1
|
Tolkatchev D, Smith GE, Schultz LE, Colpan M, Helms GL, Cort JR, Gregorio CC, Kostyukova AS. Leiomodin creates a leaky cap at the pointed end of actin-thin filaments. PLoS Biol 2020; 18:e3000848. [PMID: 32898131 PMCID: PMC7500696 DOI: 10.1371/journal.pbio.3000848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/18/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.
Collapse
Affiliation(s)
- Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Lauren E. Schultz
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Gregory L. Helms
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| | - John R. Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Kim M, Sisco NJ, Hilton JK, Montano CM, Castro MA, Cherry BR, Levitus M, Van Horn WD. Evidence that the TRPV1 S1-S4 membrane domain contributes to thermosensing. Nat Commun 2020; 11:4169. [PMID: 32820172 PMCID: PMC7441067 DOI: 10.1038/s41467-020-18026-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Sensing and responding to temperature is crucial in biology. The TRPV1 ion channel is a well-studied heat-sensing receptor that is also activated by vanilloid compounds, including capsaicin. Despite significant interest, the molecular underpinnings of thermosensing have remained elusive. The TRPV1 S1-S4 membrane domain couples chemical ligand binding to the pore domain during channel gating. Here we show that the S1-S4 domain also significantly contributes to thermosensing and couples to heat-activated gating. Evaluation of the isolated human TRPV1 S1-S4 domain by solution NMR, far-UV CD, and intrinsic fluorescence shows that this domain undergoes a non-denaturing temperature-dependent transition with a high thermosensitivity. Further NMR characterization of the temperature-dependent conformational changes suggests the contribution of the S1-S4 domain to thermosensing shares features with known coupling mechanisms between this domain with ligand and pH activation. Taken together, this study shows that the TRPV1 S1-S4 domain contributes to TRPV1 temperature-dependent activation.
Collapse
Affiliation(s)
- Minjoo Kim
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA
| | - Nicholas J Sisco
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA
| | - Jacob K Hilton
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA
| | - Camila M Montano
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA
| | - Manuel A Castro
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
| | - Brian R Cherry
- The Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, AZ, 85287, USA
| | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA.
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
3
|
Jemth P, Karlsson E, Vögeli B, Guzovsky B, Andersson E, Hultqvist G, Dogan J, Güntert P, Riek R, Chi CN. Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins. SCIENCE ADVANCES 2018; 4:eaau4130. [PMID: 30397651 PMCID: PMC6200366 DOI: 10.1126/sciadv.aau4130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/13/2018] [Indexed: 05/10/2023]
Abstract
In every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new protein-protein interactions are poorly understood. We have used nuclear magnetic resonance spectroscopy to investigate the changes in structure and dynamics during the evolution of a protein-protein interaction involving the intrinsically disordered CREBBP (CREB-binding protein) interaction domain (CID) and nuclear coactivator binding domain (NCBD) from the transcriptional coregulators NCOA (nuclear receptor coactivator) and CREBBP/p300, respectively. The most ancient low-affinity "Cambrian-like" [540 to 600 million years (Ma) ago] CID/NCBD complex contained less secondary structure and was more dynamic than the complexes from an evolutionarily younger "Ordovician-Silurian" fish ancestor (ca. 440 Ma ago) and extant human. The most ancient Cambrian-like CID/NCBD complex lacked one helix and several interdomain interactions, resulting in a larger solvent-accessible surface area. Furthermore, the most ancient complex had a high degree of millisecond-to-microsecond dynamics distributed along the entire sequences of both CID and NCBD. These motions were reduced in the Ordovician-Silurian CID/NCBD complex and further redistributed in the extant human CID/NCBD complex. Isothermal calorimetry experiments show that complex formation is enthalpically favorable and that affinity is modulated by a largely unfavorable entropic contribution to binding. Our data demonstrate how changes in structure and motion conspire to shape affinity during the evolution of a protein-protein complex and provide direct evidence for the role of structural, dynamic, and frustrational plasticity in the evolution of interactions between intrinsically disordered proteins.
Collapse
Affiliation(s)
- Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
- Corresponding author. (C.N.C.); (P.J.)
| | - Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Brenda Guzovsky
- Protein Physiology Lab, FCEyN-Universidad de Buenos Aires, IQUIBICEN/CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmaceutical Biosciences, Uppsala University, BMC Box 591, SE-75124 Uppsala, Sweden
| | - Jakob Dogan
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, ETH-Hönggerberg, Zürich, Switzerland
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
- Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, ETH-Hönggerberg, Zürich, Switzerland
| | - Celestine N. Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
- Corresponding author. (C.N.C.); (P.J.)
| |
Collapse
|
4
|
Salmon L, Blackledge M. Investigating protein conformational energy landscapes and atomic resolution dynamics from NMR dipolar couplings: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:126601. [PMID: 26517337 DOI: 10.1088/0034-4885/78/12/126601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance spectroscopy is exquisitely sensitive to protein dynamics. In particular inter-nuclear dipolar couplings, that become measurable in solution when the protein is dissolved in a dilute liquid crystalline solution, report on all conformations sampled up to millisecond timescales. As such they provide the opportunity to describe the Boltzmann distribution present in solution at atomic resolution, and thereby to map the conformational energy landscape in unprecedented detail. The development of analytical methods and approaches based on numerical simulation and their application to numerous biologically important systems is presented.
Collapse
Affiliation(s)
- Loïc Salmon
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France. CEA, DSV, IBS, F-38027 Grenoble, France. CNRS, IBS, F-38027 Grenoble, France
| | | |
Collapse
|
5
|
Gopinath T, Mote KR, Veglia G. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. JOURNAL OF BIOMOLECULAR NMR 2015; 62:53-61. [PMID: 25749871 PMCID: PMC4981477 DOI: 10.1007/s10858-015-9916-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.
Collapse
Affiliation(s)
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry and University of Minnesota, Minneapolis, MN 55455
- Corresponding Author. Gianluigi Veglia, 6-155 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, Phone: (612) 625-0758, Fax: (612) 625-2163,
| |
Collapse
|
6
|
De Simone A, Mote KR, Veglia G. Structural dynamics and conformational equilibria of SERCA regulatory proteins in membranes by solid-state NMR restrained simulations. Biophys J 2015; 106:2566-76. [PMID: 24940774 DOI: 10.1016/j.bpj.2014.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023] Open
Abstract
Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters. However, the nature of these motions is difficult to envision based only on spectroscopic data. Here, we utilized restrained molecular dynamics simulations to probe the structural dynamics, topology and conformational transitions of regulatory membrane proteins of the calcium ATPase SERCA, namely sarcolipin and phospholamban, in explicit lipid bilayers. Specifically, we employed oriented solid-state NMR data, such as dipolar couplings and chemical shift anisotropy measured in lipid bicelles, to refine the conformational ensemble of these proteins in lipid membranes. The samplings accurately reproduced the orientations of transmembrane helices and showed a significant degree of convergence with all of the NMR parameters. Unlike the unrestrained simulations, the resulting sarcolipin structures are in agreement with distances and angles for hydrogen bonds in ideal helices. In the case of phospholamban, the restrained ensemble sampled the conformational interconversion between T (helical) and R (unfolded) states for the cytoplasmic region that could not be observed using standard structural refinements with the same experimental data set. This study underscores the importance of implementing NMR data in molecular dynamics protocols to better describe the conformational landscapes of membrane proteins embedded in realistic lipid membranes.
Collapse
Affiliation(s)
- Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Kaustubh R Mote
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota; Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
7
|
Vostrikov VV, Mote KR, Verardi R, Veglia G. Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport. Structure 2013; 21:2119-30. [PMID: 24207128 DOI: 10.1016/j.str.2013.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023]
Abstract
Phospholamban (PLN) inhibits the sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA), thereby regulating cardiac diastole. In membranes, PLN assembles into homopentamers that in both the phosphorylated and nonphosphorylated states have been proposed to form ion-selective channels. Here, we determined the structure of the phosphorylated pentamer using a combination of solution and solid-state nuclear magnetic resonance methods. We found that the pinwheel architecture of the homopentamer is preserved upon phosphorylation, with each monomer having an L-shaped conformation. The TM domains form a hydrophobic pore approximately 24 Å long and 2 Å in diameter, which is inconsistent with canonical Ca²⁺-selective channels. Phosphorylation, however, enhances the conformational dynamics of the cytoplasmic region of PLN, causing partial unwinding of the amphipathic helix. We propose that PLN oligomers act as storage for active monomers, keeping SERCA function within a physiological window.
Collapse
Affiliation(s)
- Vitaly V Vostrikov
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
8
|
Mote KR, Gopinath T, Veglia G. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 57:91-102. [PMID: 23963722 PMCID: PMC3883141 DOI: 10.1007/s10858-013-9766-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/26/2013] [Indexed: 05/11/2023]
Abstract
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R. Mote
- Department of Chemistry University of Minnesota, Minneapolis, MN 55455, USA
| | - T. Gopinath
- Department of Biochemistry, Molecular Biology & Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Chemistry University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology & Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Eggimann BL, Vostrikov VV, Veglia G, Siepmann JI. Modeling helical proteins using residual dipolar couplings, sparse long-range distance constraints and a simple residue-based force field. Theor Chem Acc 2013; 132:1388. [PMID: 24639619 DOI: 10.1007/s00214-013-1388-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a fast and simple protocol to obtain moderate-resolution backbone structures of helical proteins. This approach utilizes a combination of sparse backbone NMR data (residual dipolar couplings and paramagnetic relaxation enhancements) or EPR data with a residue-based force field and Monte Carlo/simulated annealing protocol to explore the folding energy landscape of helical proteins. By using only backbone NMR data, which are relatively easy to collect and analyze, and strategically placed spin relaxation probes, we show that it is possible to obtain protein structures with correct helical topology and backbone RMS deviations well below 4 Å. This approach offers promising alternatives for the structural determination of proteins in which nuclear Overha-user effect data are difficult or impossible to assign and produces initial models that will speed up the high-resolution structure determination by NMR spectroscopy.
Collapse
Affiliation(s)
- Becky L Eggimann
- Department of Chemistry, Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - Vitaly V Vostrikov
- Molecular Biology and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Chemistry, Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | - J Ilja Siepmann
- Department of Chemistry, Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Hohlweg W, Kosol S, Zangger K. Determining the orientation and localization of membrane-bound peptides. Curr Protein Pept Sci 2012; 13:267-79. [PMID: 22044140 PMCID: PMC3394173 DOI: 10.2174/138920312800785049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance.
Collapse
Affiliation(s)
| | | | - Klaus Zangger
- Institute of Chemistry / Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
11
|
Gopinath T, Mote KR, Veglia G. Proton evolved local field solid-state nuclear magnetic resonance using Hadamard encoding: theory and application to membrane proteins. J Chem Phys 2011; 135:074503. [PMID: 21861572 DOI: 10.1063/1.3622604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
NMR anisotropic parameters such as dipolar couplings and chemical shifts are central to structure and orientation determination of aligned membrane proteins and liquid crystals. Among the separated local field experiments, the proton evolved local field (PELF) scheme is particularly suitable to measure dynamically averaged dipolar couplings and give information on local molecular motions. However, the PELF experiment requires the acquisition of several 2D datasets at different mixing times to optimize the sensitivity for the complete range of dipolar couplings of the resonances in the spectrum. Here, we propose a new PELF experiment that takes the advantage of the Hadamard encoding (HE) to obtain higher sensitivity for a broad range of dipolar couplings using a single 2D experiment. The HE scheme is obtained by selecting the spin operators with phase switching of hard pulses. This approach enables one to detect four spin operators, simultaneously, which can be processed into two 2D spectra covering a broader range of dipolar couplings. The advantages of the new approach are illustrated for a U-(15)N NAL single crystal and the U-(15)N labeled single-pass membrane protein sarcolipin reconstituted in oriented lipid bicelles. The HE-PELF scheme can be implemented in other multidimensional experiments to speed up the characterization of the structure and dynamics of oriented membrane proteins and liquid crystalline samples.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
12
|
Mote KR, Gopinath T, Traaseth NJ, Kitchen J, Gor'kov PL, Brey WW, Veglia G. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers. JOURNAL OF BIOMOLECULAR NMR 2011; 51:339-346. [PMID: 21976256 DOI: 10.1007/s10858-011-9571-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.
Collapse
Affiliation(s)
- Kaustubh R Mote
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Murray DT, Lu Y, Cross TA, Quine JR. Geometry of kinked protein helices from NMR data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 210:82-89. [PMID: 21420337 DOI: 10.1016/j.jmr.2011.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/06/2011] [Accepted: 02/11/2011] [Indexed: 05/30/2023]
Abstract
Mathematical questions related to determining the structure of a protein from NMR orientational restraints are discussed. The protein segment is a kinked alpha helix modeled as a regular alpha helix in which two adjacent torsion angles have been varied from their ideal values. Varying these torsion angles breaks the helix into two regular helical segments joined at a kink. The problem is to find the torsion angles at the kink from the relationship of the helical segments to the direction of the magnetic field.
Collapse
Affiliation(s)
- Dylan T Murray
- Institute of Molecular Biophysics, Florida State University, Kasha Laboratory, Tallahassee, FL 32306, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
Around half of all protein structures solved nowadays using solution-state nuclear magnetic resonance (NMR) spectroscopy have been because of automated data analysis. The pervasiveness of computational approaches in general hides, however, a more nuanced view in which the full variety and richness of the field appears. This review is structured around a comparison of methods associated with three NMR observables: classical nuclear Overhauser effect (NOE) constraint gathering in contrast with more recent chemical shift and residual dipole coupling (RDC) based protocols. In each case, the emphasis is placed on the latest research, covering mainly the past 5 years. By describing both general concepts and representative programs, the objective is to map out a field in which--through the very profusion of approaches--it is all too easy to lose one's bearings.
Collapse
|
15
|
HMGB1–Carbenoxolone Interactions: Dynamics Insights from Combined Nuclear Magnetic Resonance and Molecular Dynamics. Chem Asian J 2011; 6:1171-80. [DOI: 10.1002/asia.201000726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Indexed: 11/07/2022]
|
16
|
Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G. Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins. J Am Chem Soc 2011; 133:2232-41. [PMID: 21287984 DOI: 10.1021/ja109080t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
17
|
Traaseth NJ, Gopinath T, Veglia G. On the performance of spin diffusion NMR techniques in oriented solids: prospects for resonance assignments and distance measurements from separated local field experiments. J Phys Chem B 2010; 114:13872-80. [PMID: 20936833 PMCID: PMC3000634 DOI: 10.1021/jp105718r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NMR spin diffusion experiments have the potential to provide both resonance assignment and internuclear distances for protein structure determination in oriented solid-state NMR. In this paper, we compared the efficiencies of three spin diffusion experiments: proton-driven spin diffusion (PDSD), cross-relaxation-driven spin diffusion (CRDSD), and proton-mediated proton transfer (PMPT). As model systems for oriented proteins, we used single crystals of N-acetyl-L-(15)N-leucine (NAL) and N-acetyl-L-(15)N-valyl-L-(15)N-leucine (NAVL) to probe long and short distances, respectively. We demonstrate that, for short (15)N/(15)N distances such as those found in NAVL (3.3 Å), the PDSD mechanism gives the most intense cross-peaks, while, for longer distances (>6.5 Å), the CRDSD and PMPT experiments are more efficient. The PDSD was highly inefficient for transferring magnetization across distances greater than 6.5 Å (NAL crystal sample), due to small (15)N/(15)N dipolar couplings (<4.5 Hz). Interestingly, the mismatched Hartmann-Hahn condition present in the PMPT experiment gave more intense cross-peaks for lower (1)H and (15)N RF spinlock amplitudes (32 and 17 kHz, respectively) rather than higher values (55 and 50 kHz), suggesting a more complex magnetization transfer mechanism. Numerical simulations are in good agreement with the experimental findings, suggesting a combined PMPT and CRDSD effect. We conclude that, in order to assign SLF spectra and measure short- and long-range distances, the combined use of homonuclear correlation spectra, such as the ones surveyed in this work, are necessary.
Collapse
Affiliation(s)
- Nathaniel J Traaseth
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
18
|
Verardi R, Traaseth NJ, Shi L, Porcelli F, Monfregola L, De Luca S, Amodeo P, Veglia G, Scaloni A. Probing membrane topology of the antimicrobial peptide distinctin by solid-state NMR spectroscopy in zwitterionic and charged lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:34-40. [PMID: 20719234 DOI: 10.1016/j.bbamem.2010.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 07/26/2010] [Accepted: 08/09/2010] [Indexed: 11/26/2022]
Abstract
Distinctin is a 47-residue antimicrobial peptide, which interacts with negatively charged membranes and is active against Gram-positive and Gram-negative bacteria. Its primary sequence comprises two linear chains of 22 (chain 1) and 25 (chain 2) residues, linked by a disulfide bridge between Cys19 of chain 1 and Cys23 of chain 2. Unlike other antimicrobial peptides, distinctin in the absence of the lipid membrane has a well-defined three-dimensional structure, which protects it from protease degradation. Here, we used static solid-state NMR spectroscopy in mechanically aligned lipid bilayers (charged or zwitterionic) to study the topology of distinctin in lipid bilayers. We found that this heterodimeric peptide adopts an ordered conformation absorbed on the surface of the membrane, with the long helix (chain 2), approximately parallel to the lipid bilayer (~5° from the membrane plane) and the short helix (chain 1) forming a ~24° angle with respect to the bilayer plane. Since the peptide does not disrupt the macroscopic alignment of charged or zwitterionic lipid bilayers at lipid-to-protein molar ratio of 50:1, it is possible that higher peptide concentrations might be needed for pore formation, or alternatively, distinctin elicits its cell disruption action by another mechanism.
Collapse
Affiliation(s)
- Raffaello Verardi
- Departments of Chemistry and Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sayadi M, Tanizaki S, Feig M. Effect of membrane thickness on conformational sampling of phospholamban from computer simulations. Biophys J 2010; 98:805-14. [PMID: 20197034 DOI: 10.1016/j.bpj.2009.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/31/2009] [Accepted: 11/09/2009] [Indexed: 10/19/2022] Open
Abstract
The conformational sampling of monomeric, membrane-bound phospholamban is described from computer simulations. Phospholamban (PLB) plays a key role as a regulator of sarcoplasmic reticulum calcium ATPase. An implicit membrane model is used in conjunction with replica exchange molecular dynamics simulations to reach mus-ms timescales. The implicit membrane model was also used to study the effect of different membrane thicknesses by scaling the low-dielectric region. The conformational sampling with the membrane model mimicking dipalmitoylphosphatidylcholine bilayers is in good agreement overall with experimental measurements, but consists of a wide variety of different conformations including structures not described previously. The conformational ensemble shifts significantly in the presence of thinner or thicker membranes. This has implications for the structure and dynamics of PLB in physiological membranes and offers what we believe to be a new interpretation of previous experimental measurements of PLB in detergents and microsomal membrane.
Collapse
Affiliation(s)
- Maryam Sayadi
- Department of Chemistry, Michigan State University, East Lansing, USA
| | | | | |
Collapse
|
20
|
Shi L, Cembran A, Gao J, Veglia G. Tilt and azimuthal angles of a transmembrane peptide: a comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes. Biophys J 2009; 96:3648-62. [PMID: 19413970 DOI: 10.1016/j.bpj.2009.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 02/03/2009] [Accepted: 02/12/2009] [Indexed: 02/04/2023] Open
Abstract
We report molecular dynamics simulations in the explicit membrane environment of a small membrane-embedded protein, sarcolipin, which regulates the sarcoplasmic reticulum Ca-ATPase activity in both cardiac and skeletal muscle. In its monomeric form, we found that sarcolipin adopts a helical conformation, with a computed average tilt angle of 28 +/- 6 degrees and azymuthal angles of 66 +/- 22 degrees, in reasonable accord with angles determined experimentally (23 +/- 2 degrees and 50 +/- 4 degrees, respectively) using solid-state NMR with separated-local-field experiments. The effects of time and spatial averaging on both (15)N chemical shift anisotropy and (1)H/(15)N dipolar couplings have been analyzed using short-time averages of fast amide out-of-plane motions and following principal component dynamic trajectories. We found that it is possible to reproduce the regular oscillatory patterns observed for the anisotropic NMR parameters (i.e., PISA wheels) employing average amide vectors. This work highlights the role of molecular dynamics simulations as a tool for the analysis and interpretation of solid-state NMR data.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
21
|
Hus JC, Salmon L, Bouvignies G, Lotze J, Blackledge M, Brüschweiler R. 16-fold degeneracy of peptide plane orientations from residual dipolar couplings: analytical treatment and implications for protein structure determination. J Am Chem Soc 2008; 130:15927-37. [PMID: 18959402 PMCID: PMC3280151 DOI: 10.1021/ja804274s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Residual dipolar couplings (RDCs) measured for internally rigid molecular fragments provide important information about the relative orientations of these fragments. Dependent on the symmetry of the alignment tensor and the symmetry of the molecular fragment, however, there generally exist more than one solution for the fragment orientation consistent with the measured RDCs. Analytical solutions are presented that describe the complete set of orientations of internally rigid fragments that are consistent with multiple dipolar couplings measured in a single alignment medium that is rhombic. For the first time, it is shown that, for a planar fragment such as the peptide plane, there generally exist 16 different solutions with their analytical expressions presented explicitly. The presence of these solutions is shown to be highly relevant for standard structure determination protocols using RDCs to refine molecular structures. In particular, when using standard protein structure refinement with RDCs that were measured in a single alignment medium as constraints, it is found that often more than one of the peptide plane solutions is physically viable; i.e., despite being consistent with measured RDCs, the local backbone structure can be incorrect. On the basis of experimental and simulated examples, it is rationalized why protein structures that are refined against RDCs measured in a single medium can have lower resolution (precision) than one would expect on the basis of the experimental accuracy of the RDCs. Conditions are discussed under which the correct solution can be identified.
Collapse
Affiliation(s)
- Jean-Christophe Hus
- Clark University, Worcester, MA 01610
- Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble, France
| | - Loïc Salmon
- Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble, France
| | | | - Johannes Lotze
- Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble, France
| | - Rafael Brüschweiler
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
22
|
Canlas CG, Ma D, Tang P, Xu Y. Residual dipolar coupling measurements of transmembrane proteins using aligned low-q bicelles and high-resolution magic angle spinning NMR spectroscopy. J Am Chem Soc 2008; 130:13294-300. [PMID: 18788737 PMCID: PMC2704097 DOI: 10.1021/ja802578z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicelles are a major medium form to produce weak alignment of soluble proteins for residual dipolar coupling (RDC) measurements. The obstacle to using the same type of bicelles for transmembrane proteins with solution-state NMR spectroscopy is the loss of signals due to the adhesion or penetration of the proteins into large bicelles, resulting in slow protein tumbling. In this study, weak alignment of the second and third transmembrane domains (TM23) of the human glycine receptor (GlyR) was achieved in low-q bicelles (q = DMPC/DHPC). Although protein-free bicelles with such low q would likely show isotropic properties, the insertion of TM23 induced weakly preferred orientations so that the RDC of the embedded protein can be measured. The extent of the alignment increased but the TM23 signal intensity decreased when q was varied from 0.19 to 0.60. A q of 0.50 was found to be an optimal compromise between alignment and the signal-to-noise ratio. In each pair of NMR experiments for RDC measurements, the same sample and pulse sequence were used, with one being performed at high-resolution magic-angle spinning to obtain pure J-couplings without RDC. A meaningful structure refinement in bicelles was possible by iteratively fitting the experimental RDCs to the back-calculated RDCs using the high-resolution NMR structure of GlyR TM23 in trifluoroethanol as the starting template. Combination of this method with the conventional high-resolution NMR in membrane mimicking mixtures of water and organic solvents offers an attractive way to derive structural information for membrane proteins in their native environment.
Collapse
Affiliation(s)
- Christian G. Canlas
- Departments of Anesthesiology, Pharmacology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Dejian Ma
- Departments of Anesthesiology, Pharmacology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Pei Tang
- Departments of Anesthesiology, Pharmacology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Yan Xu
- Departments of Anesthesiology, Pharmacology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| |
Collapse
|
23
|
Jensen MR, Blackledge M. On the Origin of NMR Dipolar Waves in Transient Helical Elements of Partially Folded Proteins. J Am Chem Soc 2008; 130:11266-7. [DOI: 10.1021/ja8039184] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility by NMR, Institut de Biologie Structurale Jean-Pierre Ebel, CEA; CNRS; UJF UMR 5075, 41 Rue Jules Horowitz, Grenoble 38027, France
| | - Martin Blackledge
- Protein Dynamics and Flexibility by NMR, Institut de Biologie Structurale Jean-Pierre Ebel, CEA; CNRS; UJF UMR 5075, 41 Rue Jules Horowitz, Grenoble 38027, France
| |
Collapse
|
24
|
Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS. Structure and Dynamics of Human Apolipoprotein CIII. J Biol Chem 2008; 283:17416-27. [DOI: 10.1074/jbc.m800756200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Wang J, Walsh JD, Kuszewski J, Wang YX. Periodicity, planarity, and pixel (3P): a program using the intrinsic residual dipolar coupling periodicity-to-peptide plane correlation and phi/psi angles to derive protein backbone structures. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 189:90-103. [PMID: 17892961 DOI: 10.1016/j.jmr.2007.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 05/17/2023]
Abstract
We present a detailed description of a theory and a program called 3P. "3P" stands for periodicity, planarity, and pixel. The 3P program is based on the intrinsic periodic correlations between residual dipolar couplings (RDCs) and in-plane internuclear vectors, and between RDCs and the orientation of peptide planes relative to an alignment tensor. The program extracts accurate rhombic, axial components of the alignment tensor without explicit coordinates, and discrete peptide plane orientations, which are utilized in combination with readily available phi/psi angles to determine the three-dimensional backbone structures of proteins. The 3P program uses one alignment tensor. We demonstrate the utility and robustness of the program, using both experimental and synthetic data sets, which were added with different levels of noise or were incomplete. The program is interfaced to Xplor-NIH via a "3P" module and is available to the public. The limitations and differences between our program and existing methods are also discussed.
Collapse
Affiliation(s)
- Jinbu Wang
- Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
26
|
Traaseth NJ, Verardi R, Torgersen KD, Karim CB, Thomas DD, Veglia G. Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci U S A 2007; 104:14676-81. [PMID: 17804809 PMCID: PMC1976191 DOI: 10.1073/pnas.0701016104] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Indexed: 11/18/2022] Open
Abstract
Phospholamban (PLN) regulates calcium translocation within cardiac myocytes by shifting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) affinity for calcium. Although the monomeric form of PLN (6 kDa) is the principal inhibitory species, recent evidence suggests that the PLN pentamer (30 kDa) also is able to bind SERCA. To date, several membrane architectures of the pentamer have been proposed, with different topological orientations for the cytoplasmic domain: (i) extended from the bilayer normal by 50-60 degrees; (ii) continuous alpha-helix tilted 28 degrees relative to the bilayer normal; (iii) pinwheel geometry, with the cytoplasmic helix perpendicular to the bilayer normal and in contact with the surface of the bilayer; and (iv) bellflower structure, in which the cytoplasmic domain helix makes approximately 20 degrees angle with respect to the membrane bilayer normal. Using a variety of cell membrane mimicking systems (i.e., lipid vesicles, oriented lipid bilayers, and detergent micelles) and a combination of multidimensional solution/solid-state NMR and EPR spectroscopies, we tested the different structural models. We conclude that the pinwheel topology is the predominant conformation of pentameric PLN, with the cytoplasmic domain interacting with the membrane surface. We propose that the interaction with the bilayer precedes SERCA binding and may mediate the interactions with other proteins such as protein kinase A and protein phosphatase 1.
Collapse
Affiliation(s)
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Kurt D. Torgersen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Christine B. Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Gianluigi Veglia
- *Department of Chemistry, and
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
27
|
Chen K, Tjandra N. Top-down approach in protein RDC data analysis: de novo estimation of the alignment tensor. JOURNAL OF BIOMOLECULAR NMR 2007; 38:303-13. [PMID: 17593526 DOI: 10.1007/s10858-007-9168-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/18/2007] [Indexed: 05/16/2023]
Abstract
In solution NMR spectroscopy the residual dipolar coupling (RDC) is invaluable in improving both the precision and accuracy of NMR structures during their structural refinement. The RDC also provides a potential to determine protein structure de novo. These procedures are only effective when an accurate estimate of the alignment tensor has already been made. Here we present a top-down approach, starting from the secondary structure elements and finishing at the residue level, for RDC data analysis in order to obtain a better estimate of the alignment tensor. Using only the RDCs from N-H bonds of residues in alpha-helices and CA-CO bonds in beta-strands, we are able to determine the offset and the approximate amplitude of the RDC modulation-curve for each secondary structure element, which are subsequently used as targets for global minimization. The alignment order parameters and the orientation of the major principal axis of individual helix or strand, with respect to the alignment frame, can be determined in each of the eight quadrants of a sphere. The following minimization against RDC of all residues within the helix or strand segment can be carried out with fixed alignment order parameters to improve the accuracy of the orientation. For a helical protein Bax, the three components A(xx), A(yy) and A(zz), of the alignment order can be determined with this method in average to within 2.3% deviation from the values calculated with the available atomic coordinates. Similarly for beta-sheet protein Ubiquitin they agree in average to within 8.5%. The larger discrepancy in beta-strand parameters comes from both the diversity of the beta-sheet structure and the lower precision of CA-CO RDCs. This top-down approach is a robust method for alignment tensor estimation and also holds a promise for providing a protein topological fold using limited sets of RDCs.
Collapse
Affiliation(s)
- Kang Chen
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 3503, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Atreya HS, Garcia E, Shen Y, Szyperski T. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings. J Am Chem Soc 2007; 129:680-92. [PMID: 17227032 DOI: 10.1021/ja066586s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.
Collapse
Affiliation(s)
- Hanudatta S Atreya
- Northeast Structural Genomics Consortium and New York Consortium on Membrane Protein Structure, Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
29
|
Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 2007; 14:1731-40. [PMID: 17161364 DOI: 10.1016/j.str.2006.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 10/01/2006] [Accepted: 10/03/2006] [Indexed: 11/27/2022]
Abstract
Solid-state NMR is a versatile and powerful tool for determining the dynamic structure of membrane proteins at atomic resolution. I review the recent progress in determining the orientation, the internal and global protein dynamics, the oligomeric structure, and the ligand-bound structure of membrane proteins with both alpha-helical and beta sheet conformations. Examples are given that illustrate the insights into protein function that can be gained from the NMR structural information.
Collapse
|
30
|
Buffy JJ, Traaseth NJ, Mascioni A, Gor'kov PL, Chekmenev EY, Brey WW, Veglia G. Two-dimensional solid-state NMR reveals two topologies of sarcolipin in oriented lipid bilayers. Biochemistry 2006; 45:10939-46. [PMID: 16953579 DOI: 10.1021/bi060728d] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sarcolipin (SLN), a 31 amino acid integral membrane protein, regulates SERCA1a and SERCA2a, two isoforms of the sarco(endo)plasmic Ca-ATPase, by lowering their apparent Ca(2+) affinity and thereby enabling muscle relaxation. SLN is expressed in both fast-twitch and slow-twitch muscle fibers with significant expression levels also found in the cardiac muscle. SLN shares approximately 30% identity with the transmembrane domain of phospholamban (PLN), and recent solution NMR studies carried out in detergent micelles indicate that the two polypeptides bind to SERCA in a similar manner. Previous 1D solid-state NMR experiments on selectively (15)N-labeled sites showed that SLN crosses the lipid bilayer with an orientation nearly parallel to the bilayer normal. With a view toward the characterization of SLN structure and its interactions with both lipids and SERCA, herein we report our initial structural and topological assignments of SLN in mechanically oriented DOPC/DOPE lipid bilayers as mapped by 2D (15)N PISEMA experiments. The PISEMA spectra obtained on uniformly (15)N-labeled protein as well as (15)N-Leu, (15)N-Ile and (15)N-Val map the secondary structure of SLN and, simultaneously, reveal that SLN exists in two distinct topologies. Both the major and the minor populations assume an orientation with the helix axis tilted by approximately 23 degrees with respect to the lipid bilayer normal, but vary in the rotation angle about the helix axis by approximately 5 degrees . The existence of the multiple populations in model membranes may be a significant requirement for SLN interaction with SERCA.
Collapse
Affiliation(s)
- Jarrod J Buffy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Buck-Koehntop BA, Mascioni A, Buffy JJ, Veglia G. Structure, dynamics, and membrane topology of stannin: a mediator of neuronal cell apoptosis induced by trimethyltin chloride. J Mol Biol 2005; 354:652-65. [PMID: 16246365 DOI: 10.1016/j.jmb.2005.09.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
Organotin compounds or alkyltins are ubiquitous environmental toxins that have been implicated in cellular death. Unlike other xenobiotic compounds, such as organomercurials and organoleads, alkyltins activate apoptotic cascades at low concentrations. Trimethyltin (TMT) chloride is amongst the most toxic organotin compounds, and is known to selectively inflict injury to specific regions of the brain. Stannin (SNN), an 88-residue mitochondrial membrane protein, has been identified as the specific marker for neuronal cell apoptosis induced by TMT intoxication. This high specificity of TMT makes SNN an ideal model system for understanding the mechanism of organotin neurotoxicity at a molecular level. Here, we report the three-dimensional structure and dynamics of SNN in detergent micelles, and its topological orientation in lipid bilayers as determined by solution and solid-state NMR spectroscopy. We found that SNN is a monotopic membrane protein composed of three domains: a single transmembrane helix (residues 10-33) that transverses the lipid bilayer at approximately a 20 degrees angle with respect to the membrane normal; a 28 residue unstructured linker, which includes a conserved CXC metal-binding motif and a putative 14-3-3zeta binding domain; and a distorted cytoplasmic helix (residues 61-79) that is partially absorbed into the plane of the lipid bilayer with a tilt angle of approximately 80 degrees from the membrane normal. The structure and architecture of SNN within the lipid environment provides insight about how this protein transmits toxic insults caused by TMT across the membrane.
Collapse
Affiliation(s)
- Bethany A Buck-Koehntop
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA
| | | | | | | |
Collapse
|
32
|
Walsh JD, Wang YX. Periodicity, planarity, residual dipolar coupling, and structures. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 174:152-162. [PMID: 15809182 DOI: 10.1016/j.jmr.2005.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/30/2004] [Indexed: 05/24/2023]
Abstract
The periodic behavior of residual dipolar couplings (RDCs) arising from nucleic acid and protein secondary structures is shown to be more complex and information-rich than previously believed. We have developed a theoretical framework which allows the bond vector orientation of nucleic acids and the peptide plane orientations of protein secondary structures to be extracted from their Dipolar waves. In this article, we focus on utilizing "Dipolar waves" of peptides to extract structure information, and describe in more detail the fundamental principles of the relationship between the periodicities in structure and RDCs, the practical procedure to extract peptide plane orientation information from RDC data, and assessment of errors using Monte-Carlo simulations. We demonstrate the utility of our method for two model alpha-helices, one kinked and one curved, and as well as an irregular beta-strand.
Collapse
Affiliation(s)
- Joseph D Walsh
- Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | | |
Collapse
|
33
|
Mascioni A, Eggimann BL, Veglia G. Determination of helical membrane protein topology using residual dipolar couplings and exhaustive search algorithm: application to phospholamban. Chem Phys Lipids 2004; 132:133-44. [PMID: 15530454 DOI: 10.1016/j.chemphyslip.2004.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dipolar waves are distinct hallmarks of both the secondary and tertiary structures of alpha-helical proteins that are immobilized in membrane bilayers or embedded in anisotropic media. We present a simple, semi-empirical approach that exploits the modulation of the amplitude and average of dipolar waves to determine the topology of alpha-helical proteins. Moreover, we describe the application of this method for the structural determination of a detergent solubilized membrane protein, phospholamban (PLB) that is involved in calcium regulation of cardiac muscle. When combined with high-resolution solid-state NMR data, this method can serve as a fast route for determining the topology of helical membrane proteins solubilized in detergent micelles.
Collapse
Affiliation(s)
- Alessandro Mascioni
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E. Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
34
|
Walsh JD, Cabello-Villegas J, Wang YX. Periodicity in residual dipolar couplings and nucleic acid structures. J Am Chem Soc 2004; 126:1938-9. [PMID: 14971918 DOI: 10.1021/ja039446g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The periodicity in nucleic acid duplex structures is shown to be correlated to the periodicity in residual dipolar couplings (RDCs) in the form of an "RDC wave". This "RDC wave" is characteristic of the alignment of the duplex in the magnetic field, and hence fitting of the data allows the duplex global orientation (, Phi) to be extracted. Further, because the "RDC wave" is fit as a data set of a corresponding secondary structure element, the degeneracy problem is greatly reduced. Consequently, with the global orientation (, Phi) determined, local bond vector conformations are defined. The fit is demonstrated in the examples of the imino RDCs of the negative regulator of splicing RNA fragment (NRS23) and for the C1'H1' RDCs of the Dickerson dodecamer.
Collapse
Affiliation(s)
- Joseph D Walsh
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|