1
|
Johannsen F, Williams L, Chak MH, Drescher M. Real-Time Monitoring of Photoinduced pH Jumps by In Situ Rapid-Scan EPR Spectroscopy. J Phys Chem Lett 2024; 15:7069-7074. [PMID: 38950357 PMCID: PMC11247492 DOI: 10.1021/acs.jpclett.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
This work represents the first demonstration of monitoring kinetics upon a light-induced pH jump by in situ rapid-scan (RS) electron paramagnetic resonance (EPR) spectroscopy on the millisecond time scale. Here, we focus on the protonation state of an imidazolidine type radical as a pH sensor under visible light irradiation of a merocyanine photoacid in bulk solution. The results highlight the utility of photoacids in combination with pH-sensitive spin probes as an effective tool for the real-time investigation of biochemical mechanisms regulated by changes in the pH value.
Collapse
Affiliation(s)
- Florian Johannsen
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraße 10, 78464 Konstanz, Germany
| | - Lara Williams
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraße 10, 78464 Konstanz, Germany
| | - Man Him Chak
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
2
|
Singewald K, Wilkinson JA, Hasanbasri Z, Saxena S. Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements. Protein Sci 2022; 31:e4359. [PMID: 35762707 PMCID: PMC9202549 DOI: 10.1002/pro.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
Abstract
Site-specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site-specific β-sheet dynamics. Here, we employed EPR spectroscopy to measure site-specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) - nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α-helical and β-sheet sites. Spectral simulations of the resulting CW-EPR report unique site-specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes in gǁ values for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA-based EPR measurements to probe information beyond distance constraints.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| | | | | | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
3
|
Site directed spin labeling to elucidating the mechanism of the cyanobacterial circadian clock. Methods Enzymol 2022; 666:59-78. [PMID: 35465929 DOI: 10.1016/bs.mie.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that provides structural and dynamic information on unpaired spins and their surrounding environments. Introduction of exogenous spin labels via site directed spin labeling (SDSL) enables characterization of systems of interests lacking intrinsic unpaired spins. This chapter describes the use of SDSL in quantifying KaiB-KaiC binding in the cyanobacterial circadian clock (Kai Clock), exploiting the changes in mobility of the local environment around the spin label on KaiB-KaiC interactions. While the Kai system serves as our model system to demonstrate SDSL-EPR utility in quantifying protein-protein interactions, this technique is readily amenable to other systems of interest whenever specific protein-protein interactions need to be isolated. We first present a protocol for spin labeling KaiB. Then, we detail the sample preparation and acquisition processes to maximize signal-to-noise for downstream analysis. We close this chapter by highlighting recent advances in SDSL technology to incorporate spin labels into proteins of interest and in EPR technology to improve detection sensitivity that may allow greater flexibilities to the types of experiments possible.
Collapse
|
4
|
Auer AA, Tran VA, Sharma B, Stoychev GL, Marx D, Neese F. A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on EPR hyperfine coupling constants: vibrational perturbation theory versus ab initio molecular dynamics. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1797916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Van Anh Tran
- MPI für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Frank Neese
- MPI für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Exploring the pH-Induced Functional Phase Space of Human Serum Albumin by EPR Spectroscopy. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4040047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A systematic study on the self-assembled solution system of human serum albumin (HSA) and paramagnetic doxyl stearic acid (5-DSA and 16-DSA) ligands is reported covering the broad pH range 0.7–12.9, mainly using electron paramagnetic resonance (EPR) methods. It is tested to which extent the pH-induced conformational isomers of HSA reveal themselves in continuous wave (CW) EPR spectra from this spin probing approach in comparison to an established spin-labeling strategy utilizing 3-maleimido proxyl (5-MSL). Most analyses are conducted on empirical levels with robust strategies that allow for the detection of dynamic changes of ligand, as well as protein. Special emphasis has been placed on the EPR spectroscopic detection of a molten globule (MG) state of HSA that is typically found by the fluorescent probe 8-Anilino- naphthalene-1-sulfonic acid (ANS). Moreover, four-pulse double electron-electron resonance (DEER) experiments are conducted and substantiated with dynamic light scattering (DLS) data to determine changes in the solution shape of HSA with pH. All results are ultimately combined in a detailed scheme that describes the pH-induced functional phase space of HSA.
Collapse
|
6
|
Voinov MA, Scheid CT, Kirilyuk IA, Trofimov DG, Smirnov AI. IKMTSL-PTE, a Phospholipid-Based EPR Probe for Surface Electrostatic Potential of Biological Interfaces at Neutral pH: Effects of Temperature and Effective Dielectric Constant of the Solvent. J Phys Chem B 2017; 121:2443-2453. [DOI: 10.1021/acs.jpcb.7b00592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxim A. Voinov
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Christina T. Scheid
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Igor A. Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Lavrentiev Avenue 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Dmitrii G. Trofimov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Lavrentiev Avenue 9, Novosibirsk 630090, Russia
| | - Alex I. Smirnov
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
7
|
Margita K, Voinov MA, Smirnov AI. Effect of Solution Ionic Strength on the pK a of the Nitroxide pH EPR Probe 2,2,3,4,5,5-Hexamethylimidazolidin-1-oxyl. Cell Biochem Biophys 2017; 75:185-193. [PMID: 28210984 DOI: 10.1007/s12013-017-0780-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
Spin probe and spin labeling Electron Paramagnetic Resonance methods are indispensable research tools for solving a wide range of bioanalytical problems-from measuring microviscosity and polarity of phase-separated liquids to oxygen concentrations in tissues. One of the emerging uses of spin probes are the studies of proton transfer-related and surface electrostatic phenomena. The latter Electron Paramagnetic Resonance methods rely on molecular probes containing an additional functionality capable of reversible ionization (protonation, in particular) in the immediate proximity to an Electron Paramagnetic Resonance-active reporter group, such as (N-O•) for nitroxides. The consequent formation of protonated and nonprotonated nitroxide species with different magnetic parameters (A iso, g iso) could be readily distinguished by Electron Paramagnetic Resonance. Bioanalytical Electron Paramagnetic Resonance studies employing pH-sensitive paramagnetic probes typically involve determination of the equilibrium constant (pK a) between the protonated and nonprotonated forms of the nitroxide. However, any chemical equilibrium involving charged species, such as ionization of acids and bases, and so the reversible protonation of the nitroxide, is known to be affected by an ionic strength of the solution. Currently, only scarce data for the effect of the solution ionic strength on the experimental pK a's of the ionizable nitroxides can be found in the literature. Here we have carried out a series of Electron Paramagnetic Resonance titration experiments for aqueous solutions of 2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl (HMI) nitroxide known for one of the largest differences in the isotropic nitrogen hyperfine coupling constant A iso between the protonated and nonprotonated forms. Electrolyte concentration was varied over an exceptionally large range (i.e., from 0.05 to 5.0 M) to elucidate the effect of ionic strength on the ionization constant of this pH-sensitive Electron Paramagnetic Resonance probe and the data were compared to the Debye-Hückel limiting law. Effects of the ionic strength on the magnetic parameters of the ionizable nitroxides are also discussed.
Collapse
Affiliation(s)
- Kaleigh Margita
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, 27606, NC, USA
| | - Maxim A Voinov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, 27606, NC, USA
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, 27606, NC, USA.
| |
Collapse
|
8
|
Voinov MA, Smirnov AI. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR. Methods Enzymol 2015; 564:191-217. [PMID: 26477252 PMCID: PMC5008871 DOI: 10.1016/bs.mie.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
9
|
Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Kao JPY, Muralidharan S, Zavalij PY, Fletcher S, Xue F, Rosen GM. Baeyer-Villiger Rearrangement of a Substituted Pyrrole by Oxone. Tetrahedron Lett 2014; 55:3111-3113. [PMID: 24910476 DOI: 10.1016/j.tetlet.2014.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pyrroloxyls have been reported to exhibit very narrow EPR spectral lines, essential for in vivo imaging. En route to pyrroloxyls, we observed an unexpected Baeyer-Villiger rearrangement, leading to loss of aromaticity and formation of a 4,5-dihydro-1H-ketopyrrole.
Collapse
Affiliation(s)
- Joseph P Y Kao
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA ; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA ; Center for Low Frequency EPR Imaging for In Vivo Physiology, University of Maryland, Baltimore, MD 21201, USA
| | - Sukumaran Muralidharan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA ; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA ; University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA ; University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Gerald M Rosen
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA ; Center for Low Frequency EPR Imaging for In Vivo Physiology, University of Maryland, Baltimore, MD 21201, USA ; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Warshaviak DT, Khramtzov VV, Cascio D, Altenbach C, Hubbell WL. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:53-61. [PMID: 23694751 PMCID: PMC3758229 DOI: 10.1016/j.jmr.2013.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 05/03/2023]
Abstract
A disulfide-linked imidazoline nitroxide side chain (V1) has a similar and highly constrained internal motion at diverse topological sites in a protein, unlike that for the disulfide-linked pyrroline nitroxide side chain (R1) widely used in site directed spin labeling EPR. Crystal structures of V1 at two positions in a helix of T4 Lysozyme and quantum mechanical calculations suggest the source of the constraints as intra-side chain interactions of the disulfide sulfur atoms with both the protein backbone and the 3-nitrogen in the imidazoline ring. These interactions apparently limit the conformation of the side chain to one of only three possible rotamers, two of which are observed in the crystal structure. An inter-spin distance measurement in frozen solution using double electron-electron resonance (DEER) gives a value essentially identical to that determined from the crystal structure of the protein containing two copies of V1, indicating that lattice forces do not dictate the rotamers observed. Collectively, the results suggest the possibility of predetermining a unique rotamer of V1 in helical structures. In general, the reduced rotameric space of V1 compared to R1 should simplify interpretation of inter-spin distance information in terms of protein structure, while the highly constrained internal motion is expected to extend the dynamic range for characterizing large amplitude nanosecond backbone fluctuations.
Collapse
Affiliation(s)
- Dora Toledo Warshaviak
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Valery V. Khramtzov
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Department of Internal Medicine, The Ohio State University, 473 West 12th Ave., room 201, Columbus, Ohio 43210
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Christian Altenbach
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Corresponding author , Jules Stein Eye Institute, UCLA, 100 Stein Plaza, Los Angeles, CA 90095, 310-206-8830
| |
Collapse
|
12
|
Burks SR, Legenzov EA, Rosen GM, Kao JPY. Clearance and biodistribution of liposomally encapsulated nitroxides: a model for targeted delivery of electron paramagnetic resonance imaging probes to tumors. Drug Metab Dispos 2011; 39:1961-6. [PMID: 21737567 DOI: 10.1124/dmd.111.039636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the "self-quenching" phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo.
Collapse
Affiliation(s)
- Scott R Burks
- Center for Biomedical Engineering and Technology and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
13
|
Shelke SA, Sigurdsson ST. Site-Directed Nitroxide Spin Labeling of Biopolymers. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2011. [DOI: 10.1007/430_2011_62] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Bobko AA, Kirilyuk IA, Gritsan NP, Polovyanenko DN, Grigor’ev IA, Khramtsov VV, Bagryanskaya EG. EPR and Quantum Chemical Studies of the pH-sensitive Imidazoline and Imidazolidine Nitroxides with Bulky Substituents. APPLIED MAGNETIC RESONANCE 2010; 39:437-451. [PMID: 22162912 PMCID: PMC3234120 DOI: 10.1007/s00723-010-0179-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The X- and W-band electron paramagnetic resonance (EPR) spectroscopies were employed to investigate a series of imidazolidine nitroxide radicals with different number of ethyl and methyl substituents at positions 2 and 5 of a heterocycle in liquid and frozen solutions. The influence of the substituents on the line shape and width was studied experimentally and analyzed using quantum chemical calculations. Each pair of the geminal ethyl groups in the positions 2 or 5 of the imidazolidine ring was found to produce an additional hyperfine splitting (hfs) of about 0.2 mT in the EPR spectra of the nitroxides. The effect was attributed to the hfs constant of only one of four methylene hydrogen atoms of two geminal ethyl substituents not fully averaged by ethyl group rotation and ring puckering. In accordance with this assumption, the substitution of hydrogen atoms of CH(2) groups in 2,2,5,5-tetraethyl-substituted imidazolidine nitroxides by deuterium leads to the substantial narrowing of EPR lines which could be useful for many biochemical and biomedical applications, including pH-monitoring. W-band EPR spectra of 2,2,5,5-tetraethyl-substituted imidazolidine nitroxide and its 2,2,5,5-tetraethyl-d(8) deuterium-substituted analog measured at low temperatures demonstrated high sensitivity of their g-factors to pH, which indicates their applicability as spin labels possessing high stability.
Collapse
Affiliation(s)
- A. A. Bobko
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - I. A. Kirilyuk
- Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N. P. Gritsan
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - D. N. Polovyanenko
- International Tomography Center, Russian Academy of Sciences, Institutskaya 3A, Novosibirsk 630090, Russia
| | - I. A. Grigor’ev
- Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V. V. Khramtsov
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - E. G. Bagryanskaya
- International Tomography Center, Russian Academy of Sciences, Institutskaya 3A, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Klare JP, Steinhoff HJ. Spin labeling EPR. PHOTOSYNTHESIS RESEARCH 2009; 102:377-390. [PMID: 19728138 DOI: 10.1007/s11120-009-9490-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 08/14/2009] [Indexed: 05/28/2023]
Abstract
Site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy has emerged as an efficient tool to elucidate the structure and conformational dynamics of biomolecules under native-like conditions. This article summarizes the basics as well as recent progress of site-directed spin labeling. Continuous wave EPR spectra analyses and pulse EPR techniques are reviewed with special emphasis on applications to the sensory rhodopsin-transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis and the photosynthetic reaction center from Rhodobacter sphaeroides R26.
Collapse
Affiliation(s)
- Johann P Klare
- Physics Department, University of Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | | |
Collapse
|
16
|
Voinov MA, Kirilyuk IA, Smirnov AI. Spin-labeled pH-sensitive phospholipids for interfacial pKa determination: synthesis and characterization in aqueous and micellar solutions. J Phys Chem B 2009; 113:3453-60. [PMID: 19235992 DOI: 10.1021/jp810993s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and characterization of spin-labeled phospholipids (SLP)--derivatives of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (PTE)--with pH-reporting nitroxides that are covalently attached to the lipid's polar headgroup are being reported. Two lipids were synthesized by reactions of PTE with thiol-specific, pH-sensitive methanethiosulfonate spin labels methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL) and S-4-(4-(dimethylamino)-2-ethyl-5,5-dimethyl-1-oxyl-2,5-dihydro-1H-imidazol-2-yl)benzyl methanethiosulfonate (IKMTSL). The pKa values of the IMTSL-PTE lipid measured by EPR titration in aqueous buffer/isopropyl alcohol solutions of various compositions were found to be essentially the same (pKa approximately 2.35), indicating that in mixed aqueous/organic solvents, the amphiphilic lipid molecules could be shielded from changing bulk conditions by a local shell of solvent molecules. To overcome this problem, the spin-labeled lipids were modeled by synthesizing IMTSL- and IKMTSL-2-mercaptoethanol adducts. These model compounds yielded the intrinsic pKa0's for IMTSL-PTE and IKMTSL-PTE in aqueous buffers as 3.33 +/- 0.03 and 5.98 +/- 0.03, respectively. A series of EPR titrations of IMTSL-PTE in mixed water/isopropyl alcohol solution allowed for calibrating the polarity-induced pKa shifts, deltapKapol, vs bulk solvent dielectric permittivity. These calibration data allowed for estimating the local dielectric constant, epsilon(eff), experienced by the reporter nitroxide of the IMTSL-PTE lipid incorporated into the nonionic Triton X-100 micelles as 60 +/- 5 and 57 +/- 5 at 23 and 48 degrees C, respectively. For micelles formed from an anionic surfactant sodium dodecyl sulfate (SDS) the electrostatic-induced pKa shift, deltapKael = 2.06 +/- 0.04 units of pH, was obtained by subtracting the polarity-induced contribution. This shift yields psi = -121 mV electric potential of the SDS micelle surface.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | | |
Collapse
|
17
|
Voinov MA, Ruuge A, Reznikov VA, Grigor'ev IA, Smirnov AI. Mapping local protein electrostatics by EPR of pH-sensitive thiol-specific nitroxide. Biochemistry 2008; 47:5626-37. [PMID: 18426227 DOI: 10.1021/bi800272f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A first thiol-specific pH-sensitive nitroxide spin-label of the imidazolidine series, methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL), has been synthesized and characterized. X-Band (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin-label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. The pKa value of the protonatable tertiary amino group of the spin-label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that the high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless of the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein, iso-1-cytochrome c from the yeast Saccharomyces cerevisiae, giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, g iso correlates linearly with A iso, but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the NO group and on the excitation energy of the oxygen lone-pair orbital.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State UniVersity, 2620 Yarbrough DriVe, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
18
|
Khlestkin VK, Polienko JF, Voinov MA, Smirnov AI, Chechik V. Interfacial surface properties of thiol-protected gold nanoparticles: a molecular probe EPR approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:609-612. [PMID: 18189431 DOI: 10.1021/la702823n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a molecular probe technique for accessing interfacial surface electrostatics of ligand-protected gold nanoparticles. A series of ligands with variable length of the hydrocarbon bridge between the anchoring sulfur and the reporting pH-sensitive nitroxide is described. The protonation state of this probe is directly observed by EPR spectroscopy. For tiopronin-protected Au nanoparticles, we observed an increase in pKa of up to ca. 1.1 pH units that was affected by the position of the reporter moiety with respect to the monolayer interface.
Collapse
Affiliation(s)
- Vadim K Khlestkin
- Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
19
|
Polienko JF, Schanding T, Gatilov YV, Grigor'ev IA, Voinov MA. Studies toward the Synthesis of 4-(2-R-ethyl)amino-2,2,5,5-tetramethyl-3-imidazoline 1-Oxyls. Nucleophilic Substitution of Bromide in the N-Alkyl Chain of the 1,2,4-Oxadiazol-2-one Precursor. J Org Chem 2007; 73:502-10. [DOI: 10.1021/jo701803a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julya F. Polienko
- Institute of Organic Chemistry, Ave. akad. Lavrent'eva 9, 630090, Novosibirsk, Russia, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Thomas Schanding
- Institute of Organic Chemistry, Ave. akad. Lavrent'eva 9, 630090, Novosibirsk, Russia, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Yury V. Gatilov
- Institute of Organic Chemistry, Ave. akad. Lavrent'eva 9, 630090, Novosibirsk, Russia, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Igor A. Grigor'ev
- Institute of Organic Chemistry, Ave. akad. Lavrent'eva 9, 630090, Novosibirsk, Russia, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Maxim A. Voinov
- Institute of Organic Chemistry, Ave. akad. Lavrent'eva 9, 630090, Novosibirsk, Russia, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| |
Collapse
|
20
|
Swartz HM, Khan N, Khramtsov VV. Use of electron paramagnetic resonance spectroscopy to evaluate the redox state in vivo. Antioxid Redox Signal 2007; 9:1757-71. [PMID: 17678441 PMCID: PMC2702846 DOI: 10.1089/ars.2007.1718] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this article is to provide an overview of how electron paramagnetic resonance (EPR) can be used to measure redox-related parameters in vivo. The values of this approach include that the measurements are made under fully physiological conditions, and some of the measurements cannot be made by other means. Three complementary approaches are used with in vivo EPR: the rate of reduction or reactions of nitroxides, spin trapping of free radicals, and measurements of thiols. All three approaches already have produced unique and useful information. The measurement of the rate of decrease of nitroxides technically is the simplest, but difficult to interpret because the measured parameter, reduction in the intensity of the nitroxide signal, can occur by several different mechanisms. In vivo spin trapping can provide direct evidence for the occurrence of specific free radicals in vivo and reflect relative changes, but accurate absolute quantification remains challenging. The measurement of thiols in vivo also appears likely to be useful, but its development as an in vivo technique is at an early stage. It seems likely that the use of in vivo EPR to measure redox processes will become an increasingly utilized and valuable tool.
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
21
|
Voinov MA, Polienko JF, Schanding T, Bobko AA, Khramtsov VV, Gatilov YV, Rybalova TV, Smirnov AI, Grigor'ev IA. Synthesis, structure, and X-band (9.5 GHz) EPR characterization of the new series of pH-sensitive spin probes: N,N-disubstituted 4-amino-2,2,5,5-tetramethyl-3-imidazoline 1-oxyls. J Org Chem 2006; 70:9702-11. [PMID: 16292797 DOI: 10.1021/jo0510890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] An approach to the synthesis of new imidazoline nitroxides bearing an N',N'-disubstituted amidine group is reported. The approach is based on the alkylation of diamagnetic 4-R-amino-1,2,2,5,5-pentamethyl-3-imidazolines with bromoacetic acid ethyl ester; the products of alkylation are further oxidized to the corresponding nitroxides. The approach allows a variety of functional groups to be introduced into the nitroxide molecule structure. Alkylation with bromoacetic acid ethyl ester was found to proceed with high regioselectivity and afford the products of exo-alkylation. The regiochemical assignment is made on the basis of 13C NMR spectra and confirmed by X-ray diffraction study. All of the nitroxides synthesized here were shown to have pH-dependent EPR spectra with pKa ranging from 3.5 to 6.2. For nitroxides 13 bearing the carboxylic group remote to the nitroxide moiety, the changes in isotropic magnetic parameters of EPR spectra due to reversible deprotonation of the carboxylic group were found to be small. For these nitroxides, we demonstrate an alternative approach for pKa determination that is based on measuring the peak-to-peak line width of the EPR spectrum in the presence of the paramagnetic broadening agent potassium ferricyanide. The partition coefficients of nitroxides in octanol/H2O and octanol/phosphate buffer solution mixtures were measured to reveal a range of their lipophilicities.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Möbius K, Savitsky A, Wegener C, Plato M, Fuchs M, Schnegg A, Dubinskii AA, Grishin YA, Grigor'ev IA, Kühn M, Duché D, Zimmermann H, Steinhoff HJ. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S4-S19. [PMID: 16235212 DOI: 10.1002/mrc.1690] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the last decade, joint efforts of biologists, chemists and physicists have helped in understanding the dominant factors determining specificity and directionality of transmembrane transfer processes in proteins. In this endeavor, electron paramagnetic resonance (EPR) spectroscopy has played an important role. Characteristic examples of such determining factors are hydrogen-bonding patterns and polarity effects of the microenvironment of protein sites involved in the transfer process. These factors may undergo characteristic changes during the reaction and, thereby, control the efficiency of biological processes, e.g. light-induced electron and proton transfer across photosynthetic membranes or ion-channel formation of bacterial toxins. In case the transfer process does not involve stable or transient paramagnetic species or states, site-directed spin labeling with suitable nitroxide radicals still allows EPR techniques to be used for studying structure and conformational dynamics of the proteins in action. By combining site-directed spin labeling with high-field/high-frequency EPR, unique information on the proteins is revealed, which is complementary to that of X-ray crystallography, solid-state NMR, FRET, fast infrared and optical spectroscopic techniques. The main object of this publication is twofold: (i) to review our recent spin-label high-field EPR work on the bacteriorhodopsin light-driven proton pump from Halobacterium salinarium and the Colicin A ion-channel forming bacterial toxin produced in Escherichia coli, (ii) to report on novel high-field EPR experiments for probing site-specific pK(a) values in protein systems by means of pH-sensitive nitroxide spin labels. Taking advantage of the improved spectral and temporal resolution of high-field EPR at 95 GHz/3.4 T and 360 GHz/12.9 T, as compared to conventional X-band EPR (9.5 GHz/0.34 T), detailed information on the transient intermediates of the proteins in biological action is obtained. These intermediates can be observed and characterized while staying in their working states on biologically relevant timescales. The paper concludes with an outlook of ongoing high-field EPR experiments on site-specific protein mutants in our laboratories at FU Berlin and Osnabrück.
Collapse
Affiliation(s)
- K Möbius
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaneko T, Aso M, Koga N, Suemune H. Synthesis and EPR Studies of 2-N-tert-Butylaminoxylpurine Derivatives. Org Lett 2004; 7:303-6. [PMID: 15646983 DOI: 10.1021/ol047668t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[Structure: see text] 2'-Deoxyribofuranosylpurine derivatives bearing an N-tert-butylaminoxyl group (1a and 2a) were synthesized via oxidation of the corresponding N-tert-butylhydroxylamines (1b and 2b), which were synthesized by lithiation of 8-TIPS-6-chloropurine (3) at the 2-position and the following reaction with 2-methyl-2-nitrosopropane. Treatment of 1b and 2b with 1 equiv of NaIO4 resulted in efficient formation of 1a and 2a, which were isolated as purple and red solids, respectively. The EPR spectra of 1a showed pH dependency due to structural change of purine moiety.
Collapse
Affiliation(s)
- Toshiyuki Kaneko
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|