1
|
Pati SG, Bopp CE, Kohler HPE, Hofstetter TB. Substrate-Specific Coupling of O 2 Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catal 2022; 12:6444-6456. [PMID: 35692249 PMCID: PMC9171724 DOI: 10.1021/acscatal.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/09/2022] [Indexed: 02/07/2023]
Abstract
![]()
Rieske dioxygenases
catalyze the initial steps in the hydroxylation
of aromatic compounds and are critical for the metabolism of xenobiotic
substances. Because substrates do not bind to the mononuclear non-heme
FeII center, elementary steps leading to O2 activation
and substrate hydroxylation are difficult to delineate, thus making
it challenging to rationalize divergent observations on enzyme mechanisms,
reactivity, and substrate specificity. Here, we show for nitrobenzene
dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes
to nitrite and substituted catechols, that unproductive O2 activation with the release of the unreacted substrate and reactive
oxygen species represents an important path in the catalytic cycle.
Through correlation of O2 uncoupling for a series of substituted
nitroaromatic compounds with 18O and 13C kinetic
isotope effects of dissolved O2 and aromatic substrates,
respectively, we show that O2 uncoupling occurs after the
rate-limiting formation of FeIII-(hydro)peroxo species
from which substrates are hydroxylated. Substituent effects on the
extent of O2 uncoupling suggest that the positioning of
the substrate in the active site rather than the susceptibility of
the substrate for attack by electrophilic oxygen species is responsible
for unproductive O2 uncoupling. The proposed catalytic
cycle provides a mechanistic basis for assessing the very different
efficiencies of substrate hydroxylation vs unproductive O2 activation and generation of reactive oxygen species in reactions
catalyzed by Rieske dioxygenases.
Collapse
Affiliation(s)
- Sarah G. Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
2
|
Li X, Li X, Zhang QY, Lv P, Jia Y, Wei D. Cofactor-free ActVA-Orf6 monooxygenase catalysis via proton-coupled electron transfer: A QM/MM study. Org Biomol Chem 2022; 20:5525-5534. [DOI: 10.1039/d2ob00848c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncovering the comprehensive catalytic mechanism for the activation of triplet O2 through metal-free and cofactor-free oxidases and oxygenases remains one of the most challenging questions in the area of enzymatic...
Collapse
|
3
|
Improving the kinetic parameters of nicotine oxidizing enzymes by homologous structure comparison and rational design. Arch Biochem Biophys 2022; 718:109122. [DOI: 10.1016/j.abb.2022.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/17/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
|
4
|
Bathellier C, Yu LJ, Farquhar GD, Coote ML, Lorimer GH, Tcherkez G. Ribulose 1,5-bisphosphate carboxylase/oxygenase activates O 2 by electron transfer. Proc Natl Acad Sci U S A 2020; 117:24234-24242. [PMID: 32934141 PMCID: PMC7533879 DOI: 10.1073/pnas.2008824117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the cornerstone of atmospheric CO2 fixation by the biosphere. It catalyzes the addition of CO2 onto enolized ribulose 1,5-bisphosphate (RuBP), producing 3-phosphoglycerate which is then converted to sugars. The major problem of this reaction is competitive O2 addition, which forms a phosphorylated product (2-phosphoglycolate) that must be recycled by a series of biochemical reactions (photorespiratory metabolism). However, the way the enzyme activates O2 is still unknown. Here, we used isotope effects (with 2H, 25Mg, and 18O) to monitor O2 activation and assess the influence of outer sphere atoms, in two Rubisco forms of contrasted O2/CO2 selectivity. Neither the Rubisco form nor the use of solvent D2O and deuterated RuBP changed the 16O/18O isotope effect of O2 addition, in clear contrast with the 12C/13C isotope effect of CO2 addition. Furthermore, substitution of light magnesium (24Mg) by heavy, nuclear magnetic 25Mg had no effect on O2 addition. Therefore, outer sphere protons have no influence on the reaction and direct radical chemistry (intersystem crossing with triplet O2) does not seem to be involved in O2 activation. Computations indicate that the reduction potential of enolized RuBP (near 0.49 V) is compatible with superoxide (O2•-) production, must be insensitive to deuteration, and yields a predicted 16O/18O isotope effect and energy barrier close to observed values. Overall, O2 undergoes single electron transfer to form short-lived superoxide, which then recombines to form a peroxide intermediate.
Collapse
Affiliation(s)
- Camille Bathellier
- Elementar France, Spectrométrie de Masse Isotopique, 69428 Lyon Cedex 3, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - Li-Juan Yu
- Australian Research Council Centre of Excellence for Electromaterials Science, Research School of Chemistry, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - Graham D Farquhar
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia;
| | - Michelle L Coote
- Australian Research Council Centre of Excellence for Electromaterials Science, Research School of Chemistry, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - George H Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia;
- Institut de Recherche en Horticulture et Semences, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Université d'Angers, 49070 Beaucouzé, France
| |
Collapse
|
5
|
Abstract
This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA;
| |
Collapse
|
6
|
Stines-Chaumeil C, Mavré F, Kauffmann B, Mano N, Limoges B. Mechanism of Reconstitution/Activation of the Soluble PQQ-Dependent Glucose Dehydrogenase from Acinetobacter calcoaceticus: A Comprehensive Study. ACS OMEGA 2020; 5:2015-2026. [PMID: 32039339 PMCID: PMC7003513 DOI: 10.1021/acsomega.9b04034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The ability to switch on the activity of an enzyme through its spontaneous reconstitution has proven to be a valuable tool in fundamental studies of enzyme structure/reactivity relationships or in the design of artificial signal transduction systems in bioelectronics, synthetic biology, or bioanalytical applications. In particular, those based on the spontaneous reconstitution/activation of the apo-PQQ-dependent soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus were widely developed. However, the reconstitution mechanism of sGDH with its two cofactors, i.e., pyrroloquinoline quinone (PQQ) and Ca2+, remains unknown. The objective here is to elucidate this mechanism by stopped-flow kinetics under single-turnover conditions. The reconstitution of sGDH exhibited biphasic kinetics, characteristic of a square reaction scheme associated with two activation pathways. From a complete kinetic analysis, we were able to fully predict the reconstitution dynamics and also to demonstrate that when PQQ first binds to apo-sGDH, it strongly impedes the access of Ca2+ to its enclosed position at the bottom of the enzyme binding site, thereby greatly slowing down the reconstitution rate of sGDH. This slow calcium insertion may purposely be accelerated by providing more flexibility to the Ca2+ binding loop through the specific mutation of the calcium-coordinating P248 proline residue, reducing thus the kinetic barrier to calcium ion insertion. The dynamic nature of the reconstitution process is also supported by the observation of a clear loop shift and a reorganization of the hydrogen-bonding network and van der Waals interactions observed in both active sites of the apo and holo forms, a structural change modulation that was revealed from the refined X-ray structure of apo-sGDH (PDB: 5MIN).
Collapse
Affiliation(s)
- Claire Stines-Chaumeil
- CNRS,
Université de Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - François Mavré
- Université
de Paris, Laboratoire d’Electrochimie Moléculaire, UMR
7591, CNRS, F-75013 Paris, France
| | - Brice Kauffmann
- CNRS
UMS 3033, INSERM US001, Université de Bordeaux, IECB, 2, Rue Robert Escarpit, F-33607 Pessac, France
| | - Nicolas Mano
- CNRS,
Université de Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - Benoît Limoges
- Université
de Paris, Laboratoire d’Electrochimie Moléculaire, UMR
7591, CNRS, F-75013 Paris, France
| |
Collapse
|
7
|
Kiss DJ, Ferenczy GG. A detailed mechanism of the oxidative half-reaction of d-amino acid oxidase: another route for flavin oxidation. Org Biomol Chem 2020; 17:7973-7984. [PMID: 31407761 DOI: 10.1039/c9ob00975b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
d-Amino acid oxidase (DAAO) is a flavoenzyme whose inhibition is expected to have therapeutic potential in schizophrenia. DAAO catalyses hydride transfer from the substrate to the flavin in the reductive half-reaction, and the flavin is reoxidized by O2 in the oxidative half-reaction. Quantum mechanical/molecular mechanical calculations were performed and their results together with available experimental information were used to elucidate the detailed mechanism of the oxidative half-reaction. The reaction starts with a single electron transfer from FAD to O2, followed by triplet-singlet transition. FAD oxidation is completed by a proton coupled electron transfer to the oxygen species and the reaction terminates with H2O2 formation by proton transfer from the oxidized substrate to the oxygen species via a chain of water molecules. The substrate plays a double role by facilitating the first electron transfer and by providing a proton in the last step. The mechanism differs from the oxidative half-reaction of other oxidases.
Collapse
Affiliation(s)
- Dóra Judit Kiss
- Doctoral School of Chemistry, Eötvös Loránd University, Pázmány s 1/A, H-1117, Budapest, Hungary. and Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| |
Collapse
|
8
|
Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 2019; 128:218-240. [DOI: 10.1016/j.bioelechem.2019.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023]
|
9
|
Machovina MM, Ellis ES, Carney TJ, Brushett FR, DuBois JL. How a cofactor-free protein environment lowers the barrier to O 2 reactivity. J Biol Chem 2019; 294:3661-3669. [PMID: 30602564 DOI: 10.1074/jbc.ra118.006144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/01/2019] [Indexed: 11/06/2022] Open
Abstract
Molecular oxygen (O2)-utilizing enzymes are among the most important in biology. The abundance of O2, its thermodynamic power, and the benign nature of its end products have raised interest in oxidases and oxygenases for biotechnological applications. Although most O2-dependent enzymes have an absolute requirement for an O2-activating cofactor, several classes of oxidases and oxygenases accelerate direct reactions between substrate and O2 using only the protein environment. Nogalamycin monooxygenase (NMO) from Streptomyces nogalater is a cofactor-independent enzyme that catalyzes rate-limiting electron transfer between its substrate and O2 Here, using enzyme-kinetic, cyclic voltammetry, and mutagenesis methods, we demonstrate that NMO initially activates the substrate, lowering its pKa by 1.0 unit (ΔG* = 1.4 kcal mol-1). We found that the one-electron reduction potential, measured for the deprotonated substrate both inside and outside the protein environment, increases by 85 mV inside NMO, corresponding to a ΔΔG 0' of 2.0 kcal mol-1 (0.087 eV) and that the activation barrier, ΔG ‡, is lowered by 4.8 kcal mol-1 (0.21 eV). Applying the Marcus model, we observed that this suggests a sizable decrease of 28 kcal mol-1 (1.4 eV) in the reorganization energy (λ), which constitutes the major portion of the protein environment's effect in lowering the reaction barrier. A similar role for the protein has been proposed in several cofactor-dependent systems and may reflect a broader trend in O2-utilizing proteins. In summary, NMO's protein environment facilitates direct electron transfer, and NMO accelerates rate-limiting electron transfer by strongly lowering the reorganization energy.
Collapse
Affiliation(s)
- Melodie M Machovina
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400 and
| | - Emerald S Ellis
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400 and
| | | | - Fikile R Brushett
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400 and
| |
Collapse
|
10
|
Robbins JM, Bommarius AS, Gadda G. Mechanistic studies of formate oxidase from Aspergillus oryzae : A novel member of the glucose-Methanol-choline oxidoreductase enzyme superfamily that oxidizes carbon acids. Arch Biochem Biophys 2018; 643:24-31. [DOI: 10.1016/j.abb.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
|
11
|
Pegis ML, Wise CF, Martin DJ, Mayer JM. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem Rev 2018; 118:2340-2391. [PMID: 29406708 DOI: 10.1021/acs.chemrev.7b00542] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oxygen reduction reaction (ORR) is a key component of biological processes and energy technologies. This Review provides a comprehensive report of soluble molecular catalysts and electrocatalysts for the ORR. The precise synthetic control and relative ease of mechanistic study for homogeneous molecular catalysts, as compared to heterogeneous materials or surface-adsorbed species, enables a detailed understanding of the individual steps of ORR catalysis. Thus, the Review places particular emphasis on ORR mechanism and thermodynamics. First, the thermochemistry of oxygen reduction and the factors influencing ORR efficiency are described to contextualize the discussion of catalytic studies that follows. Reports of ORR catalysis are presented in terms of their mechanism, with separate sections for catalysis proceeding via initial outer- and inner-sphere electron transfer to O2. The rates and selectivities (for production of H2O2 vs H2O) of these catalysts are provided, along with suggested methods for accurately comparing catalysts of different metals and ligand scaffolds that were examined under different experimental conditions.
Collapse
Affiliation(s)
- Michael L Pegis
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Catherine F Wise
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Daniel J Martin
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - James M Mayer
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
12
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
13
|
|
14
|
Tremey E, Stines-Chaumeil C, Gounel S, Mano N. Designing an O2
-Insensitive Glucose Oxidase for Improved Electrochemical Applications. ChemElectroChem 2017. [DOI: 10.1002/celc.201700646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emilie Tremey
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| | - Claire Stines-Chaumeil
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| | - Sébastien Gounel
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| | - Nicolas Mano
- CNRS, CRPP - UPR 8641; 115 Avenue du Docteur Schweitzer 33600 Pessac France
- Univ Bordeaux; 146 rue Léo Saignat 33076 Bordeaux Cedex France
| |
Collapse
|
15
|
Machovina MM, Usselman RJ, DuBois JL. Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations. J Biol Chem 2016; 291:17816-28. [PMID: 27307041 DOI: 10.1074/jbc.m116.730051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 01/16/2023] Open
Abstract
Members of the antibiotic biosynthesis monooxygenase family catalyze O2-dependent oxidations and oxygenations in the absence of any metallo- or organic cofactor. How these enzymes surmount the kinetic barrier to reactions between singlet substrates and triplet O2 is unclear, but the reactions have been proposed to occur via a flavin-like mechanism, where the substrate acts in lieu of a flavin cofactor. To test this model, we monitored the uncatalyzed and enzymatic reactions of dithranol, a substrate for the nogalamycin monooxygenase (NMO) from Streptomyces nogalater As with flavin, dithranol oxidation was faster at a higher pH, although the reaction did not appear to be base-catalyzed. Rather, conserved asparagines contributed to suppression of the substrate pKa The same residues were critical for enzymatic catalysis that, consistent with the flavoenzyme model, occurred via an O2-dependent slow step. Evidence for a superoxide/substrate radical pair intermediate came from detection of enzyme-bound superoxide during turnover. Small molecule and enzymatic superoxide traps suppressed formation of the oxygenation product under uncatalyzed conditions, whereas only the small molecule trap had an effect in the presence of NMO. This suggested that NMO both accelerated the formation and directed the recombination of a superoxide/dithranyl radical pair. These catalytic strategies are in some ways flavin-like and stand in contrast to the mechanisms of urate oxidase and (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, both cofactor-independent enzymes that surmount the barriers to direct substrate/O2 reactivity via markedly different means.
Collapse
Affiliation(s)
- Melodie M Machovina
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400
| | - Robert J Usselman
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400
| |
Collapse
|
16
|
Tcherkez G. The mechanism of Rubisco-catalysed oxygenation. PLANT, CELL & ENVIRONMENT 2016; 39:983-997. [PMID: 26286702 DOI: 10.1111/pce.12629] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 06/04/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the cornerstone of photosynthetic carbon assimilation because it catalyses the fixation of CO2 onto ribulose-1,5-bisphosphate (RuBP). The enzyme also catalyses RuBP oxygenation, thereby evolving phosphoglycolate which is recycled along the photorespiratory pathway. Oxygenation is quantitatively important, because under ordinary gaseous conditions, more than one third of RuBP molecules are oxygenated rather than carboxylated. However, contrary to carboxylation, the chemical mechanism of oxygenation is not well known, and little progress has been made since the early 80s. Here, I review recent experimental data that provide some new insights into the reaction mechanism, and carry out simple calculations of kinetic parameters. Isotope effects suggest that oxygenation is less likely initiated by a redox phenomenon (such as superoxide production) and more likely involves concerted chemical events that imply interactions with protons. A possible energy profile of the reaction is drawn which suggests that the generation of the oxygenated reaction intermediate (peroxide) is irreversible. Possible changes in oxygenation-associated rate constants between Rubisco forms are discussed.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|
17
|
Zhu H, Peck SC, Bonnot F, van der Donk WA, Klinman JP. Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species. J Am Chem Soc 2015; 137:10448-51. [PMID: 26267117 PMCID: PMC4970508 DOI: 10.1021/jacs.5b03907] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonheme
iron oxygenases that carry out four-electron oxidations
of substrate have been proposed to employ iron(III) superoxide species
to initiate this reaction [Paria, S.; Que, L.; Paine, T. K. Angew. Chem. Int. Ed.2011, 50, 11129]. Here we report experimental evidence in support of this
proposal. 18O KIEs were measured for two recently discovered
mononuclear nonheme iron oxygenases: hydroxyethylphosphonate dioxygenase
(HEPD) and methylphosphonate synthase (MPnS). Competitive 18O KIEs measured with deuterated substrates are larger than those
measured with unlabeled substrates, which indicates that C–H
cleavage must occur before an irreversible reductive step at molecular
oxygen. A similar observation was previously used to implicate copper(II)
superoxide in the H-abstraction reactions catalyzed by dopamine β-monooxygenase
[Tian, G. C.; Klinman, J. P. J. Am. Chem. Soc.1993, 115, 8891] and peptidylglycine α-hydroxylating
monooxygenase [Francisco, W. A.; Blackburn, N. J.; Klinman, J. P. Biochemistry2003, 42, 1813].
Collapse
Affiliation(s)
| | - Spencer C Peck
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | | | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | | |
Collapse
|
18
|
Abstract
Photolyases, a class of flavoproteins, use blue light to repair two types of ultraviolet-induced DNA damage, a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct (6-4PP). In this perspective, we review the recent progress in the repair dynamics and mechanisms of both types of DNA restoration by photolyases. We first report the spectroscopic characterization of flavin in various redox states and the active-site solvation dynamics in photolyases. We then systematically summarize the detailed repair dynamics of damaged DNA by photolyases and a biomimetic system through resolving all elementary steps on ultrafast timescales, including multiple intermolecular electron- and proton-transfer reactions and bond-breaking and -making processes. We determined the unique electron tunneling pathways, identified the key functional residues and revealed the molecular origin of high repair efficiency, and thus elucidate the molecular mechanisms and repair photocycles at the most fundamental level. We finally conclude that the active sites of photolyases, unlike the aqueous solution for the biomimetic system, provide a unique electrostatic environment and local flexibility and thus a dedicated synergy for all elementary dynamics to maximize the repair efficiency. This repair photomachine is the first enzyme that the entire functional evolution is completely mapped out in real time.
Collapse
Affiliation(s)
- Zheyun Liu
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
19
|
Meyer AH, Dybala-Defratyka A, Alaimo PJ, Geronimo I, Sanchez AD, Cramer CJ, Elsner M. Cytochrome P450-catalyzed dealkylation of atrazine by Rhodococcus sp. strain NI86/21 involves hydrogen atom transfer rather than single electron transfer. Dalton Trans 2015; 43:12175-86. [PMID: 24851834 DOI: 10.1039/c4dt00891j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 enzymes are responsible for a multitude of natural transformation reactions. For oxidative N-dealkylation, single electron (SET) and hydrogen atom abstraction (HAT) have been debated as underlying mechanisms. Combined evidence from (i) product distribution and (ii) isotope effects indicate that HAT, rather than SET, initiates N-dealkylation of atrazine to desethyl- and desisopropylatrazine by the microorganism Rhodococcus sp. strain NI86/21. (i) Product analysis revealed a non-selective oxidation at both the αC and βC-atom of the alkyl chain, which is expected for a radical reaction, but not SET. (ii) Normal (13)C and (15)N as well as pronounced (2)H isotope effects (εcarbon: -4.0‰ ± 0.2‰; εnitrogen: -1.4‰ ± 0.3‰, KIEH: 3.6 ± 0.8) agree qualitatively with calculated values for HAT, whereas inverse (13)C and (15)N isotope effects are predicted for SET. Analogous results are observed with the Fe(iv)[double bond, length as m-dash]O model system [5,10,15,20-tetrakis(pentafluorophenyl)porphyrin-iron(iii)-chloride + NaIO4], but not with permanganate. These results emphasize the relevance of the HAT mechanism for N-dealkylation by P450.
Collapse
Affiliation(s)
- Armin H Meyer
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhu H, Sommerhalter M, Nguy AKL, Klinman JP. Solvent and Temperature Probes of the Long-Range Electron-Transfer Step in Tyramine β-Monooxygenase: Demonstration of a Long-Range Proton-Coupled Electron-Transfer Mechanism. J Am Chem Soc 2015; 137:5720-9. [PMID: 25919134 PMCID: PMC4970857 DOI: 10.1021/ja512388n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Tyramine
β-monooxygenase (TβM) belongs to a family
of physiologically important dinuclear copper monooxygenases that
function with a solvent-exposed active site. To accomplish each enzymatic
turnover, an electron transfer (ET) must occur between two solvent-separated
copper centers. In wild-type TβM, this event is too fast to
be rate limiting. However, we have recently shown [Osborne, R. L.;
et al. Biochemistry2013, 52, 1179] that the Tyr216Ala variant of TβM leads to rate-limiting
ET. In this study, we present a pH–rate profile study of Tyr216Ala,
together with deuterium oxide solvent kinetic isotope effects (KIEs).
A solvent KIE of 2 on kcat is found in
a region where kcat is pH/pD independent.
As a control, the variant Tyr216Trp, for which ET is not rate determining,
displays a solvent KIE of unity. We conclude, therefore, that the
observed solvent KIE arises from the rate-limiting ET step in the
Tyr216Ala variant, and show
how small solvent KIEs (ca. 2) can be fully accommodated from equilibrium effects within the Marcus equation. To gain insight into the role of the enzyme in the long-range
ET step, a temperature dependence study was also pursued. The small
enthalpic barrier of ET (Ea = 3.6 kcal/mol)
implicates a significant entropic barrier, which is attributed to
the requirement for extensive rearrangement of the inter-copper environment
during PCET catalyzed by the Tyr216Ala variant. The data lead to the
proposal of a distinct inter-domain pathway for PCET in the dinuclear
copper monooxygenases.
Collapse
Affiliation(s)
| | - Monika Sommerhalter
- #Department of Chemistry and Biochemistry, California State University, East Bay, 25800 Carlos Bee Boulevard, Hayward, California 94542, United States
| | | | | |
Collapse
|
21
|
Tremey E, Suraniti E, Courjean O, Gounel S, Stines-Chaumeil C, Louerat F, Mano N. Switching an O2 sensitive glucose oxidase bioelectrode into an almost insensitive one by cofactor redesign. Chem Commun (Camb) 2015; 50:5912-4. [PMID: 24763673 DOI: 10.1039/c4cc01670j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the 5-8 mM glucose concentration range, of particular interest for diabetes management, glucose oxidase bioelectrodes are O2 dependent, which decrease their efficiencies. By replacing the natural cofactor of glucose oxidase, we succeeded in turning an O2 sensitive bioelectrode into an almost insensitive one.
Collapse
|
22
|
Abstract
An enormous variety of biological redox reactions are accompanied by changes in proton content at enzyme active sites, in their associated cofactors, in substrates and/or products, and between protein interfaces. Understanding this breadth of reactivity is an ongoing chemical challenge. A great many workers have developed and investigated biomimetic model complexes to build new ways of thinking about the mechanistic underpinnings of such complex biological proton-coupled electron transfer (PCET) reactions. Of particular importance are those model reactions that involve transfer of one proton (H(+)) and one electron (e(-)), which is equivalent to transfer of a hydrogen atom (H(•)). In this Current Topic, we review key concepts in PCET reactivity and describe important advances in biomimetic PCET chemistry, with a special emphasis on research that has enhanced efforts to understand biological PCET reactions.
Collapse
Affiliation(s)
- Jeffrey J. Warren
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC, Canada V5A 1S6
| | - James M. Mayer
- Yale University, Department of Chemistry, P.O. Box 208107, 225 Prospect Street, New Haven, CT 06520-8107
| |
Collapse
|
23
|
Schneider TW, Angeles-Boza AM. Competitive 13C and 18O kinetic isotope effects on CO2 reduction catalyzed by Re(bpy)(CO)3Cl. Dalton Trans 2015; 44:8784-7. [DOI: 10.1039/c4dt03977g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Competitive 13C and 18O kinetic isotope effects (KIEs) on CO2 reduction reactions catalyzed by Re(bpy)(CO)3Cl are reported.
Collapse
|
24
|
Brugger D, Krondorfer I, Shelswell C, Huber-Dittes B, Haltrich D, Peterbauer CK. Engineering pyranose 2-oxidase for modified oxygen reactivity. PLoS One 2014; 9:e109242. [PMID: 25296188 PMCID: PMC4190269 DOI: 10.1371/journal.pone.0109242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/12/2014] [Indexed: 01/15/2023] Open
Abstract
Pyranose 2-oxidase (POx), a member of the GMC family of flavoproteins, catalyzes the regioselective oxidation of aldopyranoses at position C2 to the corresponding 2-ketoaldoses. During the first half-reaction, FAD is reduced to FADH2 and reoxidized in the second half-reaction by reducing molecular oxygen to H2O2. Alternative electron acceptors including quinones, radicals or chelated metal ions show significant and in some cases even higher activity. While oxygen as cheap and abundantly available electron acceptor is favored for many processes, reduced oxygen reactivity is desirable for some applications such as in biosensors/biofuel cells because of reduced oxidative damages to the biocatalyst from concomitant H2O2 production as well as reduced electron "leakage" to oxygen. The reactivity of flavoproteins with oxygen is of considerable scientific interest, and the determinants of oxygen activation and reactivity are the subject of numerous studies. We applied site-saturation mutagenesis on a set of eleven amino acids around the active site based on the crystal structure of the enzyme. Using microtiter plate screening assays with peroxidase/2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 2,6-dichlorophenolindophenol, variants of POx with decreased oxidase activity and maintained dehydrogenase activity were identified. Variants T166R, Q448H, L545C, L547R and N593C were characterized with respect to their apparent steady-state constants with oxygen and the alternative electron acceptors DCPIP, 1,4-benzoquinone and ferricenium ion, and the effect of the mutations was rationalized based on structural properties.
Collapse
Affiliation(s)
- Dagmar Brugger
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Iris Krondorfer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christopher Shelswell
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Huber-Dittes
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
25
|
Kopacz MM, Heuts DPHM, Fraaije MW. Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis. FEBS J 2014; 281:4384-93. [PMID: 25060191 DOI: 10.1111/febs.12945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 01/14/2023]
Abstract
Putrescine oxidase from Rhodococcus erythropolis (PuO) is a flavin-containing amine oxidase from the monoamine oxidase family that performs oxidative deamination of aliphatic diamines. In this study we report pre-steady-state kinetic analyses of the enzyme with the use of single- and double-mixing stopped-flow spectroscopy and putrescine as a substrate. During the fast and irreversible reductive half-reaction no radical intermediates were observed, suggesting a direct hydride transfer from the substrate to the FAD. The rate constant of flavin reoxidation depends on the ligand binding; when the imine product was bound to the enzyme the rate constant was higher than with free enzyme species. Similar results were obtained with product-mimicking ligands and this indicates that a ternary complex is formed during catalysis. The obtained kinetic data were used together with steady-state rate equations derived for ping-pong, ordered sequential and bifurcated mechanisms to explore which mechanism is operative. The integrated analysis revealed that PuO employs a bifurcated mechanism due to comparable rate constants of product release from the reduced enzyme and reoxidation of the reduced enzyme-product complex.
Collapse
Affiliation(s)
- Malgorzata M Kopacz
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | |
Collapse
|
26
|
Cheah MH, Millar AH, Myers RC, Day DA, Roth J, Hillier W, Badger MR. Online oxygen kinetic isotope effects using membrane inlet mass spectrometry can differentiate between oxidases for mechanistic studies and calculation of their contributions to oxygen consumption in whole tissues. Anal Chem 2014; 86:5171-8. [PMID: 24786640 DOI: 10.1021/ac501086n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The reduction chemistry of molecular oxygen underpins the energy metabolism of multicellular organisms, liberating free energy needed to catalyze a plethora of enzymatic reactions. Measuring the isotope signatures of (16)O and (18)O during O2 reduction can provide insights into both kinetic and equilibrium isotope effects. However, current methods to measure O2 isotope signatures are time-consuming and disruptive. This paper describes the application of membrane inlet mass spectrometry to determine the oxygen isotope discrimination of a range of O2-consuming reactions, providing a rapid and convenient method for determining these values. A survey of oxygenase and oxidase reactions provides new insights into previously uncharacterized amino acid oxidase enzymes. Liquid and gas phase measurements show the ease of assays using this approach for purified enzymes, biological extracts and intact tissues.
Collapse
Affiliation(s)
- Mun Hon Cheah
- Division of Plant Science, Research School of Biology, the Australian National University , Canberra ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang L, Miranda-Castro R, Stines-Chaumeil C, Mano N, Xu G, Mavré F, Limoges B. Heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase immobilized on an electrode: a sensitive strategy for PQQ detection down to picomolar levels. Anal Chem 2014; 86:2257-67. [PMID: 24476605 DOI: 10.1021/ac500142e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly sensitive electroanalytical method for determination of PQQ in solution down to subpicomolar concentrations is proposed. It is based on the heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase (PQQ-GDH) through the specific binding of its pyrroloquinoline quinone (PQQ) cofactor to the apoenzyme anchored on an electrode surface. It is shown from kinetics analysis of both the enzyme catalytic responses and enzyme surface-reconstitution process (achieved by cyclic voltammetry under redox-mediated catalysis) that the selected immobilization strategy (i.e., through an avidin/biotin linkage) is well-suited to immobilize a nearly saturated apoenzyme monolayer on the electrode surface with an almost fully preserved PQQ binding properties and catalytic activity. From measurement of the overall rate constants controlling the steady-state catalytic current responses of the surface-reconstituted PQQ-GDH and determination of the PQQ equilibrium binding (Kb = 2.4 × 10(10) M(-1)) and association rate (kon = 2 × 10(6) M(-1) s(-1)) constants with the immobilized apoenzyme, the analytical performances of the method could be rationally evaluated, and the signal amplification for PQQ detection down to the picomolar levels is well-predicted. These performances outperform by several orders of magnitude the direct electrochemical detection of PQQ in solution and by 1 to 2 orders the detection limits previously achieved by UV-vis spectroscopic detection of the homogeneous PQQ-GDH reconstitution.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot , Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Vazquez-Duhalt R, Aguila SA, Arrocha AA, Ayala M. QM/MM Molecular Modeling and Marcus Theory in the Molecular Design of Electrodes for Enzymatic Fuel Cells. ChemElectroChem 2013. [DOI: 10.1002/celc.201300096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Role of substituents on the reactivity and electron density profile of diimine ligands: A density functional theory based study. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0469-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Abstract
Quantum tunneling and protein dynamics have emerged as important components of enzyme function. This review focuses on soybean lipoxygenase-1, to illustrate how the properties of enzymatic C-H bond activation link protein motions to the fundamental bond making-breaking processes.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220, United States
| |
Collapse
|
31
|
Gannavaram S, Gadda G. Relative Timing of Hydrogen and Proton Transfers in the Reaction of Flavin Oxidation Catalyzed by Choline Oxidase. Biochemistry 2013; 52:1221-6. [DOI: 10.1021/bi3016235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Swathi Gannavaram
- Department of Chemistry, ‡Department of Biology, and §The Center for
Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Giovanni Gadda
- Department of Chemistry, ‡Department of Biology, and §The Center for
Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
32
|
Dilley DR, Wang Z, Kadirjan-Kalbach DK, Ververidis F, Beaudry R, Padmanabhan K. 1-Aminocyclopropane-1-carboxylic acid oxidase reaction mechanism and putative post-translational activities of the ACCO protein. AOB PLANTS 2013; 5:plt031. [PMID: 24244837 PMCID: PMC3828642 DOI: 10.1093/aobpla/plt031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/12/2013] [Indexed: 05/22/2023]
Abstract
1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyses the final step in ethylene biosynthesis converting ACC to ethylene, cyanide, CO2, dehydroascorbate and water with inputs of Fe(II), ascorbate, bicarbonate (as activators) and oxygen. Cyanide activates ACCO. A 'nest' comprising several positively charged amino acid residues from the C-terminal α-helix 11 along with Lys158 and Arg299 are proposed as binding sites for ascorbate and bicarbonate to coordinately activate the ACCO reaction. The binding sites for ACC, bicarbonate and ascorbic acid for Malus domestica ACCO1 include Arg175, Arg244, Ser246, Lys158, Lys292, Arg299 and Phe300. Glutamate 297, Phe300 and Glu301 in α-helix 11 are also important for the ACCO reaction. Our proposed reaction pathway incorporates cyanide as an ACCO/Fe(II) ligand after reaction turnover. The cyanide ligand is likely displaced upon binding of ACC and ascorbate to provide a binding site for oxygen. We propose that ACCO may be involved in the ethylene signal transduction pathway not directly linked to the ACCO reaction. ACC oxidase has significant homology with Lycopersicon esculentum cysteine protease LeCp, which functions as a protease and as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase (Acs2) gene expression. ACC oxidase may play a similar role in signal transduction after post-translational processing. ACC oxidase becomes inactivated by fragmentation and apparently has intrinsic protease and transpeptidase activity. ACC oxidase contains several amino acid sequence motifs for putative protein-protein interactions, phosphokinases and cysteine protease. ACC oxidase is subject to autophosphorylaton in vitro and promotes phosphorylation of some apple fruit proteins in a ripening-dependent manner.
Collapse
Affiliation(s)
- David R. Dilley
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author's e-mail address:
| | - Zhenyong Wang
- Ball Horticultural Company, 622 Town Road, West Chicago, IL 60185, USA
| | | | - Fillipos Ververidis
- Department of Plant Sciences, Technological Educational Institute of Crete, Heraklion 71004, Greece
| | - Randolph Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Kallaithe Padmanabhan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
33
|
Liu Y, Mukherjee A, Nahumi N, Ozbil M, Brown D, Angeles-Boza AM, Dooley DM, Prabhakar R, Roth JP. Experimental and Computational Evidence of Metal-O2 Activation and Rate-Limiting Proton-Coupled Electron Transfer in a Copper Amine Oxidase. J Phys Chem B 2012; 117:218-29. [DOI: 10.1021/jp3121484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yi Liu
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Nadav Nahumi
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Mehmet Ozbil
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Doreen Brown
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - David M. Dooley
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
34
|
Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Role of Active Site Histidines in the Two Half-Reactions of the Aryl-Alcohol Oxidase Catalytic Cycle. Biochemistry 2012; 51:6595-608. [DOI: 10.1021/bi300505z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Fátima Lucas
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | - Patricia Ferreira
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Victor Guallar
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040
Madrid, Spain
| |
Collapse
|
35
|
Liu Z, Guo X, Tan C, Li J, Kao YT, Wang L, Sancar A, Zhong D. Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase. J Am Chem Soc 2012; 134:8104-14. [PMID: 22533849 DOI: 10.1021/ja2105009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron tunneling pathways in enzymes are critical to their catalytic efficiency. Through electron tunneling, photolyase, a photoenzyme, splits UV-induced cyclobutane pyrimidine dimer into two normal bases. Here, we report our systematic characterization and analyses of photoinitiated three electron transfer processes and cyclobutane ring splitting by following the entire dynamical evolution during enzymatic repair with femtosecond resolution. We observed the complete dynamics of the reactants, all intermediates and final products, and determined their reaction time scales. Using (deoxy)uracil and thymine as dimer substrates, we unambiguously determined the electron tunneling pathways for the forward electron transfer to initiate repair and for the final electron return to restore the active cofactor and complete the catalytic photocycle. Significantly, we found that the adenine moiety of the unusual bent flavin cofactor is essential to mediating all electron-transfer dynamics through a superexchange mechanism, leading to a delicate balance of time scales. The cyclobutane ring splitting takes tens of picoseconds, while electron-transfer dynamics all occur on a longer time scale. The active-site structural integrity, unique electron tunneling pathways, and the critical role of adenine ensure the synergy of these elementary steps in this complex photorepair machinery to achieve maximum repair efficiency which is close to unity. Finally, we used the Marcus electron-transfer theory to evaluate all three electron-transfer processes and thus obtained their reaction driving forces (free energies), reorganization energies, and electronic coupling constants, concluding that the forward and futile back-electron transfer is in the normal region and that the final electron return of the catalytic cycle is in the inverted region.
Collapse
Affiliation(s)
- Zheyun Liu
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gadda G. Oxygen Activation in Flavoprotein Oxidases: The Importance of Being Positive. Biochemistry 2012; 51:2662-9. [DOI: 10.1021/bi300227d] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
30302-4098, United States
| |
Collapse
|
37
|
Courjean O, Hochedez A, Neri W, Louërat F, Tremey E, Gounel S, Tsujimura S, Mano N. A two-step synthesis of 7,8-dichloro-riboflavin with high yield. RSC Adv 2012. [DOI: 10.1039/c2ra01211a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Sun HG, Ruszczycky MW, Chang WC, Thibodeaux CJ, Liu HW. Nucleophilic participation of reduced flavin coenzyme in mechanism of UDP-galactopyranose mutase. J Biol Chem 2011; 287:4602-8. [PMID: 22187430 DOI: 10.1074/jbc.m111.312538] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-galactopyranose mutase (UGM) requires reduced FAD (FAD(red)) to catalyze the reversible interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf). Recent structural and mechanistic studies of UGM have provided evidence for the existence of an FAD-Galf/p adduct as an intermediate in the catalytic cycle. These findings are consistent with Lewis acid/base chemistry involving nucleophilic attack by N5 of FAD(red) at C1 of UDP-Galf/p. In this study, we employed a variety of FAD analogues to characterize the role of FAD(red) in the UGM catalytic cycle using positional isotope exchange (PIX) and linear free energy relationship studies. PIX studies indicated that UGM reconstituted with 5-deaza-FAD(red) is unable to catalyze PIX of the bridging C1-OP(β) oxygen of UDP-Galp, suggesting a direct role for the FAD(red) N5 atom in this process. In addition, analysis of kinetic linear free energy relationships of k(cat) versus the nucleophilicity of N5 of FAD(red) gave a slope of ρ = -2.4 ± 0.4. Together, these findings are most consistent with a chemical mechanism for UGM involving an S(N)2-type displacement of UDP from UDP-Galf/p by N5 of FAD(red).
Collapse
Affiliation(s)
- He G Sun
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry and Biochemistry and Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-0128, USA
| | | | | | | | | |
Collapse
|
39
|
Daithankar VN, Wang W, Trujillo JR, Thorpe C. Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover. Biochemistry 2011; 51:265-72. [PMID: 22148553 DOI: 10.1021/bi201672h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Typically, simple flavoprotein oxidases couple the oxidation of their substrates with the formation of hydrogen peroxide without release of significant levels of the superoxide ion. However, two evolutionarily related single-domain sulfhydryl oxidases (Erv2p; a yeast endoplasmic reticulum resident protein and augmenter of liver regeneration, ALR, an enzyme predominantly found in the mitochondrial intermembrane) release up to ~30% of the oxygen they reduce as the superoxide ion. Both enzymes oxidize dithiol substrates via a redox-active disulfide adjacent to the flavin cofactor within the helix-rich Erv domain. Subsequent reduction of the flavin is followed by transfer of reducing equivalents to molecular oxygen. Superoxide release was initially detected using tris(3-hydroxypropyl)phosphine (THP) as an alternative reducing substrate to dithiothreitol (DTT). THP, and other phosphines, showed anomalously high turnover numbers with Erv2p and ALR in the oxygen electrode, but oxygen consumption was drastically suppressed upon the addition of superoxide dismutase. The superoxide ion initiates a radical chain reaction promoting the aerobic oxidation of phosphines with the formation of hydrogen peroxide. Use of a known flux of superoxide generated by the xanthine/xanthine oxidase system showed that one superoxide ion stimulates the reduction of 27 and 4.5 molecules of oxygen using THP and tris(2-carboxyethyl)phosphine (TCEP), respectively. This superoxide-dependent amplification of oxygen consumption by phosphines provides a new kinetic method for the detection of superoxide. Superoxide release was also observed by a standard chemiluminescence method using a luciferin analogue (MCLA) when 2 mM DTT was employed as a substrate of Erv2p and ALR. The percentage of superoxide released from Erv2p increased to ~65% when monomeric mutants of the normally homodimeric enzyme were used. In contrast, monomeric multidomain quiescin sulfhydryl oxidase enzymes that also contain an Erv FAD-binding fold release only 1-5% of their total reduced oxygen species as the superoxide ion. Aspects of the mechanism and possible physiological significance of superoxide release from these Erv-domain flavoproteins are discussed.
Collapse
Affiliation(s)
- Vidyadhar N Daithankar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716-2522, United States
| | | | | | | |
Collapse
|
40
|
McDonald CA, Fagan RL, Collard F, Monnier VM, Palfey BA. Oxygen reactivity in flavoenzymes: context matters. J Am Chem Soc 2011; 133:16809-11. [PMID: 21958058 DOI: 10.1021/ja2081873] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many flavoenzymes--oxidases and monooxygenases--react faster with oxygen than free flavins do. There are many ideas on how enzymes cause this. Recent work has focused on the importance of a positive charge near N5 of the reduced flavin. Fructosamine oxidase has a lysine near N5 of its flavin. We measured a rate constant of 1.6 × 10(5) M(-1) s(-1) for its reaction with oxygen. The Lys276Met mutant reacted with a rate constant of 291 M(-1) s(-1), suggesting an important role for this lysine in oxygen activation. The dihydroorotate dehydrogenases from E. coli and L. lactis also have a lysine near N5 of the flavin. They react with O(2) with rate constants of 6.2 × 10(4) and 3.0 × 10(3) M(-1) s(-1), respectively. The Lys66Met and Lys43Met mutant enzymes react with rate constants that are nearly the same as those for the wild-type enzymes, demonstrating that simply placing a positive charge near N5 of the flavin does not guarantee increased oxygen reactivity. Our results show that the lysine near N5 does not exert an effect without an appropriate context; evolution did not find only one mechanism for activating the reaction of flavins with O(2).
Collapse
Affiliation(s)
- Claudia A McDonald
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | |
Collapse
|
41
|
Huff GS, Doncheva IS, Brinkley DW, Angeles-Boza AM, Mukherjee A, Cramer CJ, Roth JP. Experimental and Computational Investigations of Oxygen Reactivity in a Heme and Tyrosyl Radical-Containing Fatty Acid α-(Di)oxygenase. Biochemistry 2011; 50:7375-89. [DOI: 10.1021/bi201016h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gregory S. Huff
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Irina S. Doncheva
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - David W. Brinkley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis,
Minnesota 55455, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| |
Collapse
|
42
|
Kommoju PR, Chen ZW, Bruckner RC, Mathews FS, Jorns MS. Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate. Biochemistry 2011; 50:5521-34. [PMID: 21568312 DOI: 10.1021/bi200388g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX·chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX·chloride complex and a ternary MSOX·chloride·MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.
Collapse
Affiliation(s)
- Phaneeswara-Rao Kommoju
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
43
|
Zieba AA, Richardson C, Lucero C, Dieng SD, Gindt YM, Schelvis JPM. Evidence for concerted electron proton transfer in charge recombination between FADH- and 306Trp• in Escherichia coli photolyase. J Am Chem Soc 2011; 133:7824-36. [PMID: 21534528 DOI: 10.1021/ja2001488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp(•)). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH(•)) results in the formation of FADH(-) and (306)Trp(•). Charge recombination between these two intermediates requires the uptake of a proton by (306)Trp(•). The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ≤ 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed 'inverse' deuterium isotope effect at pH < 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein.
Collapse
Affiliation(s)
- Agnieszka A Zieba
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, USA
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Crystallographic snapshots of the complete reaction cycle of nicotine degradation by an amine oxidase of the monoamine oxidase (MAO) family. Proc Natl Acad Sci U S A 2011; 108:4800-5. [PMID: 21383134 DOI: 10.1073/pnas.1016684108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FAD-linked oxidases constitute a class of enzymes which catalyze dehydrogenation as a fundamental biochemical reaction, followed by reoxidation of reduced flavin. Here, we present high-resolution crystal structures showing the flavoenzyme 6-hydroxy-l-nicotine oxidase in action. This enzyme was trapped during catalytic degradation of the native substrate in a sequence of discrete reaction states corresponding to the substrate-reduced enzyme, a complex of the enzyme with the intermediate enamine product and formation of the final aminoketone product. The inactive d-stereoisomer binds in mirror symmetry with respect to the catalytic axis, revealing absolute stereospecificity of hydrogen transfer to the flavin. The structural data suggest deprotonation of the substrate when bound at the active site, an overall binary complex mechanism and oxidation by direct hydride transfer. The amine nitrogen has a critical role in the dehydrogenation step and may activate carbocation formation at the α-carbon via delocalization from the lone pair to σ* C(α)-H. Enzymatically assisted hydrolysis of the intermediate product occurs at a remote (P site) cavity. Substrate entry and product exit follow different paths. Structural and kinetic data suggest that substrate can also bind to the reduced enzyme, associated with slower reoxidation as compared to the rate of reoxidation of free enzyme. The results are of general relevance for the mechanisms of flavin amine oxidases.
Collapse
|
46
|
Recombinant glucose oxidase from Penicillium amagasakiense for efficient bioelectrochemical applications in physiological conditions. J Biotechnol 2011; 151:122-9. [DOI: 10.1016/j.jbiotec.2010.10.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 11/15/2022]
|
47
|
Adachi MS, Torres JM, Fitzpatrick PF. Mechanistic studies of the yeast polyamine oxidase Fms1: kinetic mechanism, substrate specificity, and pH dependence. Biochemistry 2010; 49:10440-8. [PMID: 21067138 PMCID: PMC2999662 DOI: 10.1021/bi1016099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s(-1) and apparent K(d) values of 24.3 and 484 μM for spermine and N(1)-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM(-1) s(-1) with spermine at 25 °C and 204 mM(-1) s(-1) with N(1)-acetylspermine at 4 °C and pH 9.0. This step is followed by rate-limiting product dissociation. The k(cat)/K(amine)-pH profiles are bell-shaped, with an average pK(a) value of 9.3 with spermine and pK(a) values of 8.3 and 9.6 with N(1)-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pK(a) values of 8.3 and 7.2 for spermine and N(1)-acetylspermine, respectively, for groups that must be unprotonated; these pK(a) values are assigned to the substrate N4. The k(cat)/K(O(2))-pH profiles show pK(a) values of 7.5 for spermine and 6.8 for N(1)-acetylspermine. With both substrates, the k(cat) value decreases when a single residue is protonated.
Collapse
Affiliation(s)
- Mariya S. Adachi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Jason M. Torres
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| |
Collapse
|
48
|
Warren JJ, Tronic TA, Mayer JM. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 2010; 110:6961-7001. [PMID: 20925411 PMCID: PMC3006073 DOI: 10.1021/cr100085k] [Citation(s) in RCA: 1223] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jeffrey J. Warren
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - Tristan A. Tronic
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - James M. Mayer
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
49
|
Nagel ZD, Klinman JP. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer. Chem Rev 2010; 110:PR41-67. [PMID: 21141912 PMCID: PMC4067601 DOI: 10.1021/cr1001035] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zachary D. Nagel
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| | - Judith P. Klinman
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| |
Collapse
|
50
|
Snir O, Wang Y, Tuckerman ME, Geletii YV, Weinstock IA. Concerted Proton−Electron Transfer to Dioxygen in Water. J Am Chem Soc 2010; 132:11678-91. [DOI: 10.1021/ja104392k] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ophir Snir
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel, Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| | - Yifeng Wang
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel, Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| | - Mark E. Tuckerman
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel, Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| | - Yurii V. Geletii
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel, Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| | - Ira A. Weinstock
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel, Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| |
Collapse
|