1
|
Weng T, Xu Z, Li K, Guo Y, Chen X, Li Z, Sun Z. 1,1'-Biolympicenyl: A Stable Non-Kekulé Diradical with a Small Singlet and Triplet Energy Gap. J Am Chem Soc 2024; 146:26454-26465. [PMID: 39254188 DOI: 10.1021/jacs.4c09627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Dimerization of delocalized polycyclic hydrocarbon radicals is a simple and versatile method to create diradicals with tailored electronic structures and accessible high-spin states. However, the synthesis is challenging, and the stability issue of the diradicals remains a concern. In this study, we present the synthesis of a stable non-Kekulé 1,1'-biolympicenyl diradical 1 using a protection-oxidation-protection strategy. Diradical 1 demonstrated exceptional stability, with a solution half-life time exceeding 3.5 years and a solid state thermal decomposition temperature above 300 °C. X-ray crystallographic analysis revealed its intersected molecular structure and tightly bound dimer configuration. A singlet ground state with a small singlet-triplet energy gap is consistently identified using electron paramagnetic resonance (EPR) and a superconducting quantum interference device (SQUID) in a rigid matrix, and the triplet state is thermally accessible at room temperature. The solution phase properties were systematically examined through EPR, absorption spectroscopy, and cyclic voltammetry, revealing a rotational motion in the slow-motion regime and multistage redox characteristics. This study presents an efficient synthetic and stabilization strategy for organic diradicals, enabling the development of various high-spin functional materials.
Collapse
Affiliation(s)
- Taoyu Weng
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
2
|
Xiang Q, Ye L, Ma L, Sun Z. The Olympicenyl Radical and Its Derivatives. Chempluschem 2024; 89:e202300571. [PMID: 37916655 DOI: 10.1002/cplu.202300571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
The olympicenyl radical (OR) has long been a fascinating spin doublet hydrocarbon radical that evoked theoretical and experimental research interests, but the chemistry of olympicenyl was limited by its inherent instability. Recently, this field was revived by the advent of stable, multi-substituted ORs and the isolation of them in the crystalline phase. In this minireview, we summarize the early studies on the pristine OR, as well as the recent advances on the substituted OR derivatives, heteroatom-containing OR derivatives, and OR-based diradicals and polyradicals. The synthetic chemistry, stabilization strategies, self-association behaviors, reactivities, and applications in the biological field of the abovementioned compounds were discussed.
Collapse
Affiliation(s)
- Qin Xiang
- Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, Tianjin, 300072, China
| | - Lei Ye
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lan Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhe Sun
- Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, Tianjin, 300072, China
| |
Collapse
|
3
|
Bernhardt A, Čavlović D, Mayländer M, Blacque O, Cruz CM, Richert S, Juríček M. π-Radical Cascade to a Chiral Saddle-Shaped Peropyrene. Angew Chem Int Ed Engl 2024; 63:e202318254. [PMID: 38278766 DOI: 10.1002/anie.202318254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/28/2024]
Abstract
Reactions of open-shell molecular graphene fragments are typically thought of as undesired decomposition processes because they lead to the loss of desired features like π-magnetism. Oxidative dimerization of phenalenyl to peropyrene shows, however, that these transformations hold promise as a synthetic tool for making complex structures via formation of multiple bonds and rings in a single step. Here, we explore the feasibility of using this "undesired" reaction of phenalenyl to build up strain and provide access to non-planar polycyclic aromatic hydrocarbons. To this end, we designed and synthesized a biradical system with two phenalenyl units linked via a biphenylene backbone. The design facilitates an intramolecular cascade reaction to a helically twisted saddle-shaped product, where the key transformations-ring-closure and ring-fusion-occur within one reaction. The negative curvature of the final peropyrene product, induced by the formed eight-membered ring, was confirmed by single-crystal X-ray diffraction analysis and the helical twist was validated via resolution of the product's enantiomers that display circularly polarized luminescence and high configurational stability.
Collapse
Affiliation(s)
- Annika Bernhardt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniel Čavlović
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Organic Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071, Granada, Spain
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
4
|
Deng CL, Hollister KK, Molino A, Tra BYE, Dickie DA, Wilson DJD, Gilliard RJ. Unveiling Three Interconvertible Redox States of Boraphenalene. J Am Chem Soc 2024; 146:6145-6156. [PMID: 38380615 DOI: 10.1021/jacs.3c13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Čavlović D, Häussinger D, Blacque O, Ravat P, Juríček M. Nonacethrene Unchained: A Cascade to Chiral Contorted Conjugated Hydrocarbon with Two sp 3-Defects. JACS AU 2022; 2:1616-1626. [PMID: 35911448 PMCID: PMC9326821 DOI: 10.1021/jacsau.2c00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate that structurally complex carbon nanostructures can be achieved via a synthetic approach that capitalizes on a π-radical reaction cascade. The cascade is triggered by oxidation of a dihydro precursor of helical diradicaloid nonacethrene to give a chiral contorted polycyclic aromatic hydrocarbon named hypercethrene. In this ten-electron oxidation process, four σ-bonds, one π-bond, and three six-membered rings are formed in a sequence of up to nine steps to yield a 72-carbon-atom warped framework, comprising two configurationally locked [7]helicene units, a fluorescent peropyrene unit, and two precisely installed sp3-defects. The key intermediate in this cascade is a closed nonacethrene derivative with one quaternary sp3-center, presumably formed via an electrocyclic ring closure of nonacethrene, which, when activated by oxidation, undergoes a reaction cascade analogous to the oxidative dimerization of phenalenyl to peropyrene. By controlling the amount of oxidant used, two intermediates and one side product could be isolated and fully characterized, including single-crystal X-ray diffraction analysis, and two intermediates were detected by electron paramagnetic resonance spectroscopy. In concert with density functional theory calculations, these intermediates support the proposed reaction mechanism. Compared to peropyrene, the absorption and emission of hypercethrene are slightly red-shifted on account of extended π-conjugation and the fluorescence quantum yield of 0.45 is decreased by a factor of ∼2. Enantiomerically enriched hypercethrene displays circularly polarized luminescence with a brightness value of 8.3 M-1 cm-1. Our results show that reactions of graphene-based π-radicals-typically considered an "undefined decomposition" of non-zero-spin materials-can be well-defined and selective, and have potential to be transformed into a step-economic synthetic method toward complex carbon nanostructures.
Collapse
Affiliation(s)
- Daniel Čavlović
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Olivier Blacque
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Prince Ravat
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- Institute
of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michal Juríček
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Werner S, Vollgraff T, Sundermeyer J. Tetrasubstituted Peropyrenes Formed by Reductive Aromatization: Synthesis, Functionalization and Characterization. Chemistry 2021; 27:11065-11075. [PMID: 34033166 PMCID: PMC8453513 DOI: 10.1002/chem.202101101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 11/30/2022]
Abstract
The chromophore class of 1,3,8,10-tetrasubstituted peropyrenes was effectively synthesized from peropyrenequinone via a Zn-mediated reductive aromatization approach. In one step, a symmetric functionalization of the peropyrene backbone introducing silylethers (2,3), pivaloyl (4), triflyl (5) and also phosphinite (6) groups was established. Furthermore, the potential of using 4 and 5 in transition metal catalysed cross couplings was explored leading to 1,3,8,10-tetraaryl (8-11) and tetraalkynyl (7) peropyrenes. The influence of various substituents on the optoelectronic properties of these π-system extended peropyrenes was investigated in solid state by means of X-ray crystallography, in solution by means of UV-Vis and fluorescence spectroscopy and by their redox properties studied via cyclic voltammetry. By comparison with DFT and TD-DFT calculations, it could be elucidated that introduction of a broad variety of substituents in such versatile one or two step procedures leads to peropyrenes with easily tunable HOMO and LUMO energies ranging in a gap window of 0.8 eV. The frontier molecular orbital energies identify the target molecules as promising candidates for hole transporting semiconductors.
Collapse
Affiliation(s)
- Simon Werner
- Fachbereich Chemie and Material Science CenterPhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Tobias Vollgraff
- Fachbereich Chemie and Material Science CenterPhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Material Science CenterPhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| |
Collapse
|
7
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene-Phenalenyl Radical and Its Dimeric Double Nanohoop*. Angew Chem Int Ed Engl 2021; 60:13529-13535. [PMID: 33635576 PMCID: PMC8252656 DOI: 10.1002/anie.202101792] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/17/2022]
Abstract
The first example of a neutral spin-delocalized carbon-nanoring radical was achieved by integration of the open-shell phenalenyl unit into cycloparaphenylene (CPP). Spin distribution in this hydrocarbon is localized primarily on the phenalenyl segment and partially on the CPP segment as a consequence of steric and electronic effects. The resulting geometry is reminiscent of a diamond ring, with pseudo-perpendicular arrangement of the radial and the planar π-surface. The phenylene rings attached directly to the phenalenyl unit give rise to a steric effect that governs a highly selective dimerization pathway, yielding a giant double nanohoop. Its π-framework made of 158 sp2 -carbon atoms was elucidated by single-crystal X-ray diffraction, which revealed a three-segment CPP-peropyrene-CPP structure. This nanocarbon shows a fluorescence profile characteristic of peropyrene, regardless of which segment gets excited. These results in conjunction with DFT suggest that adjusting the size of the CPP segments in this double nanohoop could deliver donor-acceptor systems.
Collapse
Affiliation(s)
- Yong Yang
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Olivier Blacque
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Sota Sato
- Department of Applied ChemistryThe University of TokyoHongo, Bunkyo-kuTokyo113-8656Japan
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
8
|
Xiang Q, Xu J, Guo J, Dang Y, Xu Z, Zeng Z, Sun Z. Unveiling the Hidden σ-Dimerization of a Kinetically Protected Olympicenyl Radical. Chemistry 2021; 27:8203-8213. [PMID: 33783053 DOI: 10.1002/chem.202100631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/05/2022]
Abstract
The σ-dimer of a kinetically protected olympicenyl radical, which evaded the experimental detection, was revealed by conversion into biolympicenylidene with E-configuration in a regioselective manner. The complicated stereochemistry and energetics of the σ-dimers derived from C2v symmetry and uneven spin distribution of the olympicenyl radical were revealed by the theoretical calculations, and the energetic preference of π-dimer over σ-dimer by a minute gap was disclosed. The E-biolympicenylidene, a polycyclic ene structure previously considered as reactive intermediate in the phenalenyl radical system, exhibited exceptional stability, which allowed for a detailed investigation on its singlet diradical character and physical properties by means of X-ray crystallography, UV-vis-NIR absorption/emission spectroscopy and cyclic voltammetry, and assisted by theoretical calculations. The E-biolympicenylidene showed high resistance towards both thermal and photochemical ring-cyclization reactions, which was attributed to high activation energies for the rate-determining electrocyclization operated on both disrotatory and conrotatory mode, as well as a small spin density at the bonding sites for the radical-radical coupling process.
Collapse
Affiliation(s)
- Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Zhanqiang Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong Yang
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Olivier Blacque
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Sota Sato
- Department of Applied Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Michal Juríček
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
10
|
Abstract
The mechanism studies of transition-metal-catalyzed reductive coupling reactions
investigated using Density Functional Theory calculations in the recent ten years have been
reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and
some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the
methodology used in these computational mechanism studies. The mechanisms of the transition-
metal-catalyzed reductive coupling reactions normally include three main steps: oxidative
addition; transmetalation; and reductive elimination or four main steps: the first oxidative
addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting
step is most likely the final reductive elimination step in the whole mechanism.
Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry
optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values.
We hope that this review will stimulate more and more experimental and computational combinations and the
computational chemistry will significantly contribute to the development of future organic synthesis reactions.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Qinghua Ren
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
11
|
Equilibrium and thermodynamic studies of chromic overcrowded fluorenylidene-acridanes with modified fluorene moieties. Commun Chem 2020; 3:93. [PMID: 36703367 PMCID: PMC9814365 DOI: 10.1038/s42004-020-00345-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 01/29/2023] Open
Abstract
Chromic materials, an important class of stimuli-responsive materials, have aroused extensive attention in recent years. Normally, their color is based on changes in morphology. Few examples of chromic material based on conformational isomerization, such as in overcrowded alkenes, have been reported previously. Furthemore, experimental thermodynamic studies of overcrowded bistricyclic aromatic enes have not been carried out to our knowledge. Here, we show that N-phenyl-substituted fluorenylidene-acridanes, with a properly modified fluorene moiety, performs chromisms originating from conformational changes. Thermodynamic studies determine equilibrium constants, changes in enthalpy, entropy, and free energy in solution, enabling in-depth understanding of the equilibrium behavior of overcrowded alkenes and providing useful information for designing functional chromic compounds. Single-crystal X-ray diffraction analysis of fluorenylidene-acridanes in this work clearly shows well-tuned charge transfer from the acridane to the fluorene moiety. Various chromic behaviors such as mechanochromism, thermochromism, solvatochromism, vapochromism, and proton-induced chromism also support understanding of conformational isomerism.
Collapse
|
12
|
Murata T, Asakura N, Ukai S, Ueda A, Kanzaki Y, Sato K, Takui T, Morita Y. Intramolecular Magnetic Interaction of Spin-Delocalized Neutral Radicals through m-Phenylene Spacers. Chempluschem 2020; 84:680-685. [PMID: 31944024 DOI: 10.1002/cplu.201800662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/06/2019] [Indexed: 11/10/2022]
Abstract
A new diradical having two 4,8,10-trioxotriangulene (TOT) neutral radical units linked through an m-phenylene moiety was synthesized and characterized by ESR measurements. An electrochemical study showed that the diradical undergoes two one-electron reductions to generate corresponding dianion species, suggesting the electronic interaction between two TOT units through the π-conjugated spacer. A strong intramolecular interaction between the two TOT units gives rise to the spin-projected small hyperfine couplings in comparison with those of the monomer. Furthermore, the temperature dependent ESR measurement revealed that the dimer behaves as an S=1 species in the ground state with a ferromagnetic interaction of 2 J/kB =+7±3 K.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Noriaki Asakura
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Shusaku Ukai
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| | - Akira Ueda
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Yuki Kanzaki
- Department of Chemistry and Molecular Materials Science Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, Japan
| | - Yasushi Morita
- Department of Applied Chemistry Faculty of Engineering, Aichi Institute of Technology, Yachigusa, 1247, Yakusa, Toyota, Aichi, Japan
| |
Collapse
|
13
|
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
14
|
Kato K, Osuka A. Platforms for Stable Carbon‐Centered Radicals. Angew Chem Int Ed Engl 2019; 58:8978-8986. [DOI: 10.1002/anie.201900307] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
15
|
Ravat P, Šolomek T, Häussinger D, Blacque O, Juríček M. Dimethylcethrene: A Chiroptical Diradicaloid Photoswitch. J Am Chem Soc 2018; 140:10839-10847. [PMID: 30067898 PMCID: PMC6120736 DOI: 10.1021/jacs.8b05465] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/28/2022]
Abstract
We describe the synthesis and properties of 13,14-dimethylcethrene, a prototype of a chiral diradicaloid photochemical switch that can be transformed reversibly via conrotatory electrocyclization to its more stable closed form by light (630 nm) or heat and back to its open form by light (365 nm). This system illustrates how the chemical reactivity of a diradicaloid molecule can be translated into a switching function, which alters substantially all electronic parameters, namely, the HOMO-LUMO and the singlet-triplet (ST) energy gaps, and the degree of helical twist. As a result, distinct changes in the optical and chiroptical properties of this system were observed, which allowed us to monitor the switching process by a variety of spectroscopic techniques, including NMR, UV-vis, and CD. In comparison to the previously reported parent molecule cethrene, this system benefits from two methyl substituents installed in the fjord region, which account for the stability of the closed form against oxidation and racemization. The methyl substituents increase the ST energy gap of 13,14-dimethylcethrene by ∼4 kcal mol-1 in comparison to cethrene. Our DFT calculations reveal that the larger ST gap is a result of electronic and geometric effects of the methyl substituents and show the potential of related systems to act as magnetic switches at room temperature.
Collapse
Affiliation(s)
- Prince Ravat
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tomáš Šolomek
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of
Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Michal Juríček
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Department of Chemistry, University of
Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Šolomek T, Ravat P, Mou Z, Kertesz M, Juríček M. Cethrene: The Chameleon of Woodward–Hoffmann Rules. J Org Chem 2018; 83:4769-4774. [DOI: 10.1021/acs.joc.8b00656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomáš Šolomek
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Prince Ravat
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Zhongyu Mou
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 37th and O Streets, Washington, DC 20057-1227, United States
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 37th and O Streets, Washington, DC 20057-1227, United States
| | - Michal Juríček
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
17
|
Uchida K, Kubo T, Yamanaka D, Furube A, Matsuzaki H, Nishii R, Sakagami Y, Abulikemu A, Kamada K. Synthesis, crystal structure, and photophysical properties of 2,9-disubstituted peropyrene derivatives. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peropyrene is a promising candidate molecule for use in organic solar cells based on singlet fission, because it fulfills the energy matching requirement for singlet fission. We prepare three 2,9-disubstitued peropyrene derivatives and investigate their crystal structures, photophysical properties, and singlet fission phenomenon. Although each derivative shows different molecular overlap motifs in solid state, no singlet fission occurs under normal exciton density conditions due to the substantial stabilization of the first excited singlet (S1) state. In contrast, under high exciton density conditions, singlet fission from highly excited singlet (Sn) states, which is generated by singlet–singlet exciton annihilation, takes place to produce a triplet exciton. We also investigate the reverse process of singlet fission, that is, triplet–triplet annihilation, of peropyrene in solution state to explore the possibility of photon upconversion.
Collapse
Affiliation(s)
- Kazuyuki Uchida
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Daiki Yamanaka
- Department of Optical Science, Tokushima University, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan
| | - Akihiro Furube
- Department of Optical Science, Tokushima University, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan
| | - Hiroyuki Matsuzaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Ritsuki Nishii
- IFMRI, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Sakagami
- IFMRI, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Aizitiaili Abulikemu
- IFMRI, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Kenji Kamada
- IFMRI, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
18
|
Uchida K, Ito S, Nakano M, Abe M, Kubo T. Biphenalenylidene: Isolation and Characterization of the Reactive Intermediate on the Decomposition Pathway of Phenalenyl Radical. J Am Chem Soc 2016; 138:2399-410. [DOI: 10.1021/jacs.5b13033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kazuyuki Uchida
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Soichi Ito
- Department
of Materials Engineering and Science, Graduate School of Engineering
Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department
of Materials Engineering and Science, Graduate School of Engineering
Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Manabu Abe
- Department
of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Kubo
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
19
|
Affiliation(s)
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
20
|
Ravat P, Šolomek T, Rickhaus M, Häussinger D, Neuburger M, Baumgarten M, Juríček M. Cethren: ein helikal-chirales Biradikaloid-Isomer von Heptazethren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prince Ravat
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| | - Tomáš Šolomek
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| | - Michel Rickhaus
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| | - Daniel Häussinger
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| | - Markus Neuburger
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| | - Martin Baumgarten
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Michal Juríček
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
21
|
Cethrene: A Helically Chiral Biradicaloid Isomer of Heptazethrene. Angew Chem Int Ed Engl 2015; 55:1183-6. [DOI: 10.1002/anie.201507961] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/07/2022]
|
22
|
Biedermann PU, Agranat I. Stereochemistry of bistricyclic aromatic enes and related polycyclic systems. Top Curr Chem (Cham) 2015; 350:177-277. [PMID: 25005068 DOI: 10.1007/128_2014_534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bistricyclic aromatic enes (BAEs) and related polycyclic systems are a class of molecular materials that display a rich variety of conformations, dynamic stereochemistry and switchable chirality, color, and spectroscopic properties. This is due to the a subtle interplay of the inherent preference for planarity of aromatic systems and the competing necessity of non-planarity due to intramolecular overcrowding in the fjord regions built into the general molecular structure of BAEs. The conformational, dynamic, and spectroscopic properties may be designed and fine-tuned, e.g., by variation of the bridging groups X and Y, the overcrowding in the fjord regions, extensions of the aromatic system, or other modifications of the general BAE structure, based on the fundamental understanding of the structure-property relationships (SPR). The present review provides an analysis of the conformational spaces and the dynamic stereochemistry of overcrowded bistricyclic aromatic enes applying fundamental symmetry considerations. The symmetry analysis presented here allows deeper insight into the conformations, chirality, and the mechanisms of the dynamic stereochemistry, and will be instrumental in future computational studies.
Collapse
Affiliation(s)
- P Ulrich Biedermann
- Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Philadelphia Bldg. #201-205, Edmond J. Safra Campus, Jerusalem, 91904, Israel,
| | | |
Collapse
|
23
|
Węcławski MK, Tasior M, Hammann T, Cywiński PJ, Gryko DT. From π-expanded coumarins to π-expanded pentacenes. Chem Commun (Camb) 2014; 50:9105-8. [DOI: 10.1039/c4cc03078h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dihydroxyanthraquinone can be transformed into head-to-tail bis-coumarins which undergo photo-dehydrogenative coupling leading to coronene derivatives.
Collapse
Affiliation(s)
| | | | - Tommy Hammann
- NanoPolyPhotonics
- Fraunhofer Institute for Applied Polymer Research
- 14476 Potsdam-Golm, Germany
| | - Piotr J. Cywiński
- NanoPolyPhotonics
- Fraunhofer Institute for Applied Polymer Research
- 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
24
|
Leroyer L, Maraval V, Chauvin R. Synthesis of the Butatriene C4 Function: Methodology and Applications. Chem Rev 2011; 112:1310-43. [DOI: 10.1021/cr200239h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Léo Leroyer
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205, route de Narbonne, F-31077 Toulouse, France
- UPS, INPT, LCC, Université de Toulouse, F-31077 Toulouse, France
| | - Valérie Maraval
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205, route de Narbonne, F-31077 Toulouse, France
- UPS, INPT, LCC, Université de Toulouse, F-31077 Toulouse, France
| | - Remi Chauvin
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205, route de Narbonne, F-31077 Toulouse, France
- UPS, INPT, LCC, Université de Toulouse, F-31077 Toulouse, France
| |
Collapse
|
25
|
Ozturk T, Ertas E, Mert O. A Berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses. Chem Rev 2010; 110:3419-78. [PMID: 20429553 DOI: 10.1021/cr900243d] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Turan Ozturk
- Istanbul Technical University, Science Faculty, Chemistry Department, Organic Chemistry, 34469 Maslak, Istanbul, Turkey.
| | | | | |
Collapse
|
26
|
Sawada T, Ishii H, Ueda T, Aoki J. A New Method of Synthesizing Phenalen-1-one: Reduction of 3-Hydroxyphenalen-1-one Using NaBH 4 and Lanthanoid Chlorides. SYNTHETIC COMMUN 2009. [DOI: 10.1080/00397910902883546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tadanobu Sawada
- a Department of Chemistry, Faculty of Science and Engineering , Meisei University , Hodokubo, Hino, Tokyo, Japan
| | - Hiroyuki Ishii
- a Department of Chemistry, Faculty of Science and Engineering , Meisei University , Hodokubo, Hino, Tokyo, Japan
| | - Toyotoshi Ueda
- a Department of Chemistry, Faculty of Science and Engineering , Meisei University , Hodokubo, Hino, Tokyo, Japan
| | - Junji Aoki
- b Department of Chemistry, Faculty of Science , Toho University , Miyama, Funabashi, Chiba, Japan
| |
Collapse
|
27
|
Pogodin S, Agranat I. Theoretical notions of aromaticity and antiaromaticity: phenalenyl ions versus fluorenyl ions. J Org Chem 2007; 72:10096-107. [PMID: 18020367 DOI: 10.1021/jo701939c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dications 6, 7, and 8 and dianions 9, 10, and 11 of the bistricyclic aromatic enes bifluorenylidene (1), 1,1'-biphenalenylidene (2), and 9-(9H-fluoren-9-ylidene)-1H-phenalene (4), as well as monocations 12a and 13a and monoanions 14a and 15a of phenalene (3) and fluorene (5), were subjected to a systematic DFT and ab initio study. B3LYP and MP2 methods were employed to estimate the relative aromaticity/antiaromaticity of these ions, using energetic, magnetic, and structural criteria. The couplings of monoions 12a-15a to give the respective diions 6-11 result in a similar destabilization in both the fluorene and phenalene series. The interactions between the C13H8 units in diions 6-11 are weak and are not expected to result in a significant loss of aromaticity/gain of antiaromaticity, as compared with the respective monoions. The antiaromaticity of bifluorenylidene dication (6), relative to that of two fluorenyl cations (12a), is only slightly enhanced as compared with the aromaticity of biphenalenylidene dication ((E)-7)) relative to that of two phenalenyl cations (13a). In particular, the homodesmotic reaction 6 + 2.13a = (E)-7 + 2.12a is only slightly exothermic, DeltaE(Tot) = -6.0 kJ/mol. The energetic effect of the analogous reaction involving anions 9 + 2.15a = (E)-10 + 2.14a is even smaller, DeltaE(Tot) = -3.4 kJ/mol. Bifluorenylidene dianion (9) and 1,1'-biphenalenylidene dianion ((E)-10) are aromatic, but the employed criteria disagree about their relative aromaticity. The electronic and structural properties of heteromerous dication 8 and dianion 11 lie between those of the homomerous diions. Thus, dications 6-8 and dianions 9-11 form a continuum of aromaticity/antiaromaticity.
Collapse
Affiliation(s)
- Sergey Pogodin
- Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
28
|
Small D, Rosokha SV, Kochi JK, Head-Gordon M. Characterizing the Dimerizations of Phenalenyl Radicals by ab Initio Calculations and Spectroscopy: σ-Bond Formation versus Resonance π-Stabilization. J Phys Chem A 2005; 109:11261-7. [PMID: 16331910 DOI: 10.1021/jp054244n] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronic-structure calculations for the self-association of phenalenyl radical (P*) predict the formation of dimeric species (sigma-P2) in which both moieties are connected by a sigma-bond with rP-P approximately 1.59 A and bond dissociation enthalpy of DeltaH(D) approximately 16 kcal mol(-1). Such an unusually weak sigma-bond is related to the loss of aromatic stabilization energy of approximately 34 kcal mol(-1) per phenalenyl moiety, largely owing to rehybridization. Ab initio calculations also reveal that the corresponding (one-electron) bond between phenalenyl radical and its closed-shell cation in sigma-P2+* is unstable relative to dissociation. Time-dependent DFT computations indicate the absence of any (strongly allowed) electronic transition in the visible region of the absorption spectrum of phenalenyl sigma-dimer. Such theoretical predictions are supported by experimental (ESR and UV-NIR) spectroscopic studies, in which the availability of a series of sterically hindered phenalenyl radicals allows definitive separations of the sigma-dimerization process from interference by pi-dimerization. As such, the thermodynamic parameters (determined from the temperature dependence of the ESR signals) with DeltaH(D) = 14 kcal mol(-1) and DeltaS(D) = 52 e.u. can be assigned to the formation of the colorless sigma-dimer. Similar results are obtained for all phenalenyl derivatives (provided their substitution patterns allow sigma-bond formation) to confirm the energetic preference of sigma-dimerization over pi-dimerization.
Collapse
Affiliation(s)
- David Small
- Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
29
|
Small D, Zaitsev V, Jung Y, Rosokha SV, Head-Gordon M, Kochi JK. Intermolecular pi-to-pi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. J Am Chem Soc 2004; 126:13850-8. [PMID: 15493946 DOI: 10.1021/ja046770i] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high symmetry and stability of phenalenyl systems, both as the planar pi-radical (P*) and as the pi-cation (P+), are desirable characteristics of prototypical aromatic donor/acceptor pairs that encourage their use as (binary) models for the study of intermolecular interactions extant in stacked molecular arrays. Thus, quantitative ESR spectroscopy of the paramagnetic P* identifies its spontaneous self-association to the diamagnetic P2, previously characterized as the stacked pi-dimer by X-ray crystallography. Likewise, the rapid cross-association of P* with the closed-shell P+ leads to the stacked pi-dimer cation P2*+ with the "doubled" ESR spectrum diagnostic of complete (odd) electron delocalization. These pi-associations are confirmed by UV-vis studies that reveal diagnostic near-IR bands of both P2 and P2*+-strongly reminiscent of intermolecular charge-transfer absorptions in related aromatic (donor/acceptor) pi-associations. Ab initio molecular-orbital calculations for the pi-dimer P2 predict a binding energy of DeltaED = -11 kcal mol(-1), which is in accord with the experimental enthalpy change of DeltaHD = -9.5 kcal mol(-1) in dichloromethane solution. Most importantly, the calculations reproduce the intermonomer spacings and reveal the delicate interplay of attractive covalent and dispersion forces, balanced against the repulsions between filled orbitals. For comparison, the binding energy in the structurally related cationic pi-pimer P2*+ is calculated to be significantly larger with DeltaEP approximately -20 kcal mol(-1) (gas phase), owing to favorable electrostatic interactions not present in the neutral pi-dimer (which outweigh the partial loss of covalent interactions). As a result, our theoretical formulation can correctly account for the experimental enthalpy change in solution of DeltaHP = -6.5 kcal mol(-1) by the inclusion of differential ionic solvation in the formation of the pi-pimer.
Collapse
Affiliation(s)
- David Small
- Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|