1
|
Dezalay J, Grégoire G, Broquier M, Soorkia S. IR and UV Spectroscopy of Gas-Phase Monohydrated Protonated Guanine. J Phys Chem A 2024; 128:8457-8465. [PMID: 39297670 DOI: 10.1021/acs.jpca.4c04976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We use UV and infrared photodissociation spectroscopy to study monohydrated protonated guanine in a dual cryogenic ion trap spectrometer. The monohydrated complexes are formed through helium-mediated collisions between bare electrosprayed protonated guanine and low-pressure water vapor in a clustering trap maintained at 180 K, before being transferred to a quadrupole ion trap at 10 K. The spectrum of the monohydrated complex exhibits sharp vibronic transitions at the band origin and becomes broader and higher in intensity further in blue, which is very similar to protonated guanine but with a notable blue shift of ∼1850 cm-1 (∼0.23 eV). The UV hole-burning experiments showed that the vibronic bands recorded in the region of the band origin belong to a single conformer under our experimental conditions. The IR photodissociation spectrum in the 3000-3600 cm-1 range, with the aid of theoretical calculations (SCS-CC2/aug-cc-pVDZ), allowed us to assign the structure to the lowest energy N7-O conformer.
Collapse
Affiliation(s)
- J Dezalay
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| | - G Grégoire
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| | - M Broquier
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| | - S Soorkia
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| |
Collapse
|
2
|
Lv D, Chen X, Jiang N, Wang G, Zeng X, Fang W, Li W, Zhou M. A rotational spectroscopy study of microsolvation effects on intramolecular proton transfer in trifluoroacetylacetone-(H 2O) 1-3. Phys Chem Chem Phys 2024; 26:12530-12536. [PMID: 38619876 DOI: 10.1039/d4cp01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Trifluoroacetylacetone (TFAA) has two enol forms, which can switch to each other via proton transfer. While much attention has been paid to their conformational preferences, the influence of microsolvation on regulating the proton position remains unexplored. Herein, we report the rotational spectra of trifluoroacetylacetone-(water)n (n = 1-3) investigated by chirped pulse Fourier transform microwave spectroscopy in the 2-8 GHz frequency range. Two conformers were identified for both TFAA-H2O and TFAA-(H2O)2, while only one conformer was characterized for TFAA-(H2O)3. The results indicate that water binding on the CH3 side stabilizes the enolF form, whereas water binding on the CF3 side stabilizes the enolH form. The enolF form predominates over the enolH form in these hydrated complexes, which contrasts with the fact that only enolH exists in isolated TFAA. EnolH becomes preferred only when water inserts itself into the intramolecular hydrogen bond. Instanton theory calculations reveal that the proton transfer reaction is dominated by quantum tunneling at low temperatures, leading to the stable existence of only one enol form in each configuration of the hydrated clusters.
Collapse
Affiliation(s)
- Dingding Lv
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| | - Xinlei Chen
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| | - Ningjing Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| | - Guanjun Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| | - Wei Fang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| | - Weixing Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China.
| |
Collapse
|
3
|
Maciejczyk M, Pyrka M. Tautomeric equilibrium and spectroscopic properties of 8-azaguanine revealed by quantum chemistry methods. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:545-557. [PMID: 37507591 PMCID: PMC10618388 DOI: 10.1007/s00249-023-01672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
8-azaguanine is a triazolopyrimidine nucleobase analog possessing potent antibacterial and antitumor activities, and it has been implicated as a lead molecule in cancer and malaria therapy. Its intrinsic fluorescence properties can be utilized for monitoring its interactions with biological polymers like proteins or nucleic acids. In order to better understand these interactions, it is important to know the tautomeric equilibrium of this compound. In this work, the tautomeric equilibrium of all natural neutral and anionic compound forms (except highly improbable imino-enol tautomers) as well as their methyl derivatives and ribosides was revealed by quantum chemistry methods. It was shown that, as expected, tautomers protonated at positions 1 and 9 dominate neutral forms both in gas phase and in aqueous solution. 8-azaguanines methylated at any position of the triazole ring are protonated at position 1. The computed vertical absorption and emission energies are in very good agreement with the experimental data. They confirm the validity of the assumption that replacing the proton with the methyl group does not significantly change the positions of absorption and fluorescence peaks.
Collapse
Affiliation(s)
- Maciej Maciejczyk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland.
| | - Maciej Pyrka
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| |
Collapse
|
4
|
Datar A, Paithankar H, Deb P, Chugh J, Bagchi S, Mukherjee A, Hazra A. Water-Controlled Keto-Enol Tautomerization of a Prebiotic Nucleobase. J Phys Chem B 2022; 126:5735-5743. [PMID: 35895006 DOI: 10.1021/acs.jpcb.2c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Barbituric acid is believed to be a proto-RNA nucleobase that was used for biological information transfer on prebiotic earth before DNA and RNA in their present forms evolved. Nucleobases have various tautomeric forms and the relative stability of these forms is critical to their biological function. It has been shown that barbituric acid has a tri-keto form in the gas phase and an enol form in the solid state. However, its dominant tautomeric form in aqueous medium that is most relevant for biology has been investigated only to a limited extent and the findings are inconclusive. We have used multiple approaches, namely, molecular dynamics, quantum chemistry, NMR, and IR spectroscopy to determine the most stable tautomer of barbituric acid in solution. We find a delicate balance in the stability of the two tautomers, tri-keto and enol, which is tipped toward the enol as the extent of solvation by water increases.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | | | - Pranab Deb
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | |
Collapse
|
5
|
Lucia-Tamudo J, Cárdenas G, Anguita-Ortiz N, Díaz-Tendero S, Nogueira JJ. Computation of Oxidation Potentials of Solvated Nucleobases by Static and Dynamic Multilayer Approaches. J Chem Inf Model 2022; 62:3365-3380. [PMID: 35771991 PMCID: PMC9326891 DOI: 10.1021/acs.jcim.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The determination
of the redox properties of nucleobases is of
paramount importance to get insight into the charge-transfer processes
in which they are involved, such as those occurring in DNA-inspired
biosensors. Although many theoretical and experimental studies have
been conducted, the value of the one-electron oxidation potentials
of nucleobases is not well-defined. Moreover, the most appropriate
theoretical protocol to model the redox properties has not been established
yet. In this work, we have implemented and evaluated different static
and dynamic approaches to compute the one-electron oxidation potentials
of solvated nucleobases. In the static framework, two thermodynamic
cycles have been tested to assess their accuracy against the direct
determination of oxidation potentials from the adiabatic ionization
energies. Then, the introduction of vibrational sampling, the effect
of implicit and explicit solvation models, and the application of
the Marcus theory have been analyzed through dynamic methods. The
results revealed that the static direct determination provides more
accurate results than thermodynamic cycles. Moreover, the effect of
sampling has not shown to be relevant, and the results are improved
within the dynamic framework when the Marcus theory is applied, especially
in explicit solvent, with respect to the direct approach. Finally,
the presence of different tautomers in water does not affect significantly
the one-electron oxidation potentials.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gustavo Cárdenas
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Anguita-Ortiz
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Huang SR, Tureček F. Noncanonical Isomers of Nucleoside Cation Radicals: An Ab Initio Study of the Dark Matter of DNA Ionization. J Phys Chem A 2022; 126:2480-2497. [PMID: 35439003 DOI: 10.1021/acs.jpca.2c00894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cation radicals of DNA nucleosides, 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and 2'-deoxythymidine, can exist in standard canonical forms or as noncanonical isomers in which the charge is introduced by protonation of the nucleobase, whereas the radical predominantly resides in the deoxyribose moiety. Density functional theory as well as correlated ab initio calculations with coupled clusters (CCSD(T)) that were extrapolated to the complete basis set limit showed that noncanonical nucleoside ion isomers were thermodynamically more stable than their canonical forms in both the gas phase and as water-solvated ions. This indicated the possibility of exothermic conversion of canonical to noncanonical forms. The noncanonical isomers were calculated to have very low adiabatic ion-electron recombination energies (REad) for the lowest-energy isomers 2'-deoxy-(N-3H)adenos-1'-yl (4.74 eV), 2'-deoxy-(N-7H)guanos-1'-yl (4.66 eV), 2'-deoxy-(N-3H)cytid-1'-yl (5.12 eV), and 2'-deoxy-5-methylene-(O-2H)uridine (5.24 eV). These were substantially lower than the REad value calculated for the canonical 2'-deoxyadenosine, 2'-deoxy guanosine, 2'-deoxy cytidine, and 2'-deoxy thymidine cation radicals, which were 7.82, 7.46, 8.14, and 8.20 eV, respectively, for the lowest-energy ion conformers of each type. Charge and spin distributions in noncovalent cation-radical dA⊂dT and dG⊂dC nucleoside pairs and dAT, dCT, dTC, and dGC dinucleotides were analyzed to elucidate the electronic structure of the cation radicals. Born-Oppenheimer molecular dynamics trajectory calculations of the dinucleotides and nucleoside pairs indicated rapid exothermic proton transfer from noncanonical T+· to A in both dAT+· and dA⊂dT+·, leading to charge and radical separation. Noncanonical T+· in dCT+· and dTC+· initiated rapid proton transfer to cytosine, whereas the canonical dCT+· dinucleotide ion retained the cation radical structure without isomerization. No spontaneous proton transfer was found in dGC+· and dG⊂dC+· containing canonical neutral and noncanonical ionized deoxycytidine.
Collapse
Affiliation(s)
- Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
7
|
Liao CC, Yau S. The Effects of Potential and pH on the Adsorption of Guanine on the Au(111) Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2495-2501. [PMID: 35167284 DOI: 10.1021/acs.langmuir.1c02943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The adsorption of nucleobase at a gold electrode has been a model system to study the interaction between biomolecule and metal, which is relevant to the development of sensors and molecular electronics. The current study has employed in situ scanning tunneling microscopy (STM) and voltammetry to investigate the adsorption configuration and spatial structure of guanine (G) on a well-defined Au(111) electrode in perchloric acid (HClO4) and neutral phosphate buffer solution (PBS) containing 50 μM G. Potential control had a profound effect on the adsorption of the G molecule on the Au(111) electrode. No adsorption of G was observed at a potential more negative than 0 V in HClO4 and -0.2 V (versus Ag/AgCl) in PBS; shifting potential positively triggered a rapid adsorption of G to yield a well-ordered G array. Different spatial structures of G admolecules were imaged with STM in HClO4 and PBS, suggesting that ions in the electrolyte were important in this adsorption event. Shifting potential positively caused a more compact G adlayer with molecules adopting a tilted orientation. Meanwhile, G molecules continued to deposit on the Au(111) electrode leading to a multilayer G film. These processes were reversible to the potential modulation. G admolecules on the Au(111) electrode could be irreversibly oxidized in 0.1 M PBS, which resulted in a prominent peak at 0.74 V in the voltammogram. This oxidation process could be used to analyze the G molecule in a sample.
Collapse
Affiliation(s)
- Chiu-Ching Liao
- Department of Chemistry, National Central University Chungli County, Taoyuan City 32001 Taiwan, ROC
| | - Shuehlin Yau
- Department of Chemistry, National Central University Chungli County, Taoyuan City 32001 Taiwan, ROC
| |
Collapse
|
8
|
Investigation of interactions of doxorubicin with purine nucleobases by molecular modeling. J Mol Model 2022; 28:69. [PMID: 35218423 DOI: 10.1007/s00894-022-05031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Doxorubicin, an anthracycline antibiotic with anti-tumor activity, is produced by the bacterium Streptomyces peucetius. The interactions between doxorubicin and genetic material and the details of the intercalation with DNA have been controversial issues. Thus, the interactions of doxorubicin with purine nucleobases were studied by quantum mechanical methods. Initially, conformer analyses of doxorubicin were performed with Spartan 08 software and 319 different conformers from 422 initial structures for doxorubicin were obtained. Geometry optimizations and frequency analyses were performed for each structure using density functional theory (DFT) at B3LYP/6-31G** level using Gaussian 09 software. The most stable 20 conformers of doxorubicin and tautomers of purine nucleobases were optimized again with ɷB97XD/6-31G** level and their interactions were also analyzed at the same level. The Discovery Studio 3.5 Visualizer was used to draw the initial and optimized structures of investigated geometries. The noncovalent interactions (NCIs) were visualized by calculating reduced density gradient (RDG) with Multiwfn program. The color-filled isosurfaces and RDG scatter maps of most stable interaction geometries were plotted by Visual Molecular Dynamics (VMD) software and Gnuplot 5.3 software, respectively. This study showed that adenine, guanine, and hypoxanthine nucleobases interact with doxorubicin by forming strong hydrogen bonds and π-π interactions. Considering the normal cellular conditions, the effect of solvent (water) on the interaction geometries were also analyzed and when compared to gas phase it was determined that the movements of the molecules were restricted and there was a minimal change between initial and optimized structures in the aqueous phase.
Collapse
|
9
|
Zhao Y, Cui X, Song Y, Zhang C, Meng Q. Photophysical properties of fluorescent nucleobase P-analogues expected to monitor DNA replication. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119926. [PMID: 34022693 DOI: 10.1016/j.saa.2021.119926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, we computationally design a series of fluorescent purine analogues based on the 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one (P) to monitor the DNA replication process with merely a minimal perturbation to the natural structure of nucleic acid. The P-modified fluorescent probes present red-shifted absorption spectra and enhanced photoluminescence due to the additional π-conjugation resulting from the fluorophore modification and the ring-expansion. Efficient fluorescence quenching of P-analogues occurs upon pairing with the complementary 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) due to the nonradiative relaxation from the low-lying dark excited state to the ground state of Z moiety. Especially, the P3 and the P7, which have high fluorescence intensity in both gas and liquid phases, are proposed as the sensors for studying conformational switching in the presence and absence of a complementary sequence. Also examined are the influences of hydration and the linking to deoxyribose on absorption and emission processes. Besides, the potential phosphorescence emission of these modified base pairs is taken into account by constructing the relaxed potential energy curves of S0, T1 and S1 states.
Collapse
Affiliation(s)
- Yu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yuzhi Song
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
10
|
Enchev V, Slavova S. Self-catalytic mechanism of prebiotic reactions: from formamide to pterins and guanine. Phys Chem Chem Phys 2021; 23:19043-19053. [PMID: 34612442 DOI: 10.1039/d1cp02158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction pathway of prebiotic reactions for formation of the pteridines: pterin, xanthopterine, isoxanthopterine and leucopterine, as well as the purine nucleobase guanine from pure formamide are presented. In these reactions, formamide or its tautomer, formimidic acid, play the role of proton-carrying catalyst. All required raw materials, such as hydrogen cyanide, ammonia, water, formic acid, urea, 2-aminomalononitrile, glyoxal, glyoxylic acid and oxalic acid needed in the self-catalyzed reactions are obtained by partial decomposition of formamide. We show that the prebiotic formation of nucleobases and pterins is closely linked and they probably coexisted at the beginning of chemical evolution.
Collapse
Affiliation(s)
- Venelin Enchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | |
Collapse
|
11
|
Cruz-Ortiz AF, Molina FL, Maitre P, Pino GA. Guanine Tautomerism in Ionic Complexes with Ag + Investigated by IRMPD Spectroscopy and Mass Spectrometry. J Phys Chem B 2021; 125:7137-7146. [PMID: 34165305 DOI: 10.1021/acs.jpcb.1c03796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we present the IRMPD spectra of three ionic complexes between guanine (G) and silver (Ag+): [GAg-H2O]+, [GAgG]+ produced in the electrospray ionization source of the mass spectrometer, and [GAg]+ produced by collision induced dissociation of the [GAgG]+ complex. On the basis of the comparison of theoretically calculated IR spectra, we show that there are two isomers of each complex containing two different keto-amino (KA) tautomers of G (GKA(1,9) and GKA(1,7)). The observed isomers are the most stable structures in aqueous solution, and their experimentally estimated relative populations are in better agreement with the calculated relative populations in solution than in the gas phase, both at 298 K. We concluded that these observations suggest that GKA(1,9) and GKA(1,7) coexist in solution according to previous theoretical reports (Colominas, C.; et al. J. Am. Chem. Soc. 1996, 118, 6811). We were unable to find any evidence of the presence of the GEA(9), GKA(3,7), GKA(3,9), or GKA(7,9), whose relative stabilities in solution are strongly dependent on the theoretical method used to account for the solvent effect (Hanus, M.; et al. J. Am. Chem. Soc. 2003, 125, 7678).
Collapse
Affiliation(s)
- Andrés F Cruz-Ortiz
- INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina.,Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina.,Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Franco L Molina
- INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina.,Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina.,Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Philippe Maitre
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Gustavo A Pino
- INFIQC (CONICET-UNC), Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina.,Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina.,Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
| |
Collapse
|
12
|
Tang Y, Huang W, Chinnam AK, Singh J, Staples RJ, Shreeve JM. Energetic Tricyclic Polynitropyrazole and Its Salts: Proton-Locking Effect of Guanidium Cations. Inorg Chem 2021; 60:8339-8345. [PMID: 34014642 DOI: 10.1021/acs.inorgchem.1c01202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An axisymmetric polynitro-pyrazole molecule, 3,5-di(3,5-dinitropyrazol-4-yl)]-4-nitro-1H-pyrazole (5), and its salts (6-12) were prepared and fully characterized. These compounds not only show promising energetic properties but also show a unique tautomeric switch via combining different cations with the axisymmetric compound (5). Its salts (6-9) remain axisymmetric when the cations are potassium, ammonium, or amino-1,2,4-triazolium. However, when the cations are guanidiums, the salts (10-12) dramatically become asymmetric owing to the fixed proton. The introduction of guanidium cations breaks the tautomeric equilibrium by blocking the prototropic transformations and results in the switch-off effect to tautomerism. The structural constraints of 1H NMR and 13C NMR spectra provide strong evidence for the unusual structural constraint phenomenon. These stabilized asymmetric tautomers are very important from the point of molecular recognition, and this research may promote further developments in synthetic and isolation methodologies for novel bioactive pyrazole-based compounds.
Collapse
Affiliation(s)
- Yongxing Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.,Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Wei Huang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
13
|
Liu Y, Ma C, Leonen CJA, Chatterjee C, Nováková G, Marek A, Tureček F. Tackling a Curious Case: Generation of Charge-Tagged Guanosine Radicals by Gas-Phase Electron Transfer and Their Characterization by UV-vis Photodissociation Action Spectroscopy and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:772-785. [PMID: 33567214 PMCID: PMC8579407 DOI: 10.1021/jasms.0c00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the generation of gas-phase riboguanosine radicals that were tagged at ribose with a fixed-charge 6-(trimethylammonium)hexane-1-aminocarbonyl group. The radical generation relied on electron transfer from fluoranthene anion to noncovalent dibenzocrown-ether dication complexes which formed nucleoside cation radicals upon one-electron reduction and crown-ether ligand loss. The cation radicals were characterized by collision-induced dissociation (CID), photodissociation (UVPD), and UV-vis action spectroscopy. Identification of charge-tagged guanosine radicals was challenging because of spontaneous dissociations by loss of a hydrogen atom and guanine that occurred upon storing the ions in the ion trap without further excitation. The loss of H proceeded from an exchangeable position on N-7 in guanine that was established by deuterium labeling and was the lowest energy dissociation of the guanosine radicals according to transition-state energy calculations. Rate constant measurements revealed an inverse isotope effect on the loss of either hydrogen or deuterium with rate constants kH = 0.25-0.26 s-1 and kD = 0.39-0.54 s-1. We used time-dependent density functional theory calculations, including thermal vibronic effects, to predict the absorption spectra of several protomeric radical isomers. The calculated spectra of low-energy N-7-H guanine-radical tautomers closely matched the action spectra. Transition-state-theory calculations of the rate constants for the loss of H-7 and guanine agreed with the experimental rate constants for a narrow range of ion effective temperatures. Our calculations suggest that the observed inverse isotope effect does not arise from the isotope-dependent differences in the transition-state energies. Instead, it may be caused by the dynamics of post-transition-state complexes preceding the product separation.
Collapse
Affiliation(s)
- Yue Liu
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Congcong Ma
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Calvin J A Leonen
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Champak Chatterjee
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gabriela Nováková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | | |
Collapse
|
14
|
Hirao K, Nakajima T, Chan B, Song JW, Bae HS. Core-Level Excitation Energies of Nucleic Acid Bases Expressed as Orbital Energies of the Kohn–Sham Density Functional Theory with Long-Range Corrected Functionals. J Phys Chem A 2020; 124:10482-10494. [DOI: 10.1021/acs.jpca.0c07087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimihiko Hirao
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan 113-8656, Korea
| | - Han-Seok Bae
- Department of Chemistry Education, Daegu University, Gyeongsan 113-8656, Korea
| |
Collapse
|
15
|
Sharafdini R, Ramazani S. A theoretical study on the role of stability of cytosine and its tautomers in DNA (deoxyribonucleic acid), and investigation of interactions of Na +, K +, Mg 2+, Ca 2+, Zn 2+ metal ions and OH radical with cytosine tautomers. J Biomol Struct Dyn 2020; 40:3819-3836. [PMID: 33252005 DOI: 10.1080/07391102.2020.1850526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study, 21 cytosine tautomers were investigated so that some tautomers were reported for the first time in the gas phase and aqueous solution. C3 tautomer was the most stable tautomer in gas phase but C1 was the most stable structure in aqueous solution. The potential energy surface of all trajectories was determined for 21 tautomers and 22 transition states. Also, interactions of cytosine tautomers with Na+, K+, Mg2+, Ca2+ and Zn2+ metal ions were studied in gas phase and aqueous solution. Three types of interactions among metal ions and (N1 and O10), (N3 and O10) and (N3 and N9) of cytosine tautomers were investigated. The study of interaction energies of all complexes showed the stability of complexes in which interactions among Mg2+ and Zn2+ with tautomers were stronger than interactions among Ca2+, Na+ and K+ with tautomers, respectively. Some interactions of metal ions with cytosine tautomers made the most stable tautomers. So, the stability of rare tutomeric forms had a significant effect on stabilization of anomalous DNA (deoxyribonucleic acid) double helix and spontaneous mutations. Also, one of the most important causes of mutations in DNA (deoxyribonucleic acid) was the reaction of OH radical with nucleotide bases. So, interactions of OH radical with cytosine and its tautomers were investigated in gas phase and aqueous solution.Communicated by Ramaswamy H. Sarma.
Collapse
|
16
|
C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3' Synonymous mRNA Codons. Int J Mol Sci 2020; 21:ijms21082882. [PMID: 32326096 PMCID: PMC7216251 DOI: 10.3390/ijms21082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
5-Substituted 2-selenouridines (R5Se2U) are post-transcriptional modifications present in the first anticodon position of transfer RNA. Their functional role in the regulation of gene expression is elusive. Here, we present efficient syntheses of 5-methylaminomethyl-2-selenouridine (1, mnm5Se2U), 5-carboxymethylaminomethyl-2-selenouridine (2, cmnm5Se2U), and Se2U (3) alongside the crystal structure of the latter nucleoside. By using pH-dependent potentiometric titration, pKa values for the N3H groups of 1–3 were assessed to be significantly lower compared to their 2-thio- and 2-oxo-congeners. At physiological conditions (pH 7.4), Se2-uridines 1 and 2 preferentially adopted the zwitterionic form (ZI, ca. 90%), with the positive charge located at the amino alkyl side chain and the negative charge at the Se2-N3-O4 edge. As shown by density functional theory (DFT) calculations, this ZI form efficiently bound to guanine, forming the so-called “new wobble base pair”, which was accepted by the ribosome architecture. These data suggest that the tRNA anticodons with wobble R5Se2Us may preferentially read the 5′-NNG-3′ synonymous codons, unlike their 2-thio- and 2-oxo-precursors, which preferentially read the 5′-NNA-3′ codons. Thus, the interplay between the levels of U-, S2U- and Se2U-tRNA may have a dominant role in the epitranscriptomic regulation of gene expression via reading of the synonymous 3′-A- and 3′-G-ending codons.
Collapse
|
17
|
Almatarneh MH, Omeir RA, AL Demour S, Elayan IA, Islam S, Poirier RA. Hydrolytic deamination mechanisms of guanosine monophosphate: A computational study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Eberlein L, Beierlein FR, van Eikema Hommes NJR, Radadiya A, Heil J, Benner SA, Clark T, Kast SM, Richards NGJ. Tautomeric Equilibria of Nucleobases in the Hachimoji Expanded Genetic Alphabet. J Chem Theory Comput 2020; 16:2766-2777. [PMID: 32125859 DOI: 10.1021/acs.jctc.9b01079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Evolution has yielded biopolymers that are constructed from exactly four building blocks and are able to support Darwinian evolution. Synthetic biology aims to extend this alphabet, and we recently showed that 8-letter (hachimoji) DNA can support rule-based information encoding. One source of replicative error in non-natural DNA-like systems, however, is the occurrence of alternative tautomeric forms, which pair differently. Unfortunately, little is known about how structural modifications impact free-energy differences between tautomers of the non-natural nucleobases used in the hachimoji expanded genetic alphabet. Determining experimental tautomer ratios is technically difficult, and so, strategies for improving hachimoji DNA replication efficiency will benefit from accurate computational predictions of equilibrium tautomeric ratios. We now report that high-level quantum-chemical calculations in aqueous solution by the embedded cluster reference interaction site model, benchmarked against free-energy molecular simulations for solvation thermodynamics, provide useful quantitative information on the tautomer ratios of both Watson-Crick and hachimoji nucleobases. In agreement with previous computational studies, all four Watson-Crick nucleobases adopt essentially only one tautomer in water. This is not the case, however, for non-natural nucleobases and their analogues. For example, although the enols of isoguanine and a series of related purines are not populated in water, these heterocycles possess N1-H and N3-H keto tautomers that are similar in energy, thereby adversely impacting accurate nucleobase pairing. These robust computational strategies offer a firm basis for improving experimental measurements of tautomeric ratios, which are currently limited to studying molecules that exist only as two tautomers in solution.
Collapse
Affiliation(s)
- Lukas Eberlein
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Frank R Beierlein
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Nico J R van Eikema Hommes
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Jochen Heil
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Timothy Clark
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.,Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| |
Collapse
|
19
|
Pyrka M, Maciejczyk M. Why Purine Nucleoside Phosphorylase Ribosylates 2,6-Diamino-8-azapurine in Noncanonical Positions? A Molecular Modeling Study. J Chem Inf Model 2020; 60:1595-1606. [PMID: 31944095 DOI: 10.1021/acs.jcim.9b00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein nucleoside phosphorylase (PNP) is an enzyme that catalyzes a reversible conversion process (ribosylation and phosphorolysis) between nucleobases (purines) and their nucleosides. Experimental studies showed that calf PNP ribosylates purine analogues in specific positions: 2,6-diamino-8-azapurine in position 7 or 8 and 8-azaguanine in position 9 of the triazole ring. The reason for this phenomenon can be a result of different expositions of purine substrates to the channel leading to the binding site. This hypothesis was verified by the application of molecular modeling techniques to two complexes of purine analogues 2,6-diamino-azapurine, calf PNP (pdb-code: 1LVU), and 8-azaguanine, calf PNP (pdb-code: 2AI1). The results obtained with a combination of quantum chemistry, docking, and molecular dynamics methods showed qualitative validity of our hypothesis. Binding free energies of protein-ligand systems showed that most probable binding poses expose N8 nitrogen for 2,6-diamino-8-azapurine and N9 nitrogen for 8-azaguanine into the binding channel and ruled out the exposition of N9 for 2,6-diamino-8-azapurine and N7 for 8-azaguanine, partially in agreement with the experimental data. The other important result obtained in this study is a significantly higher population of the protonated form of crucial residue Glu-201 present in the binding pocket, compared to the standard protonation of free glutamic acid in solution. This result combined with populations of tautomeric forms of both investigated systems strongly suggests that 2,6-diamino-8-azapurine and 8-azaguanine are recognized by proteins with deprotonated and protonated Glu-201 residues, respectively. A comparison of computed binding poses of the investigated ligands to the inhibitors present in crystal structures suggests that the modification of the (S)-PMPDAP inhibitor, in which a 2-(phosphonomethoxy)propyl chain is attached at position 8 instead of position 9, might increase its binding affinity.
Collapse
Affiliation(s)
- Maciej Pyrka
- Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Maciej Maciejczyk
- Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
20
|
Tautomerism of Guanine Analogues. Biomolecules 2020; 10:biom10020170. [PMID: 31979043 PMCID: PMC7072560 DOI: 10.3390/biom10020170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/18/2023] Open
Abstract
Tautomerism of nucleic acid (NA) bases is a crucial factor for the maintenance and translation of genetic information in organisms. Only canonical tautomers of NA bases can form hydrogen-bonded complexes with their natural counterparts. On the other hand, rare tautomers of nucleobases have been proposed to be involved in processes catalysed by NA enzymes. Isocytosine, which can be considered as a structural fragment of guanine, is known to have two stable tautomers both in solution and solid states. The tautomer equilibrium of isocytosine contrasts with the remarkable stability of the canonical tautomer of guanine. This paper investigates the factors contributing to the stability of the canonical tautomer of guanine by a combination of NMR experiments and theoretical calculations. The electronic effects of substituents on the stability of the rare tautomers of isocytosine and guanine derivatives are studied by density functional theory (DFT) calculations. Selected derivatives are studied by variable-temperature NMR spectroscopy. Rare tautomers can be stabilised in solution by intermolecular hydrogen-bonding interactions with suitable partners. These intermolecular interactions give rise to characteristic signals in proton NMR spectra, which make it possible to undoubtedly confirm the presence of a rare tautomer.
Collapse
|
21
|
Gavhane RJ, Madkar KR, Kurhe DN, Dagade DH. Room Temperature Ionic Liquids from Purine and Pyrimidine Nucleobases. ChemistrySelect 2019. [DOI: 10.1002/slct.201900626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Kavita R. Madkar
- Department of ChemistryShivaji University Kolhapur – 416004 INDIA
| | - Deepti N. Kurhe
- Department of BiochemistryShivaji University Kolhapur – 416004 INDIA
| | - Dilip H. Dagade
- Department of ChemistryShivaji University Kolhapur – 416004 INDIA
| |
Collapse
|
22
|
Martinez-Fernandez L, Gavvala K, Sharma R, Didier P, Richert L, Segarra Martì J, Mori M, Mely Y, Improta R. Excited-State Dynamics of Thienoguanosine, an Isomorphic Highly Fluorescent Analogue of Guanosine. Chemistry 2019; 25:7375-7386. [PMID: 30882930 DOI: 10.1002/chem.201900677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Indexed: 12/27/2022]
Abstract
Thienoguanosine (th G) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, th G exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto-amino tautomers. We herein investigate the photophysics of th G in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5-20.5 and 7-13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of th G, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias, Modúlo13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Javier Segarra Martì
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100, Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134, Napoli, Italy
| |
Collapse
|
23
|
Ganyecz Á, Kállay M, Csontos J. Thermochemistry of Uracil, Thymine, Cytosine, and Adenine. J Phys Chem A 2019; 123:4057-4067. [DOI: 10.1021/acs.jpca.9b02061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ádám Ganyecz
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, PO Box 91, H-1521, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, PO Box 91, H-1521, Hungary
| | - József Csontos
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, PO Box 91, H-1521, Hungary
| |
Collapse
|
24
|
Karton A. Thermochemistry of Guanine Tautomers Re-Examined by Means of High-Level CCSD(T) Composite Ab Initio Methods. Aust J Chem 2019. [DOI: 10.1071/ch19276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We obtained accurate gas-phase tautomerization energies for a set of 14 guanine tautomers by means of high-level thermochemical procedures approximating the CCSD(T) energy at the complete basis set (CBS) limit. For the five low-lying tautomers, we use the computationally demanding W1-F12 composite method for obtaining the tautomerization energies. The relative W1-F12 tautomerization enthalpies at 298K are: 0.00 (1), 2.37 (2), 2.63 (3), 4.03 (3′), and 14.31 (4) kJmol−1. Thus, as many as four tautomers are found within a small energy window of less than 1.0kcalmol−1 (1kcalmol−1=4.184kJmol−1). We use these highly accurate W1-F12 tautomerization energies to evaluate the performance of a wide range of lower-level composite ab initio procedures. The Gn composite procedures (G4, G4(MP2), G4(MP2)-6X, G3, G3B3, G3(MP2), and G3(MP2)B3) predict that the enol tautomer (3) is more stable than the keto tautomer (2) by amounts ranging from 0.36 (G4) to 1.28 (G3(MP2)) kJmol−1. We also find that an approximated CCSD(T)/CBS energy calculated as HF/jul-cc-pV{D,T}Z+CCSD/jul-cc-pVTZ+(T)/jul-cc-pVDZ results in a root-mean-square deviation (RMSD) of merely 0.11kJmol−1 relative to the W1-F12 reference values. We use this approximated CCSD(T)/CBS method to obtain the tautomerization energies of 14 guanine tautomers. The relative tautomerization enthalpies at 298K are: 0.00 (1), 2.20 (2), 2.51 (3), 4.06 (3′), 14.30 (4), 25.65 (5), 43.78 (4′), 53.50 (6′), 61.58 (6), 77.37 (7), 82.52 (8′), 86.02 (9), 100.70 (10), and 121.01 (8) kJmol−1. Using these tautomerization enthalpies, we evaluate the performance of standard and composite methods for the entire set of 14 guanine tautomers. The best-performing procedures emerge as (RMSDs are given in parentheses): G4(MP2)-6X (0.51), CCSD(T)+ΔMP2/CBS (0.52), and G4(MP2) (0.64kJmol−1). The worst performers are CCSD(T)/AVDZ (1.05), CBS-QB3 (1.24), and CBS-APNO (1.38kJmol−1).
Collapse
|
25
|
Kong H, Zhang C, Sun Q, Yu X, Xie L, Wang L, Li L, Hu S, Ju H, He Y, Zhu J, Xu W. Nickel Adatoms Induced Tautomeric Dehydrogenation of Thymine Molecules on Au(111). ACS NANO 2018; 12:9033-9039. [PMID: 30130397 DOI: 10.1021/acsnano.8b02821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tautomerization of nucleobases may induce base mismatches resulting in the abnormal disturbance of gene replication and expression, which has therefore attracted widespread interests in many disciplines. Metal atoms participating in a variety of important biological processes are found to be able to affect the nucleobase tautomerization as evidenced by many theoretical and spectroscopic studies. To get the real-space evidence and to unravel the underlying mechanism for the metal-induced tautomerization, especially from the keto form to the enol one, the interplay of high-resolution scanning tunneling microscopy imaging/manipulation and density functional theory (DFT) calculations has been employed. We present a process showing the Ni adatom-induced keto-enol tautomeric dehydrogenation of thymine molecules on Au(111). The key to making such a process feasible is the Ni atoms which greatly lower the energy barrier for the tautomerization from keto to enol form, which is rationalized by extensive DFT-based transition-state search calculations.
Collapse
Affiliation(s)
- Huihui Kong
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering , Nanjing University of Science and Technology , Xiaolingwei 200 , Nanjing 210094 , Jiangsu , P. R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Qiang Sun
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Xin Yu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Likun Wang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Lei Li
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Shanwei Hu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Huanxin Ju
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Yunbin He
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| |
Collapse
|
26
|
Zhang H, Wu W, Mo Y. Tautomerism of protonated imidazoles: A perspective from ab initio valence bond theory. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
28
|
Marchetti B, Karsili TNV, Ashfold MNR, Domcke W. A 'bottom up', ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs. Phys Chem Chem Phys 2018; 18:20007-27. [PMID: 26980149 DOI: 10.1039/c6cp00165c] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The availability of non-radiative decay mechanisms by which photoexcited molecules can revert to their ground electronic state, without experiencing potentially deleterious chemical transformation, is fundamental to molecular photostability. This Perspective Article combines results of new ab initio electronic structure calculations and prior experimental data in an effort to systematise trends in the non-radiative decay following UV excitation of selected families of heterocyclic molecules. We start with the prototypical uni- and bicyclic molecules phenol and indole, and explore the structural and photophysical consequences of incorporating progressively more nitrogen atoms within the respective ring structures en route to the DNA bases thymine, cytosine, adenine and guanine. For each of the latter, we identify low energy non-radiative decay pathways via conical intersections with the ground state potential energy surface accessed by out-of-plane ring deformations. This is followed by summary descriptions and illustrations of selected rival (electron driven H atom transfer) non-radiative excited state decay processes that demand consideration once the nucleobases are merely components in larger biomolecular systems like nucleosides, and both individual and stacked base-pairs.
Collapse
Affiliation(s)
- Barbara Marchetti
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Tolga N V Karsili
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
29
|
Mato J, Gordon MS. A general spin-complete spin-flip configuration interaction method. Phys Chem Chem Phys 2018; 20:2615-2626. [DOI: 10.1039/c7cp06837a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new spin-complete spin-flip configuration interaction (SF-CI) method was developed using the ORMAS-CI algorithm, along with a perturbative correction for capturing dynamic and non-dynamic correlation.
Collapse
Affiliation(s)
- Joani Mato
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | | |
Collapse
|
30
|
Ashwood B, Ortiz-Rodríguez LA, Crespo-Hernández CE. Excited-State Dynamics in O 6-Methylguanosine: Impact of O 6-Methylation on the Relaxation Mechanism of Guanine Monomers. J Phys Chem Lett 2017; 8:4380-4385. [PMID: 28850232 DOI: 10.1021/acs.jpclett.7b02090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Absorption of ultraviolet radiation by DNA bases results in ultrafast internal conversion to the ground state, which minimizes photodamage. However, exogenous and endogenous alkylating agents present in the cellular environment can methylate the nucleobases in DNA. In particular, methylation of guanosine at the O6 position in DNA leads to the formation of the O6-methylguanosine adduct, which may alter the photostability of DNA. This contribution demonstrates that O6-methylation of guanosine red shifts its ground-state absorption spectrum and slows down the rate of internal conversion to the ground state by ∼40-fold in aqueous solution. The 40-fold decrease in the rate of excited-state decay increases the probability of photodamage within cellular DNA. It is proposed that the longer decay lifetime corresponds to relaxation of the excited-state population in O6-methylguanosine along a C6-puckered reaction coordinate in the 1ππ*(La) potential energy surface that runs parallel to an ultrafast internal conversion pathway along a C2-puckered coordinate.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Luis A Ortiz-Rodríguez
- Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Carlos E Crespo-Hernández
- Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
31
|
Zhang M, Zhang M, Liu Y, Chen Y, Zhang K, Wang C, Zhao X, Zhou C, Gao J, Xie X, Zheng D, Zhao G. DFT/TDDFT theoretical investigation on the excited-state intermolecular hydrogen bonding interactions, photoinduced charge transfer, and vibrational spectroscopic properties of deprotonated deoxyadenosine monophosphate [dAMP-H] − anion in aqueous solution: Upon photoexcitation of hydrogen-bonded model complexes [dAMP-H] − –nH 2 O ( n = 0, 1, 2, 3, 4). J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Mato J, Keipert K, Gordon MS. Excited state properties of 5-formylcytosine and 5-hydroxymethylcytosine. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1311424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joani Mato
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA, United States
| | - Kristopher Keipert
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA, United States
| | - Mark S. Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
33
|
Karalkar NB, Khare K, Molt R, Benner SA. Tautomeric equilibria of isoguanine and related purine analogs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:256-274. [PMID: 28332916 DOI: 10.1080/15257770.2016.1268694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nucleobase pairs in DNA match hydrogen-bond donor and acceptor groups on the nucleobases. However, these can adopt more than one tautomeric form, and can consequently pair with nucleobases other than their canonical complements, possibly a source of natural mutation. These issues are now being re-visited by synthetic biologists increasing the number of replicable pairs in DNA by exploiting unnatural hydrogen bonding patterns, where tautomerism can also create mutation. Here, we combine spectroscopic measurements on methylated analogs of isoguanine tautomers and tautomeric mixtures with statistical analyses to a set of isoguanine analogs, the complement of isocytosine, the 5th and 6th "letters" in DNA.
Collapse
Affiliation(s)
- Nilesh B Karalkar
- a Foundation for Applied Molecular Evolution (FfAME) , Alachua , FL , USA
| | - Kshitij Khare
- b Department of Statistics , University of Florida , Gainesville FL , USA
| | - Robert Molt
- c Department of Chemistry and Chemical Biology , Indiana University-Purdue University, Indianapolis , Indianapolis , IN , USA.,d ENSCO, Inc. , Melbourne , FL , USA
| | - Steven A Benner
- a Foundation for Applied Molecular Evolution (FfAME) , Alachua , FL , USA
| |
Collapse
|
34
|
Sun Y, Lu W, Liu J. Exploration of the Singlet O2 Oxidation of 8-Oxoguanine by Guided-Ion Beam Scattering and Density Functional Theory: Changes of Reaction Intermediates, Energetics, and Kinetics upon Protonation/Deprotonation and Hydration. J Phys Chem B 2017; 121:956-966. [DOI: 10.1021/acs.jpcb.6b11464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yan Sun
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Wenchao Lu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| | - Jianbo Liu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York 10016, United States
| |
Collapse
|
35
|
Wu RR, Chen Y, Rodgers MT. Mechanisms and energetics for N-glycosidic bond cleavage of protonated 2'-deoxyguanosine and guanosine. Phys Chem Chem Phys 2016; 18:2968-80. [PMID: 26740232 DOI: 10.1039/c5cp05738h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and theoretical investigations suggest that hydrolysis of N-glycosidic bonds generally involves a concerted SN2 or a stepwise SN1 mechanism. While theoretical investigations have provided estimates for the intrinsic activation energies associated with N-glycosidic bond cleavage reactions, experimental measurements to validate the theoretical studies remain elusive. Here we report experimental investigations for N-glycosidic bond cleavage of the protonated guanine nucleosides, [dGuo+H](+) and [Guo+H](+), using threshold collision-induced dissociation (TCID) techniques. Two major dissociation pathways involving N-glycosidic bond cleavage, resulting in production of protonated guanine or the elimination of neutral guanine are observed in competition for both [dGuo+H](+) and [Guo+H](+). The detailed mechanistic pathways for the N-glycosidic bond cleavage reactions observed are mapped via electronic structure calculations. Excellent agreement between the measured and B3LYP calculated activation energies and reaction enthalpies for N-glycosidic bond cleavage of [dGuo+H](+) and [Guo+H](+) in the gas phase is found indicating that these dissociation pathways involve stepwise E1 mechanisms in analogy to the SN1 mechanisms that occur in the condensed phase. In contrast, MP2 is found to significantly overestimate the activation energies and slightly overestimate the reaction enthalpies. The 2'-hydroxyl substituent is found to stabilize the N-glycosidic bond such that [Guo+H](+) requires ∼25 kJ mol(-1) more than [dGuo+H](+) to activate the glycosidic bond.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Yu Chen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
36
|
Mohammadi M, Ramazani S. Theoretical kinetics study of thymine tautomerism and interaction of Na+ with its tautomers. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1232845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Durán R, Vöhringer-Martinez E, Toro-Labbé A, Herrera B. Reaction electronic flux and its role in DNA intramolecular proton transfers. J Mol Model 2016; 22:145. [PMID: 27256316 DOI: 10.1007/s00894-016-2989-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/21/2016] [Indexed: 11/26/2022]
Abstract
Proton transfer reactions present a key step in many biological and chemical processes. Here, we focused on the electronic changes in the proton transfer reactions of the four DNA bases. In combination with the previous structural analysis the reaction electronic flux together with local descriptors as the Hirshfeld-I charges allow us to identify chemical events and rationalize the underlying reaction mechanism. Our results show that imine-enamine in adenine and citosyne, and keto-enol tautomerizations in thymine and guanine have different reaction mechanisms. The former involve net structural rearrangements driven by favoured electrostatic interactions between the proton and the acceptor atom whereas the keto-enol tautomerizations require electronic changes reflected in the reaction electronic flux and changes in the NBO bond orders which favour the proton transfer reaction.
Collapse
Affiliation(s)
- Rocío Durán
- Milennium Nucleous of Chemical Processes and Catalysis (CPC), Santiago, Chile
- QTC, Departamento de Químico Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Esteban Vöhringer-Martinez
- QTC, Departamento de Químico Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Alejandro Toro-Labbé
- Milennium Nucleous of Chemical Processes and Catalysis (CPC), Santiago, Chile
- QTC, Departamento de Químico Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Bárbara Herrera
- Milennium Nucleous of Chemical Processes and Catalysis (CPC), Santiago, Chile.
- QTC, Departamento de Químico Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
38
|
Hadadi N, Ataman M, Hatzimanikatis V, Panayiotou C. Molecular thermodynamics of metabolism: quantum thermochemical calculations for key metabolites. Phys Chem Chem Phys 2016; 17:10438-53. [PMID: 25799954 DOI: 10.1039/c4cp05825a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work is the first of a series of papers aiming at a coherent and unified development of the thermodynamics of metabolism and the rationalization of feasibility analysis of metabolic pathways. The focus in this part is on high-level quantum chemical calculations of the thermochemical quantities of relatively heavy metabolites such as amino acids/oligopeptides, nucleosides, saccharides and their derivatives in the ideal gas state. The results of this study will be combined with the corresponding hydration/solvation results in subsequent parts of this work in order to derive the desired thermochemical quantities in aqueous solutions. The above metabolites exist in a vast conformational/isomerization space including rotational conformers, tautomers or anomers exhibiting often multiple or cooperative intramolecular hydrogen bonding. We examine the challenges posed by these features for the reliable estimation of thermochemical quantities. We discuss conformer search, conformer distribution and averaging processes. We further consider neutral metabolites as well as protonated and deprotonated metabolites. In addition to the traditional presentation of gas-phase acidities, basicities and proton affinities, we also examine heats and free energies of ionic species. We obtain simple linear relations between the thermochemical quantities of ions and the formation quantities of their neutral counterparts. Furthermore, we compare our calculations with reliable experimental measurements and predictive calculations from the literature, when available. Finally, we discuss the next steps and perspectives for this work.
Collapse
Affiliation(s)
- N Hadadi
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
39
|
Asami H, Tokugawa M, Masaki Y, Ishiuchi SI, Gloaguen E, Seio K, Saigusa H, Fujii M, Sekine M, Mons M. Effective Strategy for Conformer-Selective Detection of Short-Lived Excited State Species: Application to the IR Spectroscopy of the N1H Keto Tautomer of Guanine. J Phys Chem A 2016; 120:2179-84. [DOI: 10.1021/acs.jpca.6b01194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroya Asami
- Department
of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-J2-12, Nagatsuta-cho Midori, Yokohama 226-8501, Japan
- LIDYL,
CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Munefumi Tokugawa
- Department
of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-J2-12, Nagatsuta-cho Midori, Yokohama 226-8501, Japan
| | - Yoshiaki Masaki
- Department
of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-J2-12, Nagatsuta-cho Midori, Yokohama 226-8501, Japan
| | - Shun-ichi Ishiuchi
- Laboratory
for Chemistry and Life Science, Tokyo Institute of Technology, 4259-R1-15,
Nagatsuta-cho Midori, Yokohama 226-8503, Japan
| | - Eric Gloaguen
- LIDYL,
CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Kohji Seio
- Department
of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-J2-12, Nagatsuta-cho Midori, Yokohama 226-8501, Japan
| | - Hiroyuki Saigusa
- Graduate
School of Bio- and Nanosystem Science, Yokohama City University, Yokohama 236-0027, Japan
| | - Masaaki Fujii
- Laboratory
for Chemistry and Life Science, Tokyo Institute of Technology, 4259-R1-15,
Nagatsuta-cho Midori, Yokohama 226-8503, Japan
| | - Mitsuo Sekine
- Department
of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-J2-12, Nagatsuta-cho Midori, Yokohama 226-8501, Japan
| | - Michel Mons
- LIDYL,
CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
40
|
Marín-Luna M, Alkorta I, Elguero J. Interaction of beryllium derivatives with N-methylated DNA bases: 9-methylguanine and 1-methylcytosine. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Zhang C, Xie L, Ding Y, Sun Q, Xu W. Real-Space Evidence of Rare Guanine Tautomer Induced by Water. ACS NANO 2016; 10:3776-3782. [PMID: 26876579 DOI: 10.1021/acsnano.6b00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water is vital for life as a solvent. Specifically, it has been well established that DNA molecules are hydrated in vivo, and water has been found to be responsible for the presence of some noncanonical DNA base tautomers. Theoretical investigations have shown that the existence of water could significantly influence the relative stability of different DNA base tautomers, reduce the energy barrier of tautomeric conversions, and thus promote the formation of some rare base tautomers. In this work, we report the real-space experimental evidence of rare base tautomers. From the high-resolution scanning tunneling microscopy imaging, we surprisingly find the formation of the rare guanine tautomer, i.e., G/(3H,7H) form, on the Au(111) surface by delicately introducing water into the system. The key to the formation of this rare tautomer is proposed to be the "water bridge" that largely reduces the energy barriers of intramolecular proton-transfer processes as revealed by extensive density functional theory calculations. The real-space experimental evidence and the proposed mechanism make a step forward toward the fundamental understanding of water-assisted base tautomerization processes.
Collapse
Affiliation(s)
- Chi Zhang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Lei Xie
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Yuanqi Ding
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Qiang Sun
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Wei Xu
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| |
Collapse
|
42
|
Lu W, Liu J. Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine. Chemistry 2016; 22:3127-38. [PMID: 26813583 DOI: 10.1002/chem.201504140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/11/2022]
Abstract
The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center, of the City University of New York, 65-30 Kissena Blvd, Queens, NY, 11367, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center, of the City University of New York, 65-30 Kissena Blvd, Queens, NY, 11367, USA.
| |
Collapse
|
43
|
Zhang C, Xie L, Wang L, Kong H, Tan Q, Xu W. Atomic-Scale Insight into Tautomeric Recognition, Separation, and Interconversion of Guanine Molecular Networks on Au(111). J Am Chem Soc 2015; 137:11795-800. [DOI: 10.1021/jacs.5b07314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Zhang
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Lei Xie
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Likun Wang
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Huihui Kong
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Qinggang Tan
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Wei Xu
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| |
Collapse
|
44
|
Li H, Zhang L, Zhou H, Wang Y, Fan X. Theoretical studies on the single proton transfer process in adenine base. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huifang Li
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Lisheng Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Yanfei Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
- Material and Chemical Engineering Department; Pingxiang University; Pingxiang 337055 PR China
| |
Collapse
|
45
|
The influence of intermolecular halogen bonds on the tautomerism of nucleobases. I. Guanine. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Theoretical study of tautomeric equilibria of 2,6-diamino-8-azapurine and 8-aza-iso-Guanine. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Wu RR, Yang B, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyadenosine and Adenosine: IRMPD Action Spectroscopy and Theoretical Studies. J Phys Chem B 2015; 119:2795-805. [DOI: 10.1021/jp509267k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- R. R. Wu
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Bo Yang
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G. Berden
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - J. Oomens
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t Hoff
Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M. T. Rodgers
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
48
|
Bacchus-Montabonel MC, Calvo F. Nanohydration of uracil: emergence of three-dimensional structures and proton-induced charge transfer. Phys Chem Chem Phys 2015; 17:9629-33. [DOI: 10.1039/c5cp00611b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stepwise hydration of uracil proceeds three dimensionally above three molecules and qualitatively changes the response to proton damage.
Collapse
Affiliation(s)
| | - Florent Calvo
- Laboratoire Interdisciplinaire de Physique
- Rue de La Piscine
- Campus Saint Martin d'Hères
- 38000 Grenoble
- France
| |
Collapse
|
49
|
Wu RR, Yang B, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and Energetics of Protonated 2'-Deoxyguanosine and Guanosine: IRMPD Action Spectroscopy and Theoretical Studies. J Phys Chem B 2014; 118:14774-84. [PMID: 25423364 DOI: 10.1021/jp508019a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The gas-phase structures of protonated 2'-deoxyguanosine, [dGuo+H](+), and its RNA analogue protonated guanosine, [Guo+H](+), are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. IRMPD action spectra are measured over the range extending from ∼550 to 1900 cm(-1) using the FELIX free electron laser and from ∼2800 to 3800 cm(-1) using an optical parametric oscillator/amplifier (OPO/OPA) laser system. The measured IRMPD spectra of [dGuo+H](+) and [Guo+H](+) are compared to each other and to B3LYP/6-311+G(d,p) linear IR spectra predicted for the stable low-energy conformations computed for these species to determine the most favorable site of protonation, identify the structures accessed in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and the IRMPD spectral features. Theoretical energetics and the measured IRMPD spectra find that N7 protonation is preferred for both [dGuo+H](+) and [Guo+H](+), whereas O6 and N3 protonated conformers are found to be much less stable. The 2'-hydroxyl substituent does not exert a significant influence on the structures and relative stabilities of the stable low-energy conformations of [dGuo+H](+) versus [Guo+H](+) but does provide additional opportunities for hydrogen bonding such that more low-energy structures are found for [Guo+H](+). [dGuo+H](+) and [Guo+H](+) share very parallel IRMPD spectral features in the FELIX and OPO regions, whereas the effect of the 2'-hydroxyl substituent is primarily seen in the relative intensities of the measured IR bands. The measured OPO/OPA spectral signatures, primarily reflecting the IR features associated with the O-H and N-H stretches, provide complementary information to that of the FELIX region and enable the conformers that arise from different protonation sites to be more readily distinguished. Insight gained from this and parallel studies of other DNA and RNA nucleosides and nucleotides should help better elucidate the effects of the local environment on the overall structures of DNA and RNA.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Bo Yang
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - G Berden
- Institute for Molecules and Materials, Radbound University Nijmegen , FELIX Facility, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, Radbound University Nijmegen , FELIX Facility, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
50
|
Gadre SR, Yeole SD, Sahu N. Quantum chemical investigations on molecular clusters. Chem Rev 2014; 114:12132-73. [PMID: 25341561 DOI: 10.1021/cr4006632] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | | | | |
Collapse
|