1
|
TLR8 activation and inhibition by guanosine analogs in RNA: Importance of functional groups and chain length. Bioorg Med Chem 2017; 26:77-83. [PMID: 29174509 DOI: 10.1016/j.bmc.2017.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/02/2017] [Accepted: 11/11/2017] [Indexed: 11/23/2022]
Abstract
Toll-like receptor 8 (TLR8) is an important component of the human innate immune system that recognizes single stranded RNA (ssRNA). Recent X-ray crystal structures of TLR8 bound to ssRNA revealed a previously unrecognized binding site for a 5'-UpG-3' dinucleotide. Here we use an atomic mutagenesis strategy coupled with a cellular TLR8 activation assay to probe the importance of specific functional groups present on the guanine base in RNA-mediated receptor agonism and antagonism. Results from RNA analogs containing 7-deazaguanosine, 2-aminopurine and inosine confirm the importance of guanine N7, O6 and N2, respectively, in TLR8 activation. Nevertheless, these RNAs each retained TLR8 antagonism activity. RNA containing 7-deaza-8-azainosine (7d8aI) was prepared from a novel phosphoramidite and found to be a weaker TLR8 activator than guanosine-containing RNA. However, 7d8aI-containing RNA also retained TLR8 antagonism activity indicating that removal of multiple TLR8 H-bonding sites on guanine is insufficient for blocking TLR8 antagonism by guanine-containing RNA. We also identified an oligoribonucleotide length dependence on both TLR8 activation and antagonism. These studies extend our understanding of the effects of nucleobase modification on immune stimulation and will inform the design of novel RNA-based therapeutics.
Collapse
|
2
|
Koo SC, Lu J, Li NS, Leung E, Das SR, Harris ME, Piccirilli JA. Transition State Features in the Hepatitis Delta Virus Ribozyme Reaction Revealed by Atomic Perturbations. J Am Chem Soc 2015; 137:8973-82. [PMID: 26125657 PMCID: PMC4758122 DOI: 10.1021/jacs.5b01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endonucleolytic ribozymes constitute a class of non-coding RNAs that catalyze single-strand RNA scission. With crystal structures available for all of the known ribozymes, a major challenge involves relating functional data to the physically observed RNA architecture. In the case of the hepatitis delta virus (HDV) ribozyme, there are three high-resolution crystal structures, the product state of the reaction and two precursor variants, with distinct mechanistic implications. Here, we develop new strategies to probe the structure and catalytic mechanism of a ribozyme. First, we use double-mutant cycles to distinguish differences in functional group proximity implicated by the crystal structures. Second, we use a corrected form of the Brønsted equation to assess the functional significance of general acid catalysis in the system. Our results delineate the functional relevance of atomic interactions inferred from structure, and suggest that the HDV ribozyme transition state resembles the cleavage product in the degree of proton transfer to the leaving group.
Collapse
Affiliation(s)
- Selene C. Koo
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Jun Lu
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Nan-Sheng Li
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Edward Leung
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| | - Subha R. Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Michael E. Harris
- Department of Biochemistry and Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Joseph A. Piccirilli
- Departments of Biochemistry & Molecular Biology, and Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
3
|
Schlatterer JC, Martin JS, Laederach A, Brenowitz M. Mapping the kinetic barriers of a Large RNA molecule's folding landscape. PLoS One 2014; 9:e85041. [PMID: 24586236 PMCID: PMC3934814 DOI: 10.1371/journal.pone.0085041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/23/2013] [Indexed: 11/19/2022] Open
Abstract
The folding of linear polymers into discrete three-dimensional structures is often required for biological function. The formation of long-lived intermediates is a hallmark of the folding of large RNA molecules due to the ruggedness of their energy landscapes. The precise thermodynamic nature of the barriers (whether enthalpic or entropic) that leads to intermediate formation is still poorly characterized in large structured RNA molecules. A classic approach to analyzing kinetic barriers are temperature dependent studies analyzed with Eyring's transition state theory. We applied Eyring's theory to time-resolved hydroxyl radical (•OH) footprinting kinetics progress curves collected at eight temperature from 21.5 °C to 51 °C to characterize the thermodynamic nature of folding intermediate formation for the Mg(2+)-mediated folding of the Tetrahymena thermophila group I ribozyme. A common kinetic model configuration describes this RNA folding reaction over the entire temperature range studied consisting of primary (fast) transitions to misfolded intermediates followed by much slower secondary transitions, consistent with previous studies. Eyring analysis reveals that the primary transitions are moderate in magnitude and primarily enthalpic in nature. In contrast, the secondary transitions are daunting in magnitude and entropic in nature. The entropic character of the secondary transitions is consistent with structural rearrangement of the intermediate species to the final folded form. This segregation of kinetic control reveals distinctly different molecular mechanisms during the two stages of RNA folding and documents the importance of entropic barriers to defining rugged RNA folding landscapes.
Collapse
Affiliation(s)
- Jörg C. Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Joshua S. Martin
- National Evolutionary Synthesis Center, Durham, North Carolina, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
4
|
Dai Q, Sengupta R, Deb SK, Piccirilli JA. Synthesis of 2′- N-Methylamino-2′-deoxyguanosine and 2′- N, N-Dimethylamino-2′-deoxyguanosine and Their Incorporation into RNA by Phosphoramidite Chemistry. J Org Chem 2011; 76:8718-25. [DOI: 10.1021/jo201364x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing Dai
- Department of Biochemistry & Molecular Biology and ‡Department of Chemistry, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, United States
| | - Raghuvir Sengupta
- Department of Biochemistry & Molecular Biology and ‡Department of Chemistry, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, United States
| | - Shirshendu K. Deb
- Department of Biochemistry & Molecular Biology and ‡Department of Chemistry, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, United States
| | - Joseph A. Piccirilli
- Department of Biochemistry & Molecular Biology and ‡Department of Chemistry, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Lönnberg T. Understanding Catalysis of Phosphate‐Transfer Reactions by the Large Ribozymes. Chemistry 2011; 17:7140-53. [DOI: 10.1002/chem.201100009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20140 Turku (Finland), Fax: (+358) 2‐333‐6700
| |
Collapse
|
6
|
Lönnberg T, Laine M. Phosphorane intermediate vs. leaving group stabilization by intramolecular hydrogen bonding in the cleavage of trinucleoside monophosphates: implications for understanding catalysis by the large ribozymes. Org Biomol Chem 2009; 8:349-56. [PMID: 20066269 DOI: 10.1039/b912042d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrolysis of 2',3'-O-methyleneadenosin-5'-yl 5'-O-methyluridin-2'-yl 5'-O-methyl-2'-trifluoroacetamido-2'-deoxyuridin-3'-yl phosphate (1b) has been followed by HPLC over a wide pH range to study the effects of potential hydrogen bonding interactions of the 2'-trifluoroacetamido function on the rate and product distribution of the reaction. At pH < 2, decomposition of 1b (and its 3',3',5'-isomer 1a) is first-order in hydronium-ion concentration and cleavage of the P-O3' bond of the 2'-trifluoroacetamido-modified nucleoside is slightly favored over cleavage of the P-O5' bond. Between pH 2 and 4, the overall hydrolysis is pH-independent and the P-O3' and P-O5' bonds are cleaved at comparable rates. At pH 5, the reaction becomes first-order in hydroxide-ion concentration, with P-O3' bond cleavage predominating. At 10 mmol L(-1) aqueous sodium hydroxide, no P-O5' bond cleavage is observed. Compared to the 2'-OH counterpart , a modest rate enhancement is observed over the entire pH range studied. The absence of P-O5' fission under alkaline conditions suggests hydrogen bond stabilization of the departing 3'-oxyanion by the neighboring 2'-trifluoroacetamido function.
Collapse
Affiliation(s)
- Tuomas Lönnberg
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland.
| | | |
Collapse
|
7
|
Abstract
The 2'-hydroxyl group plays an integral role in RNA structure and catalysis. This ubiquitous component of the RNA backbone can participate in multiple interactions essential for RNA function, such as hydrogen bonding and metal ion coordination, but the multifunctional nature of the 2'-hydroxyl renders identification of these interactions a significant challenge. By virtue of their versatile physicochemical properties, such as distinct metal coordination preferences, hydrogen bonding properties, and ability to be protonated, 2'-amino-2'-deoxyribonucleotides can serve as tools for probing local interactions involving 2'-hydroxyl groups within RNA. The 2'-amino group can also serve as a chemoselective site for covalent modification, permitting the introduction of probes for investigation of RNA structure and dynamics. In this chapter, we describe the use of 2'-aminonucleotides for investigation of local interactions within RNA, focusing on interactions involving 2'-hydroxyl groups required for RNA structure, function, and catalysis.
Collapse
|
8
|
Gerdt JP, Miduturu CV, Silverman SK. Selective stabilization of natively folded RNA structure by DNA constraints. J Am Chem Soc 2008; 130:14920-1. [PMID: 18855395 DOI: 10.1021/ja8057277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Learning how native RNA conformations can be stabilized relative to unfolded states is an important objective, for both understanding natural RNAs and improving the design of artificial functional RNAs. Here we show that covalently attached double-stranded DNA constraints (ca. 14 base pairs in length) can significantly stabilize the native conformation of an RNA molecule. Using the P4-P6 domain of the Tetrahymena group I intron as the test system, we identified pairs of RNA sites where attaching a DNA duplex is predicted to be structurally compatible with only the folded state of the RNA. The DNA-constrained RNAs were synthesized and shown by nondenaturing polyacrylamide gel electrophoresis (native PAGE) to have substantial decreases in their Mg2+ midpoints ([Mg2+]1/2 values). These changes are equivalent to free energy stabilizations as large as DeltaDeltaGdegrees = -2.5 kcal/mol, which is approximately 14% of the total tertiary folding energy. For comparison, the sole modification of P4-P6 previously reported to stabilize this RNA is a single-nucleotide deletion (DeltaC209) that provides only 1.1 kcal/mol of stabilization. Our findings indicate that nature has not completely optimized P4-P6 RNA folding. Furthermore, the DNA constraints are designed not to interact directly and extensively with the RNA, but rather more indirectly to modulate the relative stabilities of folded and unfolded RNA states. The successful implementation of this strategy to further stabilize a natively folded RNA conformation suggests an important element of modularity in stabilization of RNA structure, with implications for how nature might use other molecules such as proteins to stabilize specific RNA conformations.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
9
|
Hougland JL, Sengupta RN, Dai Q, Deb SK, Piccirilli JA. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction. Biochemistry 2008; 47:7684-94. [PMID: 18572927 DOI: 10.1021/bi8000648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the first step of self-splicing, group I introns utilize an exogenous guanosine nucleophile to attack the 5'-splice site. Removal of the 2'-hydroxyl of this guanosine results in a 10 (6)-fold loss in activity, indicating that this functional group plays a critical role in catalysis. Biochemical and structural data have shown that this hydroxyl group provides a ligand for one of the catalytic metal ions at the active site. However, whether this hydroxyl group also engages in hydrogen-bonding interactions remains unclear, as attempts to elaborate its function further usually disrupt the interactions with the catalytic metal ion. To address the possibility that this 2'-hydroxyl contributes to catalysis by donating a hydrogen bond, we have used an atomic mutation cycle to probe the functional importance of the guanosine 2'-hydroxyl hydrogen atom. This analysis indicates that, beyond its role as a ligand for a catalytic metal ion, the guanosine 2'-hydroxyl group donates a hydrogen bond in both the ground state and the transition state, thereby contributing to cofactor recognition and catalysis by the intron. Our findings continue an emerging theme in group I intron catalysis: the oxygen atoms at the reaction center form multidentate interactions that function as a cooperative network. The ability to delineate such networks represents a key step in dissecting the complex relationship between RNA structure and catalysis.
Collapse
Affiliation(s)
- James L Hougland
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
10
|
Lu J, Li NS, Sengupta RN, Piccirilli JA. Synthesis and biochemical application of 2'-O-methyl-3'-thioguanosine as a probe to explore group I intron catalysis. Bioorg Med Chem 2008; 16:5754-60. [PMID: 18397828 PMCID: PMC2664738 DOI: 10.1016/j.bmc.2008.03.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
Abstract
Oligonucleotides containing 3'-S-phosphorothiolate linkages provide valuable analogues for exploring the catalytic mechanisms of enzymes and ribozymes, both to identify catalytic metal ions and to probe hydrogen-bonding interactions. Here, we have synthesized 2'-O-methyl-3'-thioguanosine to test a possible hydrogen-bonding interaction in the Tetrahymena ribozyme reaction. We developed an efficient method for the synthesis of 2'-O-methyl-3'-thioguanosine phosphoramidite in eight steps starting from 2'-O-methyl-N(2)-(isobutyryl) guanosine with 10.4% overall yield. Following incorporation into oligonucleotides using solid-phase synthesis, we used this new analogue to investigate whether the 3'-oxygen of the guanosine cofactor in the Tetrahymena ribozyme reaction serves as an acceptor for the hydrogen bond donated by the adjacent 2'-hydroxyl group. We show that regardless of whether the guanosine cofactor bears a 3'-oxygen or 3'-sulfur leaving group, replacing the adjacent 2'-hydroxyl group with a 2'-methoxy group incurs the same energetic penalty, providing evidence against an interaction. These results indicate that the hydrogen bond donated by the guanosine 2'-hydroxyl group contributes to catalytic function in a manner distinct from the U(-1) 2'-hydroxyl group.
Collapse
Affiliation(s)
- Jun Lu
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
11
|
Chatterjee S, Pathmasiri W, Plashkevych O, Honcharenko D, Varghese OP, Maiti M, Chattopadhyaya J. The chemical nature of the 2'-substituent in the pentose-sugar dictates the pseudoaromatic character of the nucleobase (pKa) in DNA/RNA. Org Biomol Chem 2006; 4:1675-86. [PMID: 16633560 DOI: 10.1039/b601460g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We here show that the pKa (error limit: 0.01 to 0.03 pKa unit) of a nucleobase in a nucleotide can be modulated by the chemical nature of the 2'-substituent at the sugar moiety. This has been evidenced by the measurement of nucleobase pKa in 47 different model nucleoside 3',5'-bis- and 3'-mono-ethylphosphates. The fact that the electronic character of each of the 2'-substituents (Fig. 1) alters the chemical shift of the H2' sugar proton, and also alters the pKa of the nucleobase in the nucleotides has been evidenced by a correlation plot of pKa of N3 of pyrimidine (T/C/U) or pKa of N7 of 9-guaninyl with the corresponding deltaH2' chemical shifts at the neutral pH, which shows linear correlation with high Pearson's correlation coefficients (R = 0.85-0.97). That this modulation of the pKa of the nucleobase by a 2'-substituent is a through-bond as well as through-space effect has been proven by ab initio determined pKa estimation. Interestingly, experimental pKas of nucleobases from NMR titration and the calculated pKas (by ab initio calculations utilizing closed shell HF 6-31G** basis set) are linearly correlated with R = 0.98. It has also been observed that the difference of ground and protonated/de-protonated HOMO orbital energies (DeltaHOMO, a.u.) for the nucleobases (A/G/C/T/U) are well correlated with their pK(a)s in different 2'-substituted 3',5'-bis-ethylphosphate analogs suggesting that only the orbital energy of HOMO can be successfully used to predict the modulation of the chemical reactivity of the nucleobase by the 2'-substituent. It has also been demonstrated that pKa values of nucleobases in 3',5'-bis-ethylphosphates (Table 1) are well correlated with the change in dipole moment for the respective nucleobases after protonation or de-protonation. This work thus unambiguously shows that alteration of the thermodynamic stability (Tm) of the donor-acceptor complexes [ref. 20], as found with various 2'-modified duplexes in the antisense, siRNA or in triplexes by many workers in the field, is a result of alteration of the pseudoaromatic character of the nucleobases engineered by alteration of the chemical nature of the 2'-substitution.
Collapse
|
12
|
Das SR, Fong R, Piccirilli JA. Nucleotide analogues to investigate RNA structure and function. Curr Opin Chem Biol 2005; 9:585-93. [PMID: 16242990 DOI: 10.1016/j.cbpa.2005.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
RNA plays an essential cellular role in nearly every aspect of the transmission and expression of genetic information, including regulatory roles that have significance for cellular development. Access to RNA bearing synthetic modifications has allowed biological chemists to probe deep into the inner workings of cellular processes. Here, we describe recent advances in harnessing the power of nucleotide analogues to obtain mechanistic and biological insights into RNA structure, function and dynamics.
Collapse
Affiliation(s)
- Subha R Das
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
13
|
Dai Q, Deb SK, Hougland JL, Piccirilli JA. Improved synthesis of 2'-amino-2'-deoxyguanosine and its phosphoramidite. Bioorg Med Chem 2005; 14:705-13. [PMID: 16202607 DOI: 10.1016/j.bmc.2005.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
2'-Amino-2'-deoxynucleosides and oligonucleotides containing them have proven highly effective for an array of biochemical applications. The guanosine analogue and its phosphoramidite derivatives have been accessed previously from 2'-amino-2'-deoxyuridine by transglycosylation, but with limited overall efficiency and convenience. Using simple modifications of known reaction types, we have developed useful protocols to obtain 2'-amino-2'-deoxyguanosine and two of its phosphoramidite derivatives with greater convenience, fewer steps, and higher yields than reported previously. These phosphoramidites provide effective synthons for the incorporation of 2'-amino-2'-deoxyguanosine into oligonucleotides.
Collapse
Affiliation(s)
- Qing Dai
- Howard Hughes Medical Institute, The University of Chicago, MC 1028, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|