeding 1 eV. They may be substantially diminished by recalculating transition energies with CASPT2 method. Our work shows that CASSCF/CASPT2 and CC2 shortcomings may influence gas-phase retinal analogues' excited state description in a dramatic way. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Borys Szefczyk
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
7
|
Grabarek D, Walczak E, Andruniów T. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. J Chem Theory Comput 2016; 12:2346-56. [DOI: 10.1021/acs.jctc.6b00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
8
|
Wand A, Loevsky B, Friedman N, Sheves M, Ruhman S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J Phys Chem B 2012; 117:4670-9. [DOI: 10.1021/jp309189y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Boris Loevsky
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Herz J, Verhoefen MK, Weber I, Bamann C, Glaubitz C, Wachtveitl J. Critical role of Asp227 in the photocycle of proteorhodopsin. Biochemistry 2012; 51:5589-600. [PMID: 22738119 DOI: 10.1021/bi3003764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV-visible range as well as femtosecond-pump-probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pK(a) values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S(1) deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365-5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pH-dependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pK(a) of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reaction.
Collapse
Affiliation(s)
- Julia Herz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Kraack JP, Buckup T, Motzkus M. Evidence for the Two-State-Two-Mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments. Phys Chem Chem Phys 2012; 14:13979-88. [DOI: 10.1039/c2cp42248d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wand A, Rozin R, Eliash T, Jung KH, Sheves M, Ruhman S. Asymmetric Toggling of a Natural Photoswitch: Ultrafast Spectroscopy of Anabaena Sensory Rhodopsin. J Am Chem Soc 2011; 133:20922-32. [DOI: 10.1021/ja208371g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rinat Rozin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, South Korea
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Kraack JP, Buckup T, Motzkus M. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Phys Chem Chem Phys 2011; 13:21402-10. [DOI: 10.1039/c1cp22245g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Malhado JP, Spezia R, Hynes JT. Dynamical Friction Effects on the Photoisomerization of a Model Protonated Schiff Base in Solution. J Phys Chem A 2010; 115:3720-35. [DOI: 10.1021/jp106096m] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- João Pedro Malhado
- Département de Chimie, CNRS UMR 8640 PASTEUR, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | - Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environement, CNRS UMR 8587, Université d’Evry Val d’Essonne, Bd. F. Mitterrand, 91025 Evry, France
| | - James T. Hynes
- Département de Chimie, CNRS UMR 8640 PASTEUR, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
14
|
Tomasello G, Olaso-González G, Altoè P, Stenta M, Serrano-Andrés L, Merchán M, Orlandi G, Bottoni A, Garavelli M. Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching. J Am Chem Soc 2009; 131:5172-86. [PMID: 19309158 DOI: 10.1021/ja808424b] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid QM(CASPT2//CASSCF/6-31G*)/MM(Amber) computations have been used to map the photoisomerization path of the retinal chromophore in Rhodopsin and explore the reasons behind the photoactivity efficiency and spectral control in the visual pigments. It is shown that while the electrostatic environment plays a central role in properly tuning the optical properties of the chromophore, it is also critical in biasing the ultrafast photochemical event: it controls the slope of the photoisomerization channel as well as the accessibility of the S(1)/S(0) crossing space triggering the ultrafast decay. The roles of the E113 counterion, the E181 residue, and the other amino acids of the protein pocket are explicitly analyzed: it appears that counterion quenching by the protein environment plays a key role in setting up the chromophore's optical properties and its photochemical efficiency. A unified scenario is presented that discloses the relationship between spectroscopic and mechanistic properties in rhodopsins and allows us to draw a solid mechanism for spectral tuning in color vision pigments: a tunable counterion shielding appears as the elective mechanism for L<-->M spectral modulation, while a retinal conformational control must dictate S absorption. Finally, it is suggested that this model may contribute to shed new light into mutations-related vision deficiencies that opens innovative perspectives for experimental biomolecular investigations in this field.
Collapse
Affiliation(s)
- Gaia Tomasello
- Dipartimento di Chimica G. Ciamician, Università di Bologna, via Selmi 2, Bologna I-40126, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues. Proc Natl Acad Sci U S A 2009; 106:7718-23. [PMID: 19416877 DOI: 10.1073/pnas.0812877106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrafast transient absorption spectroscopy of wild-type bacteriorhodopsin (WT bR) and 2 tryptophan mutants (W86F and W182F) is performed with visible light excitation (pump) and UV probe. The aim is to investigate the photoinduced change in the charge distribution with 50-fs time resolution by probing the effects on the tryptophan absorption bands. A systematic, quantitative comparison of the transient absorption of the 3 samples is carried out. The main result is the absence in the W86F mutant of a transient induced absorption band observed at approximately 300-310 nm in WT bR and W182F. A simple model describing the dipolar interaction of the retinal moiety with the 2 tryptophan residues of interest allows us to reproduce the dominant features of the transient signals observed in the 3 samples at ultrashort pump-probe delays. In particular, we show that Trp(86) undergoes a significant Stark shift induced by the transient retinal dipole moment. The corresponding transient signal can be isolated by direct subtraction of experimental data obtained for WT bR and W86F. It shows an instantaneous rise, followed by a decay over approximately 500 fs corresponding to the isomerization time. Interestingly, it does not decay back to zero, thus revealing a change in the local electrostatic environment that remains long after isomerization, in the K intermediate state of the protein cycle. The comparison of WT bR and W86F also leads to a revised interpretation of the overall transient UV absorption of bR.
Collapse
|
16
|
|
17
|
Hoffmann M, Wanko M, Strodel P, König PH, Frauenheim T, Schulten K, Thiel W, Tajkhorshid E, Elstner M. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 2007; 128:10808-18. [PMID: 16910676 DOI: 10.1021/ja062082i] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of color tuning in the rhodopsin family of proteins has been studied by comparing the optical properties of the light-driven proton pump bacteriorhodopsin (bR) and the light detector sensory rhodopsin II (sRII). Despite a high structural similarity, the maximal absorption is blue-shifted from 568 nm in bR to 497 nm in sRII. The molecular mechanism of this shift is still a matter of debate, and its clarification sheds light onto the general mechanisms of color tuning in retinal proteins. The calculations employ a combined quantum mechanical/molecular mechanical (QM/MM) technique, using a DFT-based method for ground state properties and the semiempirical OM2/MRCI method and ab initio SORCI method for excited state calculations. The high efficiency of the methodology has allowed us to study a wide variety of aspects including dynamical effects. The absorption shift as well as various mutation experiments and vibrational properties have been successfully reproduced. Our results indicate that several sources contribute to the spectral shift between bR and sRII. The main factors are the counterion region at the extracellular side of retinal and the amino acid composition of the binding pocket. Our analysis allows a distinction and identification of the different effects in detail and leads to a clear picture of the mechanism of color tuning, which is in good agreement with available experimental data.
Collapse
Affiliation(s)
- Michael Hoffmann
- Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schenkl S, Zgrablić G, Portuondo-Campa E, Haacke S, Chergui M. On the excitation wavelength dependence of the fluorescence of bacteriorhodopsin. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.04.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
About the intrinsic photochemical properties of the 11-cis retinal chromophore: computational clues for a trap state and a lever effect in Rhodopsin catalysis. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0259-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Ogliaro F, Wilsey S, Bearpark MJ, Sardo-Infirri S. Interpreting the excited states and decay processes of bichromophoric 1-phenyl-1,3-butadiene using CASSCF calculations. Mol Phys 2007. [DOI: 10.1080/00268970500418307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- François Ogliaro
- a Equipe de Chimie et Biochimie Théoriques – UMR 7565 , Université Henri Poincaré , Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Sarah Wilsey
- b Department of Chemistry, Imperial College London , South Kensington Campus , London SW7 2AZ, UK
| | - Michael J. Bearpark
- b Department of Chemistry, Imperial College London , South Kensington Campus , London SW7 2AZ, UK
| | - Sofia Sardo-Infirri
- c Department of Chemistry , King's College London , Strand, London WC2R 2LS, UK
| |
Collapse
|
21
|
Bismuth O, Friedman N, Sheves M, Ruhman S. Photochemistry of a Retinal Protonated Schiff-Base Analogue Mimicking the Opsin Shift of Bacteriorhodopsin. J Phys Chem B 2007; 111:2327-34. [PMID: 17298090 DOI: 10.1021/jp0669308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A retinal Schiff base analogue which artificially mimics the protein-induced red shifting of absorption in bacteriorhodopsin (BR) has been investigated with femtosecond multichannel pump probe spectroscopy. The objective is to determine if the catalysis of retinal internal conversion in the native protein BR, which absorbs at 570 nm, is directly correlated with the protein-induced Stokes shifting of this absorption band otherwise known as the "opsin shift". Results demonstrate that the red shift afforded in the model system does not hasten internal conversion relative to that taking place in a free retinal-protonated Schiff base (RPSB) in methanol solution, and stimulated emission takes place with biexponential kinetics and characteristic timescales of approximately 2 and 10.5 ps. This shows that interactions between the prosthetic group and the protein that lead to the opsin shift in BR are not directly involved in reducing the excited-state lifetime by nearly an order of magnitude. A sub-picosecond phase of spectral evolution, analogues of which are detected in photoexcited retinal proteins and RPSBs in solution, is observed after excitation anywhere within the intense visible absorption band. It consists of a large and discontinuous spectral shift in excited-state absorption and is assigned to electronic relaxation between excited states, a scenario which might also be relevant to those systems as well. Finally, a transient excess bleach component that tunes with the excitation wavelength is detected in the data and tentatively assigned to inhomogeneous broadening in the ground state absorption band. Possible sources of such inhomogeneity and its relevance to native RPSB photochemistry are discussed.
Collapse
Affiliation(s)
- Oshrat Bismuth
- Department of Physical Chemistry, Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
22
|
Complex excited dynamics around a plateau on a retinal-like potential surface: chaos, multi-exponential decays and quantum/classical differences. Theor Chem Acc 2007. [DOI: 10.1007/s00214-006-0220-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Kahan A, Nahmias O, Friedman N, Sheves M, Ruhman S. Following Photoinduced Dynamics in Bacteriorhodopsin with 7-fs Impulsive Vibrational Spectroscopy. J Am Chem Soc 2006; 129:537-46. [PMID: 17227016 DOI: 10.1021/ja064910d] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sub-10-fs laser pulses are used to impulsively photoexcite bacteriorhodopsin (BR) suspensions and probe the evolution of the resulting vibrational wave packets. Fourier analysis of the spectral modulations induced by transform-limited as well as linearly chirped excitation pulses allows the delineation of excited- and ground-state contributions to the data. On the basis of amplitude and phase variations of the modulations as a function of the dispersed probe wavelength, periodic modulations in absorption above 540 nm are assigned to ground-state vibrational coherences induced by resonance impulsive Raman spectral activity (RISRS). Probing at wavelengths below 540 nm-the red edge of the intense excited-state absorption band-uncovers new vibrational features which are accordingly assigned to wave packet motions along bound coordinates on the short-lived reactive electronic surface. They consist of high- and low-frequency shoulders adjacent to the strong C=C stretching and methyl rock modes, respectively, which have ground-state frequencies of 1008 and 1530 cm-1. Brief activity centered at approximately 900 cm-1, which is characteristic of ground-state HOOP modes, and strong modulations in the torsional frequency range appear as well. Possible assignments of the bands and their implication to photoinduced reaction dynamics in BR are discussed. Reasons for the absence of similar signatures in the pump-probe spectral modulations at longer probing wavelengths are considered as well.
Collapse
Affiliation(s)
- Anat Kahan
- Department of Physical Chemistry and the Farkas Center for Light Induced Processes, Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
24
|
Altoè P, Bernardi F, Conti I, Garavelli M, Negri F, Orlandi G. Light driven molecular switches: exploring and tuning their photophysical and photochemical properties. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0219-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Wanko M, Hoffmann M, Frauenheim T, Elstner M. Computational photochemistry of retinal proteins. J Comput Aided Mol Des 2006; 20:511-8. [PMID: 17043908 DOI: 10.1007/s10822-006-9069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
High spectral tunability and quantum yield are the striking features of rhodopsin photochemistry. They rely on a strong and complex interaction of their chromophore, the protonated Schiff base of retinal, with its protein environment. In this article, we review the progress in the computational modeling of these systems, focusing on the optical properties and the excited state dynamics. While the earlier success of atomistic theoretical models was based on the breakthrough in X-ray crystallography and combined quantum mechanical molecular mechanical (QM/MM) methodology, recent advances point out the importance of high-level QM methods and the incorporation of effects that are neglected in conventional QM/MM or ONIOM schemes, like polarization and charge transfer.
Collapse
Affiliation(s)
- Marius Wanko
- BCCMS, Universität Bremen, Bremen 28334, Germany
| | | | | | | |
Collapse
|
26
|
Renth F, Foca M, Petter A, Temps F. Ultrafast transient absorption spectroscopy of the photo-induced Z–E isomerization of a photochromic furylfulgide. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
|
28
|
Zgrablić G, Voïtchovsky K, Kindermann M, Haacke S, Chergui M. Ultrafast excited state dynamics of the protonated Schiff base of all-trans retinal in solvents. Biophys J 2005; 88:2779-88. [PMID: 15792984 PMCID: PMC1305373 DOI: 10.1529/biophysj.104.046094] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500-8100 cm(-1)) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of approximately 6000 cm(-1), indicating depopulation of the Franck-Condon region in < or =100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S(2) to the S(1) state. Along with the direct excitation of S(1), this relaxation populates different quasistationary states in S(1), as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5-0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects.
Collapse
Affiliation(s)
- Goran Zgrablić
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, FSB-BSP, CH-1015 Lausanne-Dorigny, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Olivucci M, Lami A, Santoro F. A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation. Angew Chem Int Ed Engl 2005; 44:5118-21. [PMID: 16035016 DOI: 10.1002/anie.200501236] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Massimo Olivucci
- Dipartimento di Chimica, Università degli Studi di Siena, via Aldo Moro, 53100 Siena, Italy.
| | | | | |
Collapse
|
30
|
Olivucci M, Lami A, Santoro F. A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Cembran A, Gonzalez-Luque R, Altoè P, Merchan M, Bernardi F, Olivucci M, Garavelli M. Structure, Spectroscopy, and Spectral Tuning of the Gas-Phase Retinal Chromophore: The β-Ionone “Handle” and Alkyl Group Effect. J Phys Chem A 2005; 109:6597-605. [PMID: 16834008 DOI: 10.1021/jp052068c] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The low-lying singlet states (i.e. S0, S1, and S2) of the chromophore of rhodopsin, the protonated Schiff base of 11-cis-retinal (PSB11), and of its all-trans photoproduct have been studied in isolated conditions by using ab initio multiconfigurational second-order perturbation theory. The computed spectroscopic features include the vertical excitation, the band origin, and the fluorescence maximum of both isomers. On the basis of the S0-->S1 vertical excitation, the gas-phase absorption maximum of PSB11 is predicted to be 545 nm (2.28 eV). Thus, the predicted absorption maximum appears to be closer to that of the rhodopsin pigment (2.48 eV) and considerably red-shifted with respect to that measured in solution (2.82 eV in methanol). In addition, the absorption maxima associated with the blue, green, and red cone visual pigments are tentatively rationalized in terms of the spectral changes computed for PSB11 structures featuring differently twisted beta-ionone rings. More specifically, a blue-shifted absorption maximum is explained in terms of a large twisting of the beta-ionone ring (with respect to the main conjugated chain) in the visual S-cone (blue) pigment chromophore. In contrast, the chromophore of the visual L-cone (red) pigment is expected to have a nearly coplanar beta-ionone ring yielding a six double bond fully conjugated framework. Finally, the M-cone (green) chromophore is expected to feature a twisting angle between 10 and 60 degrees. The spectroscopic effects of the alkyl substituents on the PSB11 spectroscopic properties have also been investigated. It is found that they have a not negligible stabilizing effect on the S1-S0 energy gap (and, thus, cause a red shift of the absorption maximum) only when the double bond of the beta-ionone ring conjugates significantly with the rest of the conjugated chain.
Collapse
Affiliation(s)
- Alessandro Cembran
- Dipartimento di Chimica G. Ciamician, Università di Bologna, via Selmi 2, Bologna, I-40126 Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Vengris M, van der Horst MA, Zgrablic G, van Stokkum IHM, Haacke S, Chergui M, Hellingwerf KJ, van Grondelle R, Larsen DS. Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments. Biophys J 2005; 87:1848-57. [PMID: 15345563 PMCID: PMC1304589 DOI: 10.1529/biophysj.104.043224] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wavelength- and time-resolved fluorescence experiments have been performed on the photoactive yellow protein, the E46Q mutant, the hybrids of these proteins containing a nonisomerizing "locked" chromophore, and the native and locked chromophores in aqueous solution. The ultrafast dynamics of these six systems is compared and spectral signatures of isomerization and solvation are discussed. We find that the ultrafast red-shifting of fluorescence is associated mostly with solvation dynamics, whereas isomerization manifests itself as quenching of fluorescence. The observed multiexponential quenching of the protein samples differs from the single-exponential lifetimes of the chromophores in solution. The locked chromophore in the protein environment decays faster than in solution. This is due to additional channels of excited-state energy dissipation via the covalent and hydrogen bonds with the protein environment. The observed large dispersion of quenching timescales observed in the protein samples that contain the native pigment favors both an inhomogeneous model and an excited-state barrier for isomerization.
Collapse
Affiliation(s)
- Mikas Vengris
- Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wanko M, Hoffmann M, Strodel P, Koslowski A, Thiel W, Neese F, Frauenheim T, Elstner M. Calculating Absorption Shifts for Retinal Proteins: Computational Challenges. J Phys Chem B 2005; 109:3606-15. [PMID: 16851399 DOI: 10.1021/jp0463060] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsins can modulate the optical properties of their chromophores over a wide range of wavelengths. The mechanism for this spectral tuning is based on the response of the retinal chromophore to external stress and the interaction with the charged, polar, and polarizable amino acids of the protein environment and is connected to its large change in dipole moment upon excitation, its large electronic polarizability, and its structural flexibility. In this work, we investigate the accuracy of computational approaches for modeling changes in absorption energies with respect to changes in geometry and applied external electric fields. We illustrate the high sensitivity of absorption energies on the ground-state structure of retinal, which varies significantly with the computational method used for geometry optimization. The response to external fields, in particular to point charges which model the protein environment in combined quantum mechanical/molecular mechanical (QM/MM) applications, is a crucial feature, which is not properly represented by previously used methods, such as time-dependent density functional theory (TDDFT), complete active space self-consistent field (CASSCF), and Hartree-Fock (HF) or semiempirical configuration interaction singles (CIS). This is discussed in detail for bacteriorhodopsin (bR), a protein which blue-shifts retinal gas-phase excitation energy by about 0.5 eV. As a result of this study, we propose a procedure which combines structure optimization or molecular dynamics simulation using DFT methods with a semiempirical or ab initio multireference configuration interaction treatment of the excitation energies. Using a conventional QM/MM point charge representation of the protein environment, we obtain an absorption energy for bR of 2.34 eV. This result is already close to the experimental value of 2.18 eV, even without considering the effects of protein polarization, differential dispersion, and conformational sampling.
Collapse
Affiliation(s)
- M Wanko
- Department of Theoretical Physics, University of Paderborn, D-33098 Paderborn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Changenet-Barret P, Espagne A, Plaza P, Hellingwerf KJ, Martin MM. Investigations of the primary events in a bacterial photoreceptor for photomotility: photoactive yellow protein (PYP). NEW J CHEM 2005. [DOI: 10.1039/b418134d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Cembran A, Bernardi F, Olivucci M, Garavelli M. Counterion Controlled Photoisomerization of Retinal Chromophore Models: a Computational Investigation. J Am Chem Soc 2004; 126:16018-37. [PMID: 15584736 DOI: 10.1021/ja048782+] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CASPT2//CASSCF photoisomerization path computations have been used to unveil the effects of an acetate counterion on the photochemistry of two retinal protonated Schiff base (PSB) models: the 2-cis-penta-2,4-dieniminium and the all-trans-epta-2,4,6-trieniminium cations. Different positions/orientations of the counterion have been investigated and related to (i) the spectral tuning and relative stability of the S0, S1, and S2 singlet states; (ii) the selection of the photochemically relevant excited state; (iii) the control of the radiationless decay and photoisomerization rates; and, finally, (iv) the control of the photoisomerization stereospecificity. A rationale for the results is given on the basis of a simple (electrostatic) qualitative model. We show that the model readily explains the computational results providing a qualitative explanation for different aspects of the experimentally observed "environment" dependent PSB photochemistry. Electrostatic effects likely involved in controlling retinal photoisomerization stereoselectivity in the protein are also discussed under the light of these results, and clues for a stereocontrolled electrostatically driven photochemical process are presented. These computations provide a rational basis for the formulation of a mechanistic model for photoisomerization electrostatic catalysis.
Collapse
Affiliation(s)
- Alessandro Cembran
- Dipartimento di Chimica G. Ciamician, Università di Bologna, via Selmi 2, Bologna, I-40126 Italy
| | | | | | | |
Collapse
|
36
|
Wanko M, Garavelli M, Bernardi F, Niehaus TA, Frauenheim T, Elstner M. A global investigation of excited state surfaces within time-dependent density-functional response theory. J Chem Phys 2004; 120:1674-92. [PMID: 15268299 DOI: 10.1063/1.1635798] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work investigates the capability of time-dependent density functional response theory to describe excited state potential energy surfaces of conjugated organic molecules. Applications to linear polyenes, aromatic systems, and the protonated Schiff base of retinal demonstrate the scope of currently used exchange-correlation functionals as local, adiabatic approximations to time-dependent Kohn-Sham theory. The results are compared to experimental and ab initio data of various kinds to attain a critical analysis of common problems concerning charge transfer and long range (nondynamic) correlation effects. This analysis goes beyond a local investigation of electronic properties and incorporates a global view of the excited state potential energy surfaces.
Collapse
Affiliation(s)
- M Wanko
- Department of Theoretical Physics, University of Paderborn, D-33098 Paderborn, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Comparing photoinduced vibrational coherences in bacteriorhodopsin and in native and locked retinal protonated Schiff bases. Chem Phys Lett 2003. [DOI: 10.1016/j.cplett.2003.10.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|