1
|
Grazon C, Garanger E, Lalanne P, Ibarboure E, Galagan JE, Grinstaff MW, Lecommandoux S. Transcription-Factor-Induced Aggregation of Biomimetic Oligonucleotide- b-Protein Micelles. Biomacromolecules 2023; 24:5027-5034. [PMID: 37877162 DOI: 10.1021/acs.biomac.3c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Polymeric micelles and especially those based on natural diblocks are of particular interest due to their advantageous properties in terms of molecular recognition, biocompatibility, and biodegradability. We herein report a facile and straightforward synthesis of thermoresponsive elastin-like polypeptide (ELP) and oligonucleotide (ON) diblock bioconjugates, ON-b-ELP, through copper-catalyzed azide-alkyne cycloaddition. The resulting thermosensitive diblock copolymer self-assembles above its critical micelle temperature (CMT ∼30 °C) to form colloidally stable micelles of ∼50 nm diameter. The ON-b-ELP micelles hybridize with an ON complementary strand and maintain their size and stability. Next, we describe the capacity of these micelles to bind proteins, creating more complex structures using the classic biotin-streptavidin pairing and the specific recognition between a transcription factor protein and the ON strand. In both instances, the micelles are intact, form larger structures, and retain their sensitivity to temperature.
Collapse
Affiliation(s)
- Chloé Grazon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Pierre Lalanne
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - James E Galagan
- Department of Microbiology, Boston University, Boston, Massachusetts 02118, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
2
|
García-Arévalo C, Quintanilla-Sierra L, Santos M, Ferrero S, Acosta S, Rodríguez-Cabello J. Impact of aromatic residues on the intrinsic disorder and transitional behaviour of model IDPs. Mater Today Bio 2022; 16:100400. [PMID: 36060106 PMCID: PMC9434135 DOI: 10.1016/j.mtbio.2022.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/28/2022] Open
Abstract
Understanding the interplay between order and disorder in intrinsically disorder proteins (IDPs), and its impact on the properties and features of materials manufactured from them, is a major challenge in the design of protein-based synthetic polymers intended for advanced functions. In this paper an elastin-like diblock co-recombinamer amphiphile (Phe-ELR) based on a hydrophobic block containing five phenylalanine (Phe) residues proximal to the carboxyl function of a glutamic acid (Glu) residue upon folding, and with Glu as the guest residue in the hydrophilic part, was engineered and its assembly behaviour compared with another amphiphilic ELR used as control. Phe-ELR was tailored in order to clarify the impact of the presence of aromatic residues in the amino acid sequence, which even in early studies by Urry's group already demonstrated a certain out-of-trend behaviour compared with other apolar amino acids, especially non-aromatic ones, on ELR behaviour. The combination of several experimental techniques indicates strong molecular interactions associated with the Phe residue, thus resulting in limited reversible character of the temperature-induced transitions during sequential thermal cycles, a lower than expected transition enthalpy, and clear differences in its supramolecular assembly with respect to the control ELR. A distinctive pre-aggregated state for the Phe-ELR under any condition of pH and temperature is found. Eventually, this state gives rise to Phe-core micelles or a solid jelly-like material, depending on the concentration, pH and presence of salts. In conclusion, it appears that the presence of aromatic residues and their ability to promote strong inter- and intramolecular interactions at any temperature and pH causes a complete modification of the order-disorder interplay present in other, non-aromatic ELRs. These molecular events have a profound impact on the physical properties of the resulting polymer when compared with other ELRs. This work helps to shed light on the limits that govern intrinsic disorder in ELRs beyond its inverse temperature transition.
Collapse
Affiliation(s)
- C. García-Arévalo
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - L. Quintanilla-Sierra
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - M. Santos
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - S. Ferrero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011, Valladolid, Spain
| | - S. Acosta
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| | - J.C. Rodríguez-Cabello
- GIR Bioforge, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 9, 47011, Valladolid, Spain
| |
Collapse
|
3
|
Choi JW, Choi SH, Won JI. Self-Assembly Behavior of Elastin-like Polypeptide Diblock Copolymers Containing a Charged Moiety. Biomacromolecules 2021; 22:2604-2613. [PMID: 34038105 DOI: 10.1021/acs.biomac.1c00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers, and some ELP block copolymers can assemble into spherical nanoparticles with thermosensitivity. In this study, two different ELP diblock copolymers, each composed of a hydrophobic and a charged moiety, were synthesized, and the dependence of their physical properties on pH, temperature, and salt concentration was investigated. A series of analyses revealed that hydrophobic core micelles could be generated in response to a change in their surroundings and that micelles did not self-aggregate, a phenomenon due to the repulsive forces between like-charged molecules on the surface. We also demonstrated that self-assembly behavior was closely dependent on the character of the charged amino acid and the specific anion in solution.
Collapse
Affiliation(s)
- Jeong-Wan Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jong-In Won
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
4
|
Gough CR, Rivera-Galletti A, Cowan DA, Salas-de la Cruz D, Hu X. Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review. Molecules 2020; 25:E3362. [PMID: 32722182 PMCID: PMC7435976 DOI: 10.3390/molecules25153362] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the biopolymer in the final product. Understanding and controlling the physicochemical properties of biopolymers in ionic liquids matrices will be crucial for progress leading to the ability to fabricate robust multi-level structural 1D fiber materials. It will also help to predict the relationship between fiber conformation and protein secondary structures or carbohydrate crystallinity, thus creating potential applications for cell growth signaling, ionic conductivity, liquid diffusion and thermal conductivity, and several applications in biomedicine and environmental science. This will also enable the regeneration of biopolymer composite fiber materials with useful functionalities and customizable options critical for additive manufacturing. The specific capabilities of these fiber materials have been shown to vary based on their fabrication methods including electrospinning and post-treatments. This review serves to provide basic knowledge of these commonly utilized protein and polysaccharide biopolymers and their fiber fabrication methods from various ionic liquids, as well as the effect of post-treatments on these fiber materials and their applications in biomedical and pharmaceutical research, wound healing, environmental filters and sustainable and green chemistry research.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Darrel A. Cowan
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - David Salas-de la Cruz
- Department of Chemistry, and Center for Computational and Integrative Biology, Camden, NJ 08102, USA;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
5
|
Gonzalez-Valdivieso J, Borrego B, Girotti A, Moreno S, Brun A, Bermejo-Martin JF, Arias FJ. A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Mol Pharm 2020; 17:1608-1620. [PMID: 32233501 DOI: 10.1021/acs.molpharmaceut.0c00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Belen Borrego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Jesus F Bermejo-Martin
- Laboratory of Biomedical Research in Sepsis (BioSepsis), Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - F Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
6
|
Quintanilla-Sierra L, García-Arévalo C, Rodriguez-Cabello J. Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Mater Today Bio 2019; 2:100007. [PMID: 32159144 PMCID: PMC7061623 DOI: 10.1016/j.mtbio.2019.100007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
The topic of self-assembled structures based on elastin-like recombinamers (ELRs, i.e., elastin-like polymers recombinantly bio-produced) has released a noticeable amount of references in the last few years. Most of them are intended for biomedical applications. In this review, a complete revision of the bibliography is carried out. Initially, the self-assembly (SA) concept is considered from a general point of view, and then ELRs are described and characterized based on their intrinsic disorder. A classification of the different self-assembled ELR-based structures is proposed based on their morphologies, paying special attention to their tentative modeling. The impact of the mechanism of SA on these biomaterials is analyzed. Finally, the implications of ELR SA in biological systems are considered.
Collapse
Affiliation(s)
| | | | - J.C. Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
7
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
8
|
Cipriani F, Krüger M, de Torre IG, Sierra LQ, Rodrigo MA, Kock L, Rodriguez-Cabello JC. Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform. Biomacromolecules 2018; 19:4333-4347. [PMID: 30346149 DOI: 10.1021/acs.biomac.8b01211] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue engineering for cartilage repair requires biomaterials that show rapid gelation and adequate mechanical properties. Although the use of hydrogel is the most promising biomaterial, it often lacks in rigidity and anchorage of cells when they are surrounded by synovial fluid while they are subjected to heavy loads. We developed and produced the Silk Elastin-Like co-Recombinamer (SELR), which contains both the physical interaction from elastin motifs and from silk motifs. In the first part of this work, we set up and optimized a preannealing treatment based on the evolution of silk motifs into β-sheet structures in order to fulfill the required mechanical properties of hydrogels for cartilage repair. The new preannealed SELRs (pA(EIS)2-(I5R)6) were characterized with the combination of several experimental techniques (CD, TEM, SEM, and rheology) to provide a deep insight into the material features. Finally, the regeneration properties of the pA(EIS)2-(I5R)6 hydrogel embedded with chondrocytes were evaluated. After 4 weeks of culturing in a standardized and representative ex vivo model, the biochemical and histological analysis revealed the production of glycosaminglycans and collagen. Moreover, the immunohistochemistry showed the absence of fibro-cartilage and the presence of hyaline cartilage. Hence, we conclude that the pA(EIS)2-(I5R)6 hydrogel presents improved mechanical properties while conserving the injectability, which leads to successful regeneration of hyaline cartilage in an ex vivo model.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain
| | - Melanie Krüger
- LifeTec Group B.V. , 5611 ZS Eindhoven , The Netherlands
| | - Israel Gonzalez de Torre
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Luis Quintanilla Sierra
- Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Matilde Alonso Rodrigo
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| | - Linda Kock
- LifeTec Group B.V. , 5611 ZS Eindhoven , The Netherlands
| | - José Carlos Rodriguez-Cabello
- Technical Proteins Nanobiotechnology S.L. , Paseo Belén 9A , 47001 Valladolid , Spain.,Bioforge , University of Valladolid CIBER-BNN , Paseo de Belén 19 , 47001 Valladolid , Spain
| |
Collapse
|
9
|
Cobb JS, Zai-Rose V, Correia JJ, Janorkar AV. Visualization of the temperature dependent rearrangement of SynB1 elastin-like polypeptide on silica using scanning electron microscopy. Anal Biochem 2018; 558:41-49. [PMID: 30063889 DOI: 10.1016/j.ab.2018.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
In this study, scanning electron microscopy (SEM) was used to observe the interaction between de-solvated SynB1-elastin-like polypeptide (SynB1-ELP) and silica at a temperature above ELP's lower critical solution temperature (LCST). ELP was seen to initially wet the surface of the silica before rearranging to form narrowly distributed spherical particles. After formation, the ELP particles dynamically rearranged to increase and subsequently decrease in size until 24 h at which time they collapsed. SEM and Energy Dispersive X-ray Spectroscopy revealed that the formation of a thin layer of salt from the PBS solution preceded the initial wetting of ELP on silica, which was shown to play a role in the continuous rearrangement of ELP. FT-IR revealed that the salt, in combination with the hydrophilic silica, trapped water that provided a repulsive surface to the hydrophobic ELP and forced the ELP to continuously minimize its surface area until the water evaporated. This behavior shows that ELP's thermo-responsive nature coupled with its hydrophobicity can be used to create ELP particles and surfaces that can reorganize with minimal water present.
Collapse
Affiliation(s)
- Jared S Cobb
- Department of Biomedical Materials Science, School of Dentistry, 2500 N State St, Jackson, MS, 39216, USA
| | - Valeria Zai-Rose
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - John J Correia
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
10
|
Su Z, Pramounmat N, Watson ST, Renner JN. Engineered interaction between short elastin-like peptides and perfluorinated sulfonic-acid ionomer. SOFT MATTER 2018; 14:3528-3535. [PMID: 29675538 DOI: 10.1039/c8sm00351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Control of ionomer thin films on metal surfaces is important for a range of electrodes used in electrochemical applications. Engineered peptides have emerged as powerful tools in electrode assembly because binding sites and peptide structures can be modulated by changing the amino acid sequence. However, no studies have been conducted showing peptides can be engineered to interact with ionomers and metals simultaneously. In this study, we design a single-repeat elastin-like peptide to bind to gold using a cysteine residue, and bind to a perfluorinated sulfonic-acid ionomer called Nafion® using a lysine guest residue. Quartz crystal microbalance with dissipation monitoring and atomic force microscopy are used to show that an elastin-like peptide monolayer attached to gold facilitates the formation of a thin, phase-separated ionomer layer. Dynamic light scattering confirms that the interaction between the peptide with the lysine residue and the ionomer also happens in solution, and circular dichroism shows that the peptides maintain their secondary structures in the presence of ionomer. These results demonstrate that elastin-like peptides are promising tools for ionomer control in electrode engineering.
Collapse
Affiliation(s)
- Zihang Su
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
11
|
Parker RN, Roth KL, Kim C, McCord JP, Van Dyke ME, Grove TZ. Homo- and heteropolymer self-assembly of recombinant trichocytic keratins. Biopolymers 2017; 107. [PMID: 28741310 DOI: 10.1002/bip.23037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by-products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero- and one-dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self-assembly mechanism highlights the importance of disulfide crosslinking in keratin self-assembly.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Kristina L Roth
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Christina Kim
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Jennifer P McCord
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24060
| | - Tijana Z Grove
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| |
Collapse
|
12
|
Weeks CA, Aden B, Kilbey SM, Janorkar AV. Synthesis and Characterization of an Array of Elastin-like Polypeptide–Polyelectrolyte Conjugates with Varying Chemistries and Amine Content for Biomedical Applications. ACS Biomater Sci Eng 2016; 2:2196-2206. [DOI: 10.1021/acsbiomaterials.6b00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C. Andrew Weeks
- Department
of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Bethany Aden
- Departments
of Chemistry and Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - S. Michael Kilbey
- Departments
of Chemistry and Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Amol V. Janorkar
- Department
of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| |
Collapse
|
13
|
Le DHT, Okubo T, Sugawara-Narutaki A. Beaded nanofibers assembled from double-hydrophobic elastin-like block polypeptides: Effects of trifluoroethanol. Biopolymers 2016; 103:175-85. [PMID: 25363567 DOI: 10.1002/bip.22582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/07/2022]
Abstract
A "double-hydrophobic" elastin-like triblock polypeptide GPG has been constructed by mimicking the localization of proline- and glycine-rich hydrophobic domains of native elastin, a protein that provides elasticity and resilience to connective tissues. In this study, the effects of trifluoroethanol (TFE), an organic solvent that strongly affects secondary structures of polypeptides on self-assembly of GPG in aqueous solutions were systematically studied. Beaded nanofiber formation of GPG, where nanoparticles are initially formed by coacervation of the polypeptides followed by their connection into one-dimensional nanostructures, is accelerated by the addition of TFE at the concentrations up to 30% (v/v), whereas aggregates of nanoparticles are formed at 60% TFE. The concentration-dependent assembly pattern discussed is based on the influence of TFE on the secondary structures of GPG. Well-defined nanofibers whose diameter and secondary structures are controlled by TFE concentration may be ideal building blocks for constructing bioelastic materials in tissue engineering.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | | |
Collapse
|
14
|
Evolution of amphiphilic elastin-like co-recombinamer morphologies from micelles to a lyotropic hydrogel. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Loo Y, Goktas M, Tekinay AB, Guler MO, Hauser CAE, Mitraki A. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration. Adv Healthc Mater 2015; 4:2557-86. [PMID: 26461979 DOI: 10.1002/adhm.201500402] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/24/2015] [Indexed: 12/15/2022]
Abstract
Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted.
Collapse
Affiliation(s)
- Yihua Loo
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Melis Goktas
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Charlotte A. E. Hauser
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Anna Mitraki
- Department of Materials Science and Technology; University of Crete; Greece 70013
- Institute for Electronic Structure and Lasers (IESL); Foundation for Research and Technology Hellas (FORTH); Vassilika Vouton; Heraklion Crete Greece 70013
| |
Collapse
|
16
|
Fernández-Colino A, Arias FJ, Alonso M, Rodríguez-Cabello JC. Amphiphilic Elastin-Like Block Co-Recombinamers Containing Leucine Zippers: Cooperative Interplay between Both Domains Results in Injectable and Stable Hydrogels. Biomacromolecules 2015; 16:3389-98. [PMID: 26391850 DOI: 10.1021/acs.biomac.5b01103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many biological processes are regulated by reversible binding events, with these interactions between macromolecules representing the core of dynamic chemistry. As such, any attempt to gain a better understanding of such interactions, which would pave the way to the extrapolation of natural designs to create new advanced systems, is clearly of interest. This work focuses on the development of a leucine zipper-elastin-like recombinamer (ZELR) in order to elucidate the behavior of such domains when coexisting along the same molecule and to engineer reversible, injectable and stable hydrogels. The unique propensity of the Z-moiety selected to dimerize, together with the thermosensitive behavior of the ELR, which has been constructed as a thermosensitive amphiphilic tetrablock, has been engineered into a single recombinant molecule. In this molecular design, the Z-moieties are unable to form a network, while the ELR is below its Tt, thus, guaranteeing the liquid-like state of the system. However, this situation changes rapidly as the temperature increases above Tt, where a stable hydrogel is formed, as demostrated by rheological tests. The inability of the ELR molecule (without Z-domains) to form such a stable hydrogel above Tt clearly points to a positive cooperative effect between these two domains (Z and EL), and no conformational changes in the former are involved, as demonstrated by circular dichroism analysis. AFM shows that Z-motifs seem to induce the aggregation of micelles, which supports the enhanced stability displayed by ZELRs when compared to ELR at the macroscale level. To the best of our knowledge, this is the first time that such an interplay between these two domains has been reported. Furthermore, the cytocompatibility of the resulting hydrogels opens the door to their use in biomedical applications.
Collapse
Affiliation(s)
- Alicia Fernández-Colino
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN , Paseo de Belén 11, 47011 Valladolid, Spain
| | - F Javier Arias
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN , Paseo de Belén 11, 47011 Valladolid, Spain
| | - Matilde Alonso
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN , Paseo de Belén 11, 47011 Valladolid, Spain
| | | |
Collapse
|
17
|
Garanger E, MacEwan SR, Sandre O, Brûlet A, Bataille L, Chilkoti A, Lecommandoux S. Structural Evolution of a Stimulus-Responsive Diblock Polypeptide Micelle by Temperature Tunable Compaction of its Core. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elisabeth Garanger
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Sarah R. MacEwan
- Department
of Biomedical Engineering, Duke University, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Olivier Sandre
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| | - Annie Brûlet
- Laboratoire
Léon Brillouin (LLB), CEA-CNRS UMR 12, CEA-Saclay, Gif-sur-Yvette 91191, France
| | - Laure Bataille
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Ashutosh Chilkoti
- Department
of Biomedical Engineering, Duke University, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Sébastien Lecommandoux
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| |
Collapse
|
18
|
Nouri FS, Wang X, Chen X, Hatefi A. Reducing the Visibility of the Vector/DNA Nanocomplexes to the Immune System by Elastin-Like Peptides. Pharm Res 2015; 32:3018-28. [DOI: 10.1007/s11095-015-1683-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/18/2015] [Indexed: 01/21/2023]
|
19
|
da Costa A, Machado R, Ribeiro A, Collins T, Thiagarajan V, Neves-Petersen MT, Rodríguez-Cabello JC, Gomes AC, Casal M. Development of Elastin-Like Recombinamer Films with Antimicrobial Activity. Biomacromolecules 2015; 16:625-35. [DOI: 10.1021/bm5016706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- André da Costa
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Ribeiro
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tony Collins
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Viruthachalam Thiagarajan
- School
of Chemistry, Bharathidasan University, Tiruchirappalli − 620 024, India
- BioPhotonics
Group, Nanomedicine Department, International Iberian Nanotechnology Laboratory (INL), P-4715-310 Braga, Portugal
| | - Maria Teresa Neves-Petersen
- BioPhotonics
Group, Nanomedicine Department, International Iberian Nanotechnology Laboratory (INL), P-4715-310 Braga, Portugal
- Faculty
of Medicine, Aalborg University, DK-9220 Aalborg, Denmark
| | - José Carlos Rodríguez-Cabello
- Bioforge
(Group for Advanced Materials and Nanobiotechnology), Centro I+D, Universidad de Valladolid, Valladolid, Spain
- Networking
Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-47011 Valladolid, Spain
| | - Andreia C. Gomes
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Margarida Casal
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Silva R, Fabry B, Boccaccini AR. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 2014; 35:6727-38. [DOI: 10.1016/j.biomaterials.2014.04.078] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/22/2014] [Indexed: 01/26/2023]
|
21
|
TURNER PAULA, JOSHI GAURAVV, WEEKS CANDREW, WILLIAMSON RSCOTT, PUCKETT AAROND, JANORKAR AMOLV. NANO AND MICRO-STRUCTURES OF ELASTIN-LIKE POLYPEPTIDE-BASED MATERIALS AND THEIR APPLICATIONS: RECENT DEVELOPMENTS. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984413430022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Elastin-like polypeptide (ELP) containing materials have spurred significant research interest for biomedical applications exploiting their biocompatible, biodegradable and nonimmunogenic nature while maintaining precise control over their chemical structure and functionality through genetic engineering. Physical, mechanical and biological properties of ELPs could be further manipulated using genetic engineering or through conjugation with a variety of chemical moieties. These chemical and physical modifications also achieve interesting micro- and nanostructured ELP-based materials. Here, we review the recent developments during the past decade in the methods to engineer elastin-like materials, available genetic and chemical modification methods and applications of ELP micro and nanostructures in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- PAUL A. TURNER
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - GAURAV V. JOSHI
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - C. ANDREW WEEKS
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - R. SCOTT WILLIAMSON
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AARON D. PUCKETT
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AMOL V. JANORKAR
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
22
|
Yuan W, Lu S, Xiang Y, Jiang SP. Pt-based nanoparticles on non-covalent functionalized carbon nanotubes as effective electrocatalysts for proton exchange membrane fuel cells. RSC Adv 2014. [DOI: 10.1039/c4ra05120c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents the latest progress in the development of non-covalent functionalized CNT supported Pt-based electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Weiyong Yuan
- Fuels and Energy Technology Institute & Department of Chemical Engineering
- Curtin University
- Perth, Australia
| | - Shanfu Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing 100191, PR China
| | - Yan Xiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing 100191, PR China
| | - San Ping Jiang
- Fuels and Energy Technology Institute & Department of Chemical Engineering
- Curtin University
- Perth, Australia
| |
Collapse
|
23
|
Ghezzi CE, Rnjak-Kovacina J, Weiss AS, Kaplan DL. Multifunctional silk-tropoelastin biomaterial systems. Isr J Chem 2013; 53:777-786. [PMID: 26005219 DOI: 10.1002/ijch.201300082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
New multifunctional, degradable, polymeric biomaterial systems would provide versatile platforms to address cell and tissue needs in both in vitro and in vivo environments. While protein-based composites or alloys are the building blocks of biological organisms, similar systems have not been largely exploited to dates to generate ad hoc biomaterials able to control and direct biological functions, by recapitulating their inherent structural and mechanical complexities. Therefore, we have recently proposed silk-tropoelastin material platforms able to conjugate a mechanically robust and durable protein, silk, to a highly flexible and biologically active protein, tropoelastin. This review focuses on the elucidation of the interactions between silk and tropoelastin in order to control material structure, properties, and ultimately functions. In addition, an approach is provided for novel material designs to provide tools to control biological outcomes via surface roughness, elasticity, and net charge for neuronal and mesenchymal stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | | | - Anthony S Weiss
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Bosch Institute, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
24
|
Hu X, Tang-Schomer MD, Huang W, Xia XX, Weiss AS, Kaplan DL. Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3875-3884. [PMID: 25093018 PMCID: PMC4118775 DOI: 10.1002/adfm.201202685] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tunable protein composites are important for constructing extracellular matrix mimics of human tissues with control of biochemical, structural, and mechanical properties. Molecular interaction mechanisms between silk fibroin protein and recombinant human tropoelastin, based on charge, are utilized to generate a new group of multifunctional protein alloys (mixtures of silk and tropoelastin) with different net charges. These new biomaterials are then utilized as a biomaterial platform to control neuron cell response. With a +38 net charge in water, tropoelastin molecules provide extraordinary elasticity and selective interactions with cell surface integrins. In contrast, negatively charged silk fibroin protein (net charge -36) provides remarkable toughness and stiffness with morphologic stability in material formats via autoclaving-induced beta-sheet crystal physical crosslinks. The combination of these properties in alloy format extends the versatility of both structural proteins, providing a new biomaterial platform. The alloys with weak positive charges (silk/tropoelastin mass ratio 75/25, net charge around +16) significantly improved the formation of neuronal networks and maintained cell viability of rat cortical neurons after 10 days in vitro. The data point to these protein alloys as an alternative to commonly used poly-L-lysine (PLL) coatings or other charged synthetic polymers, particularly with regard to the versatility of material formats (e.g., gels, sponges, films, fibers). The results also provide a practical example of physically designed protein materials with control of net charge to direct biological outcomes, in this case for neuronal tissue engineering.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Min D. Tang-Schomer
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Xiao-Xia Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| | - Anthony S. Weiss
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006 (Australia)
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 (USA)
| |
Collapse
|
25
|
Turner PA, Weeks CA, McMurphy AJ, Janorkar AV. Spheroid organization kinetics of H35 rat hepatoma model cell system on elastin-like polypeptide-polyethyleneimine copolymer substrates. J Biomed Mater Res A 2013; 102:852-61. [PMID: 23564487 DOI: 10.1002/jbm.a.34743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 01/28/2023]
Abstract
Though two-dimensional systems have yielded some success in deriving morphological and functional markers of hepatocyte culture, they largely fail to capture the three-dimensional organization, long-term viability, and functionality of the hepatic tissue. We have engineered a system for inducing self-assembly of model H35 rat hepatoma spheroids using a copolymer comprised of biocompatible elastin-like polypeptide (ELP) chemically conjugated to positively charged polyethyleneimine (PEI). We have achieved a conjugation ratio of 30 mol %, though our studies analyzing spheroid organization kinetics indicate conjugate ratios of 5 mol % and greater to be optimal for cell culture based on least variability in spheroid sizes and minimum incidence of overgrown aggregates. Furthermore, our ELP-PEI system indicated the potential for influencing ultimate spheroid dimensions, with spheroid size inversely related to polyelectrolyte conjugation. Overall, this study provides a good starting point to investigate functional correlations between spheroid size and functional markers and their future use as an in vitro diagnostic or tissue engineering tool.
Collapse
Affiliation(s)
- Paul A Turner
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | |
Collapse
|
26
|
Le DHT, Hanamura R, Pham DH, Kato M, Tirrell DA, Okubo T, Sugawara-Narutaki A. Self-assembly of elastin-mimetic double hydrophobic polypeptides. Biomacromolecules 2013; 14:1028-34. [PMID: 23495825 DOI: 10.1021/bm301887m] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have constructed a novel class of "double-hydrophobic" block polypeptides based on the hydrophobic domains found in native elastin, an extracellular matrix protein responsible for the elasticity and resilience of tissues. The block polypeptides comprise proline-rich poly(VPGXG) and glycine-rich poly(VGGVG), both of which dehydrate at higher temperature but form distinct secondary structures, β-turn and β-sheet respectively. In water at 45 °C, the block polypeptides initially assemble into nanoparticles rich in β-turn structures, which further connect into long (>10 μm), beaded nanofibers along with the increase in the β-sheet content. The nanofibers obtained are well-dispersed in water, and show thermoresponsive properties. Polypeptides comprising each block component assemble into different morphologies, showing that the conjugation of poly(VPGXG) and poly(VGGVG) plays a role for beaded fiber formation. These results may provide innovative ideas for designing peptide-based materials but also opportunities for developing novel materials useful for tissue engineering and drug delivery systems.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee KM, Jung GS, Park JK, Choi SK, Jeon WB. Effects of Arg-Gly-Asp-modified elastin-like polypeptide on pseudoislet formation via up-regulation of cell adhesion molecules and extracellular matrix proteins. Acta Biomater 2013; 9:5600-8. [PMID: 23142478 DOI: 10.1016/j.actbio.2012.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/17/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022]
Abstract
Extracellular matrix (ECM) plays an important role in controlling the β-cell morphology, survival and insulin secretary functions. An RGD-modified elastin-like polypeptide (RGD-ELP), TGPG[VGRGD(VGVPG)(6)](20)WPC, has been reported previously as a bioactive matrix. In this study, to investigate whether RGD-ELP affects β-cell growth characteristics and insulin secretion, β-TC6 cells were cultured on the RGD-ELP coatings prepared via thermally induced phase transition. On RGD-ELP, β-TC6 cells clustered into an islet-like architecture with high cell viability. Throughout 7days' culture, the proliferation rate of the cells within a pseudoislet was similar to that of monolayer culture. Under high glucose (25mM), β-TC6 pseudoislets showed up-regulated insulin gene expression and exhibited glucose-stimulated insulin secretion. Importantly, the mRNA and protein abundances of cell adhesion molecules (CAM) E-cadherin and connexin-36 were much higher in pseudoislets than in monolayer cells. The siRNA-mediated inhibition of E-cadherin or connexin-36 expression severely limited pseudoislet formation. In addition, the mRNA levels of collagen types I and IV, fibronectin and laminin were significantly elevated in pseudoislets. The results suggest that RGD-ELP promotes pseudoislet formation via up-regulation of the CAM and ECM components. The functional roles of RGD-ELP are discussed in respect of its molecular composition.
Collapse
Affiliation(s)
- Kyeong-Min Lee
- Laboratory of Biochemistry and Cellular Engineering, Division of NanoBio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea
| | | | | | | | | |
Collapse
|
28
|
Kato M, Suwanai Y, Shimojima A, Santa T. A surfactant-based, regularly arrayed nanostructure gel matrix for migration of small molecules. Electrophoresis 2012; 33:3339-42. [DOI: 10.1002/elps.201200235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/09/2012] [Accepted: 05/30/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Masaru Kato
- Graduate School of Pharmaceutical Sciences and Global COE Program; The University of Tokyo; Bunkyo-ku; Tokyo; Japan
| | - Yusuke Suwanai
- Graduate School of Pharmaceutical Sciences and Global COE Program; The University of Tokyo; Bunkyo-ku; Tokyo; Japan
| | - Atsushi Shimojima
- Graduate School of Engineering; The University of Tokyo; Bunkyo-ku; Tokyo; Japan
| | - Tomofumi Santa
- Graduate School of Pharmaceutical Sciences and Global COE Program; The University of Tokyo; Bunkyo-ku; Tokyo; Japan
| |
Collapse
|
29
|
Lu J, Tang H, Xu C, Jiang SP. Nafion membranes with ordered mesoporous structure and high water retention properties for fuel cell applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm14838b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Girotti A, Fernández-Colino A, López IM, Rodríguez-Cabello JC, Arias FJ. Elastin-like recombinamers: Biosynthetic strategies and biotechnological applications. Biotechnol J 2011; 6:1174-86. [DOI: 10.1002/biot.201100116] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/16/2011] [Accepted: 07/28/2011] [Indexed: 01/02/2023]
|
31
|
Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 2011; 12:2957-65. [PMID: 21707089 DOI: 10.1021/bm2005388] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-inspired biomaterials have gained great interest as an alternative to synthetic polymers, in particular, for their potential use as biomedical devices. The potential inspiring models are mainly proteins able to confer mechanical properties to tissues and organs, such as elasticity (elastin, resilin, spider silk) and strength (collagen, silk). The proper combination of repetitive sequences, each of them derived from different proteins, represents a useful tool for obtaining biomaterials with tailored mechanical properties and biological functions. In this report we describe the design, the production, and the preliminary characterization of a chimeric polypeptide, based on sequences derived from the highly resilient proteins resilin and elastin and from collagen-like sequences. The results show that the obtained chimeric recombinant material exhibits promising self-assembling properties. Young's modulus of the fibers was determined by AFM image analysis and lies in the range of 0.1-3 MPa in agreement with the expectations for elastin-like and resilin-like materials.
Collapse
Affiliation(s)
- Angelo Bracalello
- Department of Chemistry Antonio M. Tamburrro, University of Basilicata , 85100 Potenza, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Vasconcelos A, Cavaco-Paulo A. Wound dressings for a proteolytic-rich environment. Appl Microbiol Biotechnol 2011; 90:445-60. [DOI: 10.1007/s00253-011-3135-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/28/2022]
|
33
|
Lu J, Lu S, Jiang SP. Highly ordered mesoporous Nafion membranes for fuel cells. Chem Commun (Camb) 2011; 47:3216-8. [PMID: 21286615 DOI: 10.1039/c0cc05560c] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly ordered mesoporous Nafion membrane with a remarkable water retention ability was synthesized via a micelle templating method with self-assembled Pluronic F108 surfactants and its capability to operate under completely dry gas streams is demonstrated.
Collapse
Affiliation(s)
- Jinlin Lu
- Curtin Centre for Advanced Energy Science and Engineering, Curtin University, Perth, WA 6845, Australia
| | | | | |
Collapse
|
34
|
Hu X, Wang X, Rnjak J, Weiss AS, Kaplan DL. Biomaterials derived from silk-tropoelastin protein systems. Biomaterials 2010; 31:8121-31. [PMID: 20674969 DOI: 10.1016/j.biomaterials.2010.07.044] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/07/2010] [Indexed: 01/03/2023]
Abstract
A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from approximately 68%- approximately 97%, and elastic modulus between 2 and 9 Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | |
Collapse
|
35
|
Kim W, Thévenot J, Ibarboure E, Lecommandoux S, Chaikof E. Self-Assembly of Thermally Responsive Amphiphilic Diblock Copolypeptides into Spherical Micellar Nanoparticles. Angew Chem Int Ed Engl 2010; 49:4257-60. [DOI: 10.1002/anie.201001356] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Kim W, Thévenot J, Ibarboure E, Lecommandoux S, Chaikof E. Self-Assembly of Thermally Responsive Amphiphilic Diblock Copolypeptides into Spherical Micellar Nanoparticles. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001356] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Bilsel M, Arkin H. Residue length and solvation model dependency of elastinlike polypeptides. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:051906. [PMID: 20866260 DOI: 10.1103/physreve.81.051906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Indexed: 05/29/2023]
Abstract
We have performed exhaustive multicanonical Monte Carlo simulations of elastinlike polypeptides with a chain including amino acids (valine-proline-glycine-valine-glycine)n or in short (VPGVG)n, where n changes from 1 to 4, in order to investigate the thermodynamic and structural properties. To predict the characteristic secondary structure motifs of the molecules, Ramachandran plots were prepared and analyzed as well. In these studies, we utilized a realistic model where the interactions between all types of atoms were taken into account. Effects of solvation were also simulated by using an implicit-solvent model with two commonly used solvation parameter sets and compared with the vacuum case.
Collapse
Affiliation(s)
- Mustafa Bilsel
- Department of Physics Engineering, Ankara University, Tandoğan, Ankara 06100, Turkey.
| | | |
Collapse
|
38
|
Alvarez-Rodriguez R, Alonso M, Girotti A, Reboto V, Rodriguez-Cabello JC. One-pot synthesis of pH and temperature sensitive gold clusters mediated by a recombinant elastin-like polymer. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2009.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Bernards DA, Desai TA. Nanoscale porosity in polymer films: fabrication and therapeutic applications. SOFT MATTER 2010; 6:1621-1631. [PMID: 22140398 PMCID: PMC3226808 DOI: 10.1039/b922303g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This review focuses on current developments in the field of nanostructured bulk polymers and their application in bioengineering and therapeutic sciences. In contrast to well-established nanoscale materials, such as nanoparticles and nanofibers, bulk nanostructured polymers combine nanoscale structure in a macroscopic construct, which enables unique application of these materials. Contemporary fabrication and processing techniques capable of producing nanoporous polymer films are reviewed. Focus is placed on techniques capable of sub-100 nm features since this range approaches the size scale of biological components, such as proteins and viruses. The attributes of these techniques are compared, with an emphasis on the characteristic advantages and limitations of each method. Finally, application of these materials to biofiltration, immunoisolation, and drug delivery are reviewed.
Collapse
Affiliation(s)
- Daniel A. Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| |
Collapse
|
40
|
Rodríguez-Cabello JC, Pierna M, Fernández-Colino A, García-Arévalo C, Arias FJ. Recombinamers: combining molecular complexity with diverse bioactivities for advanced biomedical and biotechnological applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 125:145-79. [PMID: 21072696 DOI: 10.1007/10_2010_94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The rapid development of polymer science has led to literally thousands of different monomers and an almost endless number of possibilities arising from their combination. The most promising strategy to date has been to consider natural products as macromolecules that provide the best option for obtaining functional materials. Proteins, with their high levels of complexity and functionality, are one of the best examples of this approach. In addition, the development of genetic engineering has permitted the design and highly controlled synthesis of proteinaceous materials with complex and advanced functionalities. Elastin-like recombinamers (ELRs) are presented herein as an example of an extraordinary convergence of different properties that is not found in any other synthetic polymer system. These materials are highly biocompatible, stimuli-responsive, show unusual self-assembly properties, and can incorporate bioactive domains and other functionalities along the polypeptide chain. These attributes are an important factor in the development of biomedical and biotechnological applications such as tissue engineering, drug delivery, purification of recombinant proteins, biosensors or stimuli-responsive surfaces.
Collapse
|
41
|
Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol 2009; 28:37-45. [PMID: 19897265 DOI: 10.1016/j.tibtech.2009.10.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 11/21/2022]
Abstract
Elastin-like polypeptides (ELPs) are highly biocompatible and exhibit a potentially highly useful property: that of a thermally responsive reversible phase transition. These characteristics make ELPs attractive for drug delivery, appealing as materials for tissue repair or engineering, and improve the efficiency with which recombinant proteins can be purified. ELP fusion proteins (referred to as ELPylation) inherit the reversible phase transition property. ELPylation technology recently has been extended to plant cells, and a number of plant-based expression systems have been evaluated for the production of ELPylated proteins. Here, we discuss recent developments in ELP technology and the substantial potential of ELPs for the deployment of transgenic plants as bioreactors to synthesize both biopharmaceuticals and industrial proteins.
Collapse
|
42
|
Rodríguez-Cabello JC, Martín L, Alonso M, Arias FJ, Testera AM. “Recombinamers” as advanced materials for the post-oil age. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.08.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Tamburro AM. A never-ending love story with elastin: a scientific autobiography. Nanomedicine (Lond) 2009; 4:469-87. [PMID: 19505248 DOI: 10.2217/nnm.09.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The author describes, in a quite unconventional way, the most important results achieved in the last 50 years in the field of elastin structure–elasticity relationships, beginning with the first invaluable findings of Partridge on desmosines and isodesmosines until the most recent theories on elastomeric proteins. The author also relates a scientific autobiography characterized by his greatest passion, elastin.
Collapse
Affiliation(s)
- Antonio M Tamburro
- University of Basilicata, Department of Chemistry, Via N. Sauro 85, 85100 Potenza, Italy
| |
Collapse
|
44
|
Bochicchio B, Pepe A, Tamburro AM. Investigating by CD the molecular mechanism of elasticity of elastomeric proteins. Chirality 2008; 20:985-94. [DOI: 10.1002/chir.20541] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Swierczewska M, Hajicharalambous C, Janorkar A, Megeed Z, Yarmush M, Rajagopalan P. Cellular response to nanoscale elastin-like polypeptide polyelectrolyte multilayers. Acta Biomater 2008; 4:827-37. [PMID: 18178532 DOI: 10.1016/j.actbio.2007.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 10/31/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
Ionic elastin-like polypeptide (ELP) conjugates are a new class of biocompatible, self-assembling biomaterials. ELPs composed of the repeat unit (GVGVP)(n) are derived from the primary sequence of mammalian elastin and produced in Escherichia coli. These biopolymers exhibit an inverse transition temperature that renders them extremely useful for applications in cell-sheet engineering. Cationic and anionic conjugates were synthesized by the chemical coupling of ELP to polyethyleneimine (PEI) and polyacrylic acid (PAA). The self-assembly of ELP-PEI and ELP-PAA using the layer-by-layer deposition of alternately charged polyelectrolytes is a simple, versatile technique to generate bioactive and biomimetic surfaces with the ability to modulate cell-substratum interactions. Our studies are focused on cellular response to self-assembled multilayers of ionic (GVGVP)(40) incorporated within the polymeric sequence H(2)N-MVSACRGPG-(GVGVP)(40)-WP-COOH. Angle-dependent XPS studies indicated a difference in the chemical composition at the surface ( approximately 10A below the surface) and subsurface regions. These studies provided additional insight into the growth of the nanoscale multilayer assembly as well as the chemical environment that the cells can sense. Overall, cellular response was enhanced on glass substrata coated with ELP conjugates compared with uncoated surfaces. We report significant differences in cell proliferation, focal adhesions and cytoskeletal organization as a function of the number of bilayers in each assembly. These multilayer assemblies have the potential to be successfully utilized in the rational design of coatings on biomaterials to elicit a desired cellular response.
Collapse
|
46
|
Rodríguez-Cabello JC, Prieto S, Arias FJ, Reguera J, Ribeiro A. Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers. Nanomedicine (Lond) 2007; 1:267-80. [PMID: 17716158 DOI: 10.2217/17435889.1.3.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Today, the development of advanced biomaterials is still lacking an appropriate tailored engineering approach. Most of the biomaterials currently used have their origin in materials developed for other technological applications. This lack of adequate biomaterial design is probably due to the peculiar environment where those materials must operate. On the one hand, this environment is dominated by the immune rejection system. On the other hand, the functionality of natural biomolecules is based on complex topological physical-chemical function distributions at the nanometer level. This review presents arguments concerning the role of biotechnology and nanotechnology in the future development of new advanced biomaterials and the potential of these biomaterials as a way to achieve highly biofunctional and truly biocompatible biomaterials for hot areas, such as regenerative medicine and controlled release. Recombinant protein-polymers will be presented as an example of candidates for this new paradigm in biomaterial design and production.
Collapse
Affiliation(s)
- J Carlos Rodríguez-Cabello
- Bioforge group, Dpto. Física de la Materia Condensada, ETSII, Universidad de Valladolid, Valladolid, Spain.
| | | | | | | | | |
Collapse
|
47
|
Pepe A, Bochicchio B, Tamburro AM. Supramolecular organization of elastin and elastin-related nanostructured biopolymers. Nanomedicine (Lond) 2007; 2:203-18. [PMID: 17716121 DOI: 10.2217/17435889.2.2.203] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ultrastructure of elastin has been extensively analyzed by different methodologies. Starting from the first descriptions, where elastin was depicted as an amorphous structure, more complex and, in some cases, varied morphologies were revealed. The supramolecular structures found for elastin have been compared with those found for other elastin-related polypeptides, such as alpha-elastin and tropoelastin, and very similar features emerged. This review will deal with the supramolecular organization exhibited by many elastin-related compounds, starting from elastin, going through polypeptides constituted by different domains of tropoelastin, up to polymers containing repetitive sequences of elastin. In particular, recent developments on biopolymers of general type poly(Val-Pro-Gly-Xaa-Gly) and poly(Xaa-Gly-Gly-Zaa-Gly) (Xaa, Zaa = Val, Leu, Lys, Glu, Orn) obtained either by chemical synthesis or recombinant DNA techniques will be discussed in detail. The general aim is to describe the supramolecular features useful for the identification of elastin-inspired nanostructured biopolymers for developing highly functional and biocompatible vascular grafts as well as scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- Antonietta Pepe
- Università della Basilicata, Department of Chemistry, Via N. Sauro 85, 85100 Potenza, Italy.
| | | | | |
Collapse
|
48
|
Schweizer S, Taubert A. Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution. Macromol Biosci 2007; 7:1085-99. [PMID: 17712804 DOI: 10.1002/mabi.200600283] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nowadays, the majority of the commercially available calcium phosphate materials is fabricated by 'classical' materials science approaches, i.e., from rather poorly defined slurries or from organic solvents, often at high temperatures and pressures. Bioinspired precipitation of inorganics with (polymeric) additives from aqueous solution, on the other hand, enables the synthesis of intriguing inorganic or organic/inorganic materials that are often much more closely related to biological structures. This article discusses approaches for the fabrication of bio-inspired calcium phosphate hybrid materials by precipitation from aqueous solution. The article focuses on polymers and related self-assembling structures for the design of CaP/organic hybrids and pure CaP with crystal structures and morphologies regulated by the respective additive.
Collapse
Affiliation(s)
- Sylvia Schweizer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
49
|
Rodríguez-Cabello JC, Prieto S, Reguera J, Arias FJ, Ribeiro A. Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2007; 18:269-86. [PMID: 17471765 DOI: 10.1163/156856207779996904] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elastin-like recombinant protein polymers are a new family of polymers which are captivating the attention of a broad audience ranging from nanotechnologists to biomaterials and more basic scientists. This is due to the extraordinary confluence of different properties shown by this kind of material that are not found together in other polymer systems. Elastin-like polymers are extraordinarily biocompatible, acutely smart and show uncommon self-assembling capabilities. Additionally, they are highly versatile, since these properties can be tuned and expanded in many different ways by substituting the amino acids of the dominating repeating peptide or by inserting, in the polymer architecture, (bio)functional domains extracted from other natural proteins or de novo designs. Recently, the potential shown by elastin-like polymers has, in addition, been boosted and amplified by the use of recombinant DNA technologies. By this means, complex molecular designs and extreme control over the amino-acid sequence can be attained. Nowadays, the degree of complexity and control shown by the elastin-like protein polymers is well beyond the reach of even the most advanced polymer chemistry technologies. This will open new possibilities in obtaining synthetic advanced bio- and nanomaterials. This review explores the present development of elastin-like protein polymers, with a particular emphasis for biomedical uses, along with some future directions that this field will likely explore in the near future.
Collapse
Affiliation(s)
- J Carlos Rodríguez-Cabello
- BIOFORGE group, Dpto. Física de la Materia Condensada, ETSII, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
50
|
Hart DS, Gehrke SH. Thermally Associating Polypeptides Designed for Drug Delivery Produced by Genetically Engineered Cells. J Pharm Sci 2007; 96:484-516. [PMID: 17080413 DOI: 10.1002/jps.20755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermally associating polymers, including gelatin, cellulose ethers (e.g., Methocels and poloxamers (e.g., Pluronics) have a long history of use in pharmacy. Over the past 20 years, significant advances in genetic engineering and the understanding of protein secondary and tertiary structures have been made. This has led to the development of a variety of polypeptides that do not occur naturally but can be expressed in recombinant cells and have useful properties that lend themselves to novel applications where current materials cannot perform. The most intensively studied motifs are derived from the consensus repeats of elastin and silk, as well as coiled-coil helices. Many of these designed polypeptides or 'artificial proteins' are thermally associating materials. This property can be exploited to develop solid dosage forms, injectable drug delivery systems, micro- or nanoparticle drug carriers, triggered or targeted release systems, or as a means of simplifying the purification process and thus reducing costs of production of these materials. This review focuses on the development and characterization of this novel class of biomaterials and examines their potential for pharmaceutical applications.
Collapse
Affiliation(s)
- David S Hart
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St., Lawrence, Kansas 66045, USA
| | | |
Collapse
|