1
|
Liu TH, Okuno M. Characterization of Secondary Structures of Model Polypeptides in Solutions with Hyper-Raman Spectroscopy. J Phys Chem B 2023. [PMID: 37468171 DOI: 10.1021/acs.jpcb.3c02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Characterization of the secondary structures of two model polypeptides, poly-l-lysine and poly-l-glutamic acid in aqueous solutions has been demonstrated by hyper-Raman (HR) spectroscopy for the first time. Complementary to infrared (IR) and visible Raman spectroscopy, HR spectroscopy gives the amide I, II, and III bands originating from the polypeptide backbones and the CCH3 symmetric bending mode, enabling us to distinguish different conformations. The α-helix gives the broad and weak amide III band, while the β-sheet and the random coil show similar spectral patterns with different relative intensities between the amide I and II bands. HR spectra from aqueous solutions of the α-helix and the random coil of poly-l-ornithine also possess these spectral features. The HR spectra are analogous to UV resonance Raman (UVRR) spectra, indicating the signal enhancement due to the electronic resonance effect via the π-π* transition. In contrast, the vibrational frequencies of the amide I band in the HR spectra are much higher than those in the IR, visible Raman, and UVRR spectra, suggesting the non-coincidence between HR, IR, and Raman bands. Our finding suggests that HR spectroscopy is promising to provide complementary information on the secondary structures of polypeptides in aqueous solutions as a spectral approach differing from existing vibrational spectroscopic methods.
Collapse
Affiliation(s)
- Tsung-Han Liu
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Masanari Okuno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Andersson Å, Yatsyna V, Linares M, Rijs A, Zhaunerchyk V. Indication of 3 10-Helix Structure in Gas-Phase Neutral Pentaalanine. J Phys Chem A 2023; 127:938-945. [PMID: 36669091 PMCID: PMC9900583 DOI: 10.1021/acs.jpca.2c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We investigate the gas-phase structure of the neutral pentaalanine peptide. The IR spectrum in the 340-1820 cm-1 frequency range is obtained by employing supersonic jet cooling, infrared multiphoton dissociation, and vacuum-ultraviolet action spectroscopy. Comparison with quantum chemical spectral calculations suggests that the molecule assumes multiple stable conformations, mainly of two structure types. In the most stable conformation theoretically found, the N-terminus forms a C5 ring and the backbone resembles that of an 310-helix with two β-turns. Additionally, the conformational preferences of pentaalanine have been evaluated using Born-Oppenheimer molecular dynamics, showing that a nonzero simulation time step causes a systematic frequency shift.
Collapse
Affiliation(s)
- Åke Andersson
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Vasyl Yatsyna
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden,FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Mathieu Linares
- Laboratory
of Organic Electronics and Group of Scientific Visualization Department
of Science and Technology (ITN), Linköping
University, 601 74 Norrköping, Sweden
| | - Anouk Rijs
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,Division
of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular
and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands,
| | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden,
| |
Collapse
|
3
|
Schweitzer-Stenner R. Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides. Int J Mol Sci 2022; 23:ijms23105643. [PMID: 35628453 PMCID: PMC9147007 DOI: 10.3390/ijms23105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Flory isolated pair hypothesis (IPH) is one of the corner stones of the random coil model, which is generally invoked to describe the conformational dynamics of unfolded and intrinsically disordered proteins (IDPs). It stipulates, that individual residues sample the entire sterically allowed space of the Ramachandran plot without exhibiting any correlations with the conformational dynamics of its neighbors. However, multiple lines of computational, bioinformatic and experimental evidence suggest that nearest neighbors have a significant influence on the conformational sampling of amino acid residues. This implies that the conformational entropy of unfolded polypeptides and proteins is much less than one would expect based on the Ramachandran plots of individual residues. A further implication is that the Gibbs energies of residues in unfolded proteins or polypeptides are not additive. This review provides an overview of what is currently known and what has yet to be explored regarding nearest neighbor interactions in unfolded proteins.
Collapse
|
4
|
Ge X, Zhang W, Putnis CV, Wang L. Molecular mechanisms for the humic acid-enhanced formation of the ordered secondary structure of a conserved catalytic domain in phytase. Phys Chem Chem Phys 2022; 24:4493-4503. [PMID: 35113120 DOI: 10.1039/d2cp00054g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Changes in the secondary structure of phytase, particularly the conserved active catalytic domain (ACD, SRHGVRAPHD) are extremely important for the varied catalytic activity during hydrolyzing phytate in the presence of humic acid (HA). However, little is known about the molecular-scale mechanisms of how HA influences the secondary structure of ACD found in phytase. First, in situ surface-enhanced Raman spectroscopy (SERS) results show the secondary structure transformation of ACD from the unordered random coil to the ordered β-sheet structure after treatment with HA. Then, we use an atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) technique that can in situ directly probe the single-molecule interaction of ACD with HA and underlying changes in ACD secondary structure in the approach-retraction cycles in real time. Based on the SMFS results, we further detect the HA-enhanced formation of H-bonding between amide groups in the ACD backbone after noncovalently interacting with HA in the absence of phytate. Following the addition of phytate, the calculated contour length (Lc) and the free energies (ΔGb) of functional groups within ACD(-1/2) binding to mica/HA collectively demonstrate the formation of the organized intermediate structural state of ACD following its covalent binding to phytate. These spectroscopic and single-molecule determinations provide the molecular-scale understanding regarding the detailed mechanisms of HA-enhancement of the ordered β-sheet secondary structure of ACD through chemical functionalities in ACD noncovalently interacting with HA. Therefore, we suggest that similar studies of the interactions of other soil enzymes and plant nutrients may reveal predominant roles of dissolved organic matter (DOM) in controlling elemental cycling and fate for sustainable agriculture development.
Collapse
Affiliation(s)
- Xinfei Ge
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, 48149 Münster, Germany.,School of Molecular and Life Science, Curtin University, Perth 6845, Australia
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Milorey B, Schwalbe H, O'Neill N, Schweitzer-Stenner R. Repeating Aspartic Acid Residues Prefer Turn-like Conformations in the Unfolded State: Implications for Early Protein Folding. J Phys Chem B 2021; 125:11392-11407. [PMID: 34619031 DOI: 10.1021/acs.jpcb.1c06472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding can be described as a motion of the polypeptide chain in a potential energy funnel, where the conformational manifold is narrowed as the chain traverses from a completely unfolded state until it reaches the folded (native) state. The initial folding stages set the tone for this process by substantially narrowing the manifold of accessible conformations. In an ideally unfolded state with no long-range stabilizing forces, local conformations (i.e., residual structures) are likely to drive the folding process. While most amino acid residues tend to predominantly adopt extended structures in unfolded proteins and peptides, aspartic acid exhibits a relatively high intrinsic preference for turn-forming conformations. Regions in an unfolded polypeptide or protein that are rich in aspartic acid residues may therefore be crucial sites for protein folding steps. By combining NMR and vibrational spectroscopies, we observed that the conformational sampling of multiple sequentially neighbored aspartic acid residues in the model peptides GDDG and GDDDG even show an on average higher propensity for turn-forming structures than the intrinsic reference system D in GDG, which suggests that nearest neighbor interactions between adjacent aspartic acid residues stabilize local turn-forming structures. In the presence of the unlike neighbor phenylalanine, nearest neighbor interactions are of a totally different nature in that it they decrease the turn-forming propensities and mutually increase the sampling of polyproline II (pPII) conformations. We hypothesize the structural role of aspartic residues in intrinsically disordered proteins in general, and particularly in small linear motifs, that are very much determined by their respective neighbors.
Collapse
Affiliation(s)
- Bridget Milorey
- Deparment of Chemistry, Drexel University, Philadelphia, Pennsylvania 19026, United States
| | - Harald Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe Universität, Max von Laue Strasse 7, 60438 Frankfurt, Germany
| | - Nichole O'Neill
- Deparment of Chemistry, Drexel University, Philadelphia, Pennsylvania 19026, United States
| | | |
Collapse
|
6
|
Bogaerts J, Aerts R, Vermeyen T, Johannessen C, Herrebout W, Batista JM. Tackling Stereochemistry in Drug Molecules with Vibrational Optical Activity. Pharmaceuticals (Basel) 2021; 14:877. [PMID: 34577577 PMCID: PMC8468215 DOI: 10.3390/ph14090877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
Chirality plays a crucial role in drug discovery and development. As a result, a significant number of commercially available drugs are structurally dissymmetric and enantiomerically pure. The determination of the exact 3D structure of drug candidates is, consequently, of paramount importance for the pharmaceutical industry in different stages of the discovery pipeline. Traditionally the assignment of the absolute configuration of druggable molecules has been carried out by means of X-ray crystallography. Nevertheless, not all molecules are suitable for single-crystal growing. Additionally, valuable information about the conformational dynamics of drug candidates is lost in the solid state. As an alternative, vibrational optical activity (VOA) methods have emerged as powerful tools to assess the stereochemistry of drug molecules directly in solution. These methods include vibrational circular dichroism (VCD) and Raman optical activity (ROA). Despite their potential, VCD and ROA are still unheard of to many organic and medicinal chemists. Therefore, the present review aims at highlighting the recent use of VOA methods for the assignment of the absolute configuration of chiral small-molecule drugs, as well as for the structural analysis of biologics of pharmaceutical interest. A brief introduction on VCD and ROA theory and the best experimental practices for using these methods will be provided along with selected representative examples over the last five years. As VCD and ROA are commonly used in combination with quantum calculations, some guidelines will also be presented for the reliable simulation of chiroptical spectra. Special attention will be paid to the complementarity of VCD and ROA to unambiguously assess the stereochemical properties of pharmaceuticals.
Collapse
Affiliation(s)
- Jonathan Bogaerts
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Tom Vermeyen
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
- Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Christian Johannessen
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; (J.B.); (R.A.); (T.V.); (C.J.); (W.H.)
| | - Joao M. Batista
- Institute of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos 12231-280, SP, Brazil
| |
Collapse
|
7
|
Structural and Energetic Characterization of the Denatured State from the Perspectives of Peptides, the Coil Library, and Intrinsically Disordered Proteins. Molecules 2021; 26:molecules26030634. [PMID: 33530506 PMCID: PMC7865441 DOI: 10.3390/molecules26030634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023] Open
Abstract
The α and polyproline II (PPII) basins are the two most populated regions of the Ramachandran map when constructed from the protein coil library, a widely used denatured state model built from the segments of irregular structure found in the Protein Data Bank. This indicates the α and PPII conformations are dominant components of the ensembles of denatured structures that exist in solution for biological proteins, an observation supported in part by structural studies of short, and thus unfolded, peptides. Although intrinsic conformational propensities have been determined experimentally for the common amino acids in short peptides, and estimated from surveys of the protein coil library, the ability of these intrinsic conformational propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs), an increasingly important class of proteins in cell function, has thus far proven elusive to establish. Recently, we demonstrated that the sequence dependence of the mean hydrodynamic size of IDPs in water and the impact of heat on the coil dimensions, provide access to both the sequence dependence and thermodynamic energies that are associated with biases for the α and PPII backbone conformations. Here, we compare results from peptide-based studies of intrinsic conformational propensities and surveys of the protein coil library to those of the sequence-based analysis of heat effects on IDP hydrodynamic size, showing that a common structural and thermodynamic description of the protein denatured state is obtained.
Collapse
|
8
|
Krupová M, Kessler J, Bouř P. Polymorphism of Amyloid Fibrils Induced by Catalytic Seeding: A Vibrational Circular Dichroism Study. Chemphyschem 2020; 22:83-91. [DOI: 10.1002/cphc.202000797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Mathematics and Physics Charles University Ke Karlovu 3 12116 Prague 2 Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
9
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
10
|
Hall F, Liceaga A. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
11
|
Mattiat J, Luber S. Vibrational (resonance) Raman optical activity with real time time dependent density functional theory. J Chem Phys 2019; 151:234110. [DOI: 10.1063/1.5132294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Johann Mattiat
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Furuta M, Fujisawa T, Urago H, Eguchi T, Shingae T, Takahashi S, Blanch EW, Unno M. Raman optical activity of tetra-alanine in the poly(l-proline) II type peptide conformation. Phys Chem Chem Phys 2018; 19:2078-2086. [PMID: 28045149 DOI: 10.1039/c6cp07828a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The poly(l-proline) II (PPII) helix is considered to be a major conformation in disordered polypeptides and unfolded proteins in aqueous solution. The PPII conformation can be identified by using Raman optical activity (ROA), which measures the different intensities of right- and left-circularly polarized Raman scattered light from chiral molecules and provides information on stereochemistry associated with vibrational motions. In the present study, we used tetra-alanine (Ala4) as a model system, since its central amide bond adopts the PPII conformation. The predominance of the PPII conformation was supported by 11 ns molecular dynamics (MD) simulations at 300 K. The MD snapshots were used for subsequent quantum mechanical/molecular mechanical (QM/MM) calculations to compute the Raman and ROA spectra. The present MD + QM/MM analysis leads to a good agreement between the observed and simulated spectra, allowing us to assign most of the spectral features including the ROA band near 1320 cm-1, which has been used as a marker for the PPII conformation. This positive ROA band has three components. The lower frequency component near 1310 cm-1 arises from an internal peptide bond, whereas the higher frequency components around 1320-1335 cm-1 appear due to N- and C-terminal peptide groups. The MD + QM/MM calculations also reproduced the electronic circular dichroism spectra of Ala4. The present results provide a satisfactory framework for future investigations of unfolded/disordered proteins as well as peptides in solutions by chiral spectroscopic methods.
Collapse
Affiliation(s)
- Masakazu Furuta
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Hiroyasu Urago
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahiro Eguchi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Ewan W Blanch
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
13
|
Zhang Y, Zhou Y, He L, Fu Y, Zhang W, Hu J, Shi Z. Hydration effects on Leu's polyproline II population in AcLXPNH 2. Chem Commun (Camb) 2018; 54:5764-5767. [PMID: 29781018 DOI: 10.1039/c8cc02402b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration is important in many fundamental processes. To investigate hydration effects on peptide conformations, we examined neighboring-residue and side-chain blocking effects in AcLXPNH2. A correlation between two effects suggests that hydration stabilizes PII more than β-structures. Our results are important for understanding the hydration effects on peptide conformations and hydration-forces in general.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hongen T, Taniguchi T, Monde K. Modifying oligoalanine conformation by replacement of amide to ester linkage. Chirality 2018; 30:396-401. [DOI: 10.1002/chir.22823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Takahiro Hongen
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science; Hokkaido University; Sapporo Japan
| | - Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science; Hokkaido University; Sapporo Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science; Hokkaido University; Sapporo Japan
| |
Collapse
|
15
|
Lanza G, Chiacchio MA. Quantum Mechanics Approach to Hydration Energies and Structures of Alanine and Dialanine. Chemphyschem 2017; 18:1586-1596. [PMID: 28371186 DOI: 10.1002/cphc.201700149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/11/2022]
Abstract
A systematic approach to the phenomena related to hydration of biomolecules is reported at the state of the art of electronic-structure methods. Large-scale CCSD(T), MP4-SDQ, MP2, and DFT(M06-2X) calculations for some hydrated complexes of alanine and dialanine (Ala⋅13 H2 O, Ala2 H+ ⋅18 H2 O, and Ala2 ⋅18 H2 O) are compared with experimental data and other elaborate modeling to assess the reliability of a simple bottom-up approach. The inclusion of a minimal number of water molecules for microhydration of the polar groups together with the polarizable continuum model is sufficient to reproduce the relative bulk thermodynamic functions of the considered biomolecules. These quantities depend on the adopted electronic-structure method, which should be chosen with great care. Nevertheless, the computationally feasible MP2 and M06-2X functionals with the aug-cc-pVTZ basis set satisfactorily reproduce values derived by high-level CCSD(T) and MP4-SDQ methods, and thus they are suitable for future developments of more elaborate and hence more biochemically significant peptides.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Maria A Chiacchio
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| |
Collapse
|
16
|
DiGuiseppi D, Milorey B, Lewis G, Kubatova N, Farrell S, Schwalbe H, Schweitzer-Stenner R. Probing the Conformation-Dependent Preferential Binding of Ethanol to Cationic Glycylalanylglycine in Water/Ethanol by Vibrational and NMR Spectroscopy. J Phys Chem B 2017; 121:5744-5758. [DOI: 10.1021/acs.jpcb.7b02899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Nina Kubatova
- Institut
für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, 60438 Frankfurt am Main, Germany
| | | | - Harald Schwalbe
- Institut
für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
17
|
Goyal B, Srivastava KR, Durani S. Examination of the Effect of N-terminal Diproline and Charged Side Chains on the Stabilization of Helical Conformation in Alanine-based Short Peptides: A Molecular Dynamics Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201601381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bhupesh Goyal
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai-400076 India
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University, Fatehgarh; Sahib-140406, Punjab India
| | - Kinshuk Raj Srivastava
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai-400076 India
- Life Sciences Institute; University of Michigan; Ann Arbor, MI USA 48105
| | - Susheel Durani
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai-400076 India
| |
Collapse
|
18
|
Davies HS, Singh P, Deckert-Gaudig T, Deckert V, Rousseau K, Ridley CE, Dowd SE, Doig AJ, Pudney PDA, Thornton DJ, Blanch EW. Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies. Anal Chem 2016; 88:11609-11615. [PMID: 27791356 PMCID: PMC5218386 DOI: 10.1021/acs.analchem.6b03095] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
The
major structural components of protective mucus hydrogels on
mucosal surfaces are the secreted polymeric gel-forming mucins. The
very high molecular weight and extensive O-glycosylation of gel-forming
mucins, which are key to their viscoelastic properties, create problems
when studying mucins using conventional biochemical/structural techniques.
Thus, key structural information, such as the secondary structure
of the various mucin subdomains, and glycosylation patterns along
individual molecules, remains to be elucidated. Here, we utilized
Raman spectroscopy, Raman optical activity (ROA), circular dichroism
(CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure
of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that
the protein backbone of MUC5B is dominated by unordered conformation,
which was found to originate from the heavily glycosylated central
mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp
contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D′-D3
domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B)
and the Cys-domain (within the central mucin domain of MUC5B) were
found to be dominated by the β-sheet. Using these findings,
we employed TERS, which combines the chemical specificity of Raman
spectroscopy with the spatial resolution of atomic force microscopy
to study the secondary structure along 90 nm of an individual MUC5B
molecule. Interestingly, the molecule was found to contain a large
amount of α-helix/unordered structures and many signatures of
glycosylation, pointing to a highly O-glycosylated region on the mucin.
Collapse
Affiliation(s)
- Heather S Davies
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Prabha Singh
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology , Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology , Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Karine Rousseau
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Caroline E Ridley
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Sarah E Dowd
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester , Manchester M1 7DN, United Kingdom
| | - Andrew J Doig
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester , Manchester M1 7DN, United Kingdom
| | - Paul D A Pudney
- Unilever Discover , Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Ewan W Blanch
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester , Manchester M13 9PL, United Kingdom.,School of Science, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
19
|
Hahn S. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results. J Chem Phys 2016; 145:164113. [PMID: 27802648 DOI: 10.1063/1.4965958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.
Collapse
Affiliation(s)
- Seungsoo Hahn
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu 156-756, Seoul, South Korea
| |
Collapse
|
20
|
Feng Y, Huang J, Kim S, Shim JH, MacKerell AD, Ge NH. Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation. J Phys Chem B 2016; 120:5325-39. [PMID: 27299801 DOI: 10.1021/acs.jpcb.6b02608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the structure of (Ala)5, a model unfolded peptide, using a combination of 2D IR spectroscopy and molecular dynamics (MD) simulation. Two different isotopomers, each bis-labeled with (13)C═O and (13)C═(18)O, were strategically designed to shift individual site frequencies and uncouple neighboring amide-I' modes. 2D IR spectra taken under the double-crossed ⟨π/4, -π/4, Y, Z⟩ polarization show that the labeled four-oscillator systems can be approximated by three two-oscillator systems. By utilizing the different polarization dependence of diagonal and cross peaks, we extracted the coupling constants and angles between three pairs of amide-I' transition dipoles through spectral fitting. These parameters were related to the peptide backbone dihedral angles through DFT calculated maps. The derived dihedral angles are all located in the polyproline-II (ppII) region of the Ramachandran plot. These results were compared to the conformations sampled by Hamiltonian replica-exchange MD simulations with three different CHARMM force fields. The C36 force field predicted that ppII is the dominant conformation, consistent with the experimental findings, whereas C22/CMAP predicted similar population for α+, β, and ppII, and the polarizable Drude-2013 predicted dominating β structure. Spectral simulation based on MD representative conformations and structure ensembles demonstrated the need to include multiple 2D spectral features, especially the cross-peak intensity ratio and shape, in structure determination. Using 2D reference spectra defined by the C36 structure ensemble, the best spectral simulation is achieved with nearly 100% ppII population, although the agreement with the experimental cross-peak intensity ratio is still insufficient. The dependence of population determination on the choice of reference structures/spectra and the current limitations on theoretical modeling relating peptide structures to spectral parameters are discussed. Compared with the previous results on alanine based oligopeptides, the dihedral angles of our fitted structure, and the most populated ppII structure from the C36 simulation are in good agreement with those suggesting a major ppII population. Our results provide further support for the importance of ppII conformation in the ensemble of unfolded peptides.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Jing Huang
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Seongheun Kim
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Ji Hyun Shim
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
21
|
Zhou Y, He L, Zhang W, Hu J, Shi Z. Populations of the Minor α-Conformation in AcGXGNH2 and the α-Helical Nucleation Propensities. Sci Rep 2016; 6:27197. [PMID: 27256621 PMCID: PMC4891685 DOI: 10.1038/srep27197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
Intrinsic backbone conformational preferences of different amino acids are important for understanding the local structure of unfolded protein chains. Recent evidence suggests α-structure is relatively minor among three major backbone conformations for unfolded proteins. The α-helices are the dominant structures in many proteins. For these proteins, how could the α-structures occur from the least in unfolded to the most in folded states? Populations of the minor α-conformation in model peptides provide vital information. Reliable determination of populations of the α-conformers in these peptides that exist in multiple equilibriums of different conformations remains a challenge. Combined analyses on data from AcGXPNH2 and AcGXGNH2 peptides allow us to derive the populations of PII, β and α in AcGXGNH2. Our results show that on average residue X in AcGXGNH2 adopt PII, β, and α 44.7%, 44.5% and 10.8% of time, respectively. The contents of α-conformations for different amino acids define an α-helix nucleation propensity scale. With derived PII, β and α-contents, we can construct a free energy-conformation diagram on each AcGXGNH2 in aqueous solution for the three major backbone conformations. Our results would have broad implications on early-stage events of protein folding.
Collapse
Affiliation(s)
- Yanjun Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Liu He
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Wenwen Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Jingjing Hu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Zhengshuang Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| |
Collapse
|
22
|
Goyal B, Kumar A, Srivastava KR, Durani S. Computational scrutiny of the effect of N-terminal proline and residue stereochemistry in the nucleation of α-helix fold. RSC Adv 2016. [DOI: 10.1039/c6ra10934a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
N-Terminal l- to d-residue mutation nucleate helical fold in Ac–DAla–LAla3–NHMe (Ib, m2), Ac–DPro–LAla3–NHMe (IIb, m1), and Ac–DPro–LPro–LAla2–NHMe (IIIb, m2) peptides.
Collapse
Affiliation(s)
- Bhupesh Goyal
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Anil Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | | | - Susheel Durani
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
23
|
Mensch C, Barron LD, Johannessen C. Ramachandran mapping of peptide conformation using a large database of computed Raman and Raman optical activity spectra. Phys Chem Chem Phys 2016; 18:31757-31768. [DOI: 10.1039/c6cp05862k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel ROA database is reported that assigns peptide structures in detail by pattern recognition of the experimental spectrum.
Collapse
Affiliation(s)
- Carl Mensch
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
- Department of Inorganic and Physical Chemistry
| | | | | |
Collapse
|
24
|
Goyal B, Srivastava KR, Kumar A, Patwari GN, Durani S. Probing the role of electrostatics of polypeptide main-chain in protein folding by perturbing N-terminal residue stereochemistry: DFT study with oligoalanine models. RSC Adv 2016. [DOI: 10.1039/c6ra22870d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Energetics of folding (ΔHE→F, in kcal mol−1) from the extended (E) structure to the folded (F) structure for Ia and Ib critically depend on the geometrical relationship between the backbone peptide units of the polypeptide structure.
Collapse
Affiliation(s)
- Bhupesh Goyal
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | | | - Anil Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - G. Naresh Patwari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Susheel Durani
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
25
|
Okur A, Wickstrom L, Layten M, Geney R, Song K, Hornak V, Simmerling C. Improved Efficiency of Replica Exchange Simulations through Use of a Hybrid Explicit/Implicit Solvation Model. J Chem Theory Comput 2015; 2:420-33. [PMID: 26626529 DOI: 10.1021/ct050196z] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of parallel tempering or replica exchange molecular dynamics (REMD) simulations has facilitated the exploration of free energy landscapes for complex molecular systems, but application to large systems is hampered by the scaling of the number of required replicas with increasing system size. Use of continuum solvent models reduces system size and replica requirements, but these have been shown to provide poor results in many cases, including overstabilization of ion pairs and secondary structure bias. Hybrid explicit/continuum solvent models can overcome some of these problems through an explicit representation of water molecules in the first solvation shells, but these methods typically require restraints on the solvent molecules and show artifacts in water properties due to the solvation interface. We propose an REMD variant in which the simulations are performed with a fully explicit solvent, but the calculation of exchange probability is carried out using a hybrid model, with the solvation shells calculated on the fly during the fully solvated simulation. The resulting reduction in the perceived system size in the REMD exchange calculation provides a dramatic decrease in the computational cost of REMD, while maintaining a very good agreement with results obtained from the standard explicit solvent REMD. We applied several standard and hybrid REMD methods with different solvent models to alanine polymers of 1, 3, and 10 residues, obtaining ensembles that were essentially independent of the initial conformation, even with explicit solvation. Use of only a continuum model without a shell of explicit water provided poor results for Ala3 and Ala10, with a significant bias in favor of the α-helix. Likewise, using only the solvation shells and no continuum model resulted in ensembles that differed significantly from the standard explicit solvent data. Ensembles obtained from hybrid REMD are in very close agreement with explicit solvent data, predominantly populating polyproline II conformations. Inclusion of a second shell of explicit solvent was found to be unnecessary for these peptides.
Collapse
Affiliation(s)
- Asim Okur
- Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, Graduate Program in Molecular and Cellular Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Lauren Wickstrom
- Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, Graduate Program in Molecular and Cellular Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Melinda Layten
- Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, Graduate Program in Molecular and Cellular Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Raphäel Geney
- Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, Graduate Program in Molecular and Cellular Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Kun Song
- Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, Graduate Program in Molecular and Cellular Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Viktor Hornak
- Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, Graduate Program in Molecular and Cellular Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Carlos Simmerling
- Department of Chemistry, Graduate Program in Biochemistry and Structural Biology, Graduate Program in Molecular and Cellular Biology, and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
26
|
Salmon L, Blackledge M. Investigating protein conformational energy landscapes and atomic resolution dynamics from NMR dipolar couplings: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:126601. [PMID: 26517337 DOI: 10.1088/0034-4885/78/12/126601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance spectroscopy is exquisitely sensitive to protein dynamics. In particular inter-nuclear dipolar couplings, that become measurable in solution when the protein is dissolved in a dilute liquid crystalline solution, report on all conformations sampled up to millisecond timescales. As such they provide the opportunity to describe the Boltzmann distribution present in solution at atomic resolution, and thereby to map the conformational energy landscape in unprecedented detail. The development of analytical methods and approaches based on numerical simulation and their application to numerous biologically important systems is presented.
Collapse
Affiliation(s)
- Loïc Salmon
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France. CEA, DSV, IBS, F-38027 Grenoble, France. CNRS, IBS, F-38027 Grenoble, France
| | | |
Collapse
|
27
|
Schweitzer-Stenner R, Toal SE. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues. Phys Chem Chem Phys 2015; 16:22527-36. [PMID: 25227444 DOI: 10.1039/c4cp02108h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As established by several groups over the last 20 years, amino acid residues in unfolded peptides and proteins do not exhibit the unspecific random distribution as assumed by the classical random coil model. Individual amino acid residues in small peptides were found to exhibit different conformational preferences. Here, we utilize recently obtained conformational distributions of guest amino acid residues in GxG peptides to estimate their conformational entropy, which we find to be significantly lower than the entropy of an assumed random coil like distribution. Only at high temperature do backbone entropies approach random coil like values. We utilized the obtained backbone entropies of the investigated amino acid residues to estimate the loss of conformational entropy caused by a coil → helix transition and identified two subsets of amino acid residues for which the thus calculated entropy losses correlate well with the respective Gibbs energy of helix formation obtained for alanine based host-guest systems. Calculated and experimentally derived entropic losses were found to be in good agreement. For most of the amino acid residues investigated entropic losses derived from our GxG distributions correlate very well with corresponding values recently obtained from MD simulations biased by conformational propensities derived from truncated coil libraries. Both, conformational entropy and the entropy of solvation exhibit a strong, residue specific temperature dependence, which can be expected to substantially affect the stability of unfolded states. Altogether, our results provide strong evidence for the notion that conformational preferences of amino acid residues matter with regard to the thermodynamics of peptide and protein folding.
Collapse
|
28
|
Toal SE, Kubatova N, Richter C, Linhard V, Schwalbe H, Schweitzer-Stenner R. Randomizing the unfolded state of peptides (and proteins) by nearest neighbor interactions between unlike residues. Chemistry 2015; 21:5173-92. [PMID: 25728043 DOI: 10.1002/chem.201406539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/29/2022]
Abstract
To explore the influence of nearest neighbors on conformational biases in unfolded peptides, we combined vibrational and 2D NMR spectroscopy to obtain the conformational distributions of selected "GxyG" host-guest peptides in aqueous solution: GDyG, GSyG, GxLG, GxVG, where x/y=A, K, L, V. Large changes of conformational propensities were observed due to nearest-neighbor interactions, at variance with the isolated pair hypothesis. We found that protonated aspartic acid and serine lose their above-the-average preference for turn-like structures in favor of polyproline II (pPII) populations in the presence of neighbors with bulky side chains. Such residues also decrease the above-the-average pPII preference of alanine. These observations suggest that the underlying mechanism involves a disruption of the hydration shell. Thermodynamic analysis of (3) J(H(N) ,H(α) ) (T) data for each x,y residue reveals that modest changes in the conformational ensemble masks larger changes of enthalpy and entropy governing the pPII↔β equilibrium indicating a significant residue dependent temperature dependence of the peptides' conformational ensembles. These results suggest that nearest-neighbor interactions between unlike residues act as conformational randomizers close to the enthalpy-entropy compensation temperature, eliminating intrinsic biases in favor of largely balanced pPII/β dominated ensembles at physiological temperatures.
Collapse
Affiliation(s)
- Siobhan E Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 10104 (USA); Present address: Department of Biophysics and Biochemistry, Yale University, New Haven, CT 06250 (USA)
| | | | | | | | | | | |
Collapse
|
29
|
Parchaňský V, Kapitán J, Bouř P. Inspecting chiral molecules by Raman optical activity spectroscopy. RSC Adv 2014. [DOI: 10.1039/c4ra10416a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Toal S, Schweitzer-Stenner R. Local order in the unfolded state: conformational biases and nearest neighbor interactions. Biomolecules 2014; 4:725-73. [PMID: 25062017 PMCID: PMC4192670 DOI: 10.3390/biom4030725] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
The discovery of Intrinsically Disordered Proteins, which contain significant levels of disorder yet perform complex biologically functions, as well as unwanted aggregation, has motivated numerous experimental and theoretical studies aimed at describing residue-level conformational ensembles. Multiple lines of evidence gathered over the last 15 years strongly suggest that amino acids residues display unique and restricted conformational preferences in the unfolded state of peptides and proteins, contrary to one of the basic assumptions of the canonical random coil model. To fully understand residue level order/disorder, however, one has to gain a quantitative, experimentally based picture of conformational distributions and to determine the physical basis underlying residue-level conformational biases. Here, we review the experimental, computational and bioinformatic evidence for conformational preferences of amino acid residues in (mostly short) peptides that can be utilized as suitable model systems for unfolded states of peptides and proteins. In this context particular attention is paid to the alleged high polyproline II preference of alanine. We discuss how these conformational propensities may be modulated by peptide solvent interactions and so called nearest-neighbor interactions. The relevance of conformational propensities for the protein folding problem and the understanding of IDPs is briefly discussed.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19026, USA.
| | | |
Collapse
|
31
|
Batista ANL, Batista JM, Ashton L, Bolzani VS, Furlan M, Blanch EW. Investigation of DMSO-induced conformational transitions in human serum albumin using two-dimensional raman optical activity spectroscopy. Chirality 2014; 26:497-501. [PMID: 25042763 DOI: 10.1002/chir.22351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022]
Abstract
Recent Raman and Raman optical activity (ROA) results have demonstrated that dimethyl sulfoxide (DMSO) induces the selective conversion of α-helix motifs into the poly(L-proline) II (PPII) helix conformation in an array of proteins, while β-sheets remain mostly unaffected. Human serum albumin (HSA), a highly α-helical protein, underwent the most dramatic changes and, therefore, was selected as a model for further investigations into the mechanism of this conformational change. Herein we report the use of two-dimensional ROA correlation analysis applying synchronous, autocorrelation, and moving windows approaches in order to understand the conformational transitions in HSA as a function of DMSO concentration. Our results indicate that the destabilization of native α-helix starts at DMSO concentrations as little as 20% in water (v/v), with the transition to PPII helix being complete at ~80% DMSO. These results clearly indicate that any protein preparation containing relatively low concentrations of DMSO should consider possible disruptions in α-helical domains.
Collapse
Affiliation(s)
- Andrea N L Batista
- Departamento de Química Orgânica, Instituto de Química, Univ. Estadual Paulista - UNESP, Araraquara, Brazil; Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
32
|
Yamamoto S, Furukawa T, Bouř P, Ozaki Y. Solvated States of Poly-l-alanine α-Helix Explored by Raman Optical Activity. J Phys Chem A 2014; 118:3655-62. [DOI: 10.1021/jp500794s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shigeki Yamamoto
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tatsuya Furukawa
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, 166 10 Prague, Czech Republic
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
33
|
Jensen MR, Zweckstetter M, Huang JR, Blackledge M. Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem Rev 2014; 114:6632-60. [PMID: 24725176 DOI: 10.1021/cr400688u] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Ye S, Li H, Yang W, Luo Y. Accurate Determination of Interfacial Protein Secondary Structure by Combining Interfacial-Sensitive Amide I and Amide III Spectral Signals. J Am Chem Soc 2014; 136:1206-9. [DOI: 10.1021/ja411081t] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongchun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weilai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Schwalbe M, Ozenne V, Bibow S, Jaremko M, Jaremko L, Gajda M, Jensen MR, Biernat J, Becker S, Mandelkow E, Zweckstetter M, Blackledge M. Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 2013; 22:238-49. [PMID: 24361273 DOI: 10.1016/j.str.2013.10.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
The development of molecular descriptions of intrinsically disordered proteins (IDPs) is essential for elucidating conformational transitions that characterize common neurodegenerative disorders. We use nuclear magnetic resonance, small angle scattering, and molecular ensemble approaches to characterize the IDPs Tau and α-synuclein. Ensemble descriptions of IDPs are highly underdetermined due to the inherently large number of degrees of conformational freedom compared with available experimental measurements. Using extensive cross-validation we show that five different types of independent experimental parameters are predicted more accurately by selected ensembles than by statistical coil descriptions. The improvement increases in regions whose local sampling deviates from statistical coil, validating the derived conformational description. Using these approaches we identify enhanced polyproline II sampling in aggregation-nucleation sites, supporting suggestions that this region of conformational space is important for aggregation.
Collapse
Affiliation(s)
- Martin Schwalbe
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Valéry Ozenne
- University Grenoble Alpes, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France; CNRS, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France; CEA, DSV, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Stefan Bibow
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Mariusz Jaremko
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Lukasz Jaremko
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Michal Gajda
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Malene Ringkjøbing Jensen
- University Grenoble Alpes, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France; CNRS, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France; CEA, DSV, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Jacek Biernat
- CEASAR Research Center, 53175 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Eckhard Mandelkow
- CEASAR Research Center, 53175 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany; Center for the Molecular Physiology of the Brain, University Medical Center, 37073 Göttingen, Germany.
| | - Martin Blackledge
- University Grenoble Alpes, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France; CNRS, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France; CEA, DSV, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France.
| |
Collapse
|
36
|
Vaden TD, de Boer TSJA, Simons JP, Snoek LC, Suhai S, Paizs B. Vibrational spectroscopy and conformational structure of protonated polyalanine peptides isolated in the gas phase. J Phys Chem A 2013; 112:4608-16. [PMID: 18444632 DOI: 10.1021/jp800069n] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformational structures of protonated polyalanine peptides, Ala(n)H(+), have been investigated in the gas phase for n = 3, 4, 5, and 7 using a combination of resonant-infrared multiphoton dissociation (R-IRMPD) spectroscopy in the NH and OH stretch regions and quantum chemical calculations. Agreement between theoretical IR and experimental R-IRMPD spectral features has enabled the assignment of specific hydrogen-bonded conformational motifs in the short protonated peptides and revealed their conformational evolution under elevated-temperature conditions, as a function of increasing chain length. The shortest peptide, Ala(3)H(+), adopts a mixture of extended and cyclic chain conformations, protonated, respectively, at a backbone carbonyl or the N-terminus. The longer peptides adopt folded, cyclic, and globular charge-solvated conformations protonated at the N-terminus, consistent with previous ion-mobility studies. The longest peptide, Ala(7)H(+), adopts a globular conformation with the N-terminus completely charge-solvated, demonstrating the emergence of "physiologically relevant" intramolecular interactions in the peptide backbone. The computed conformational relative free energies highlight the importance of entropic contributions in these peptides.
Collapse
Affiliation(s)
- Timothy D Vaden
- Physical and Theoretical Chemistry Laboratory, Chemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Polyproline-II Helix in Proteins: Structure and Function. J Mol Biol 2013; 425:2100-32. [DOI: 10.1016/j.jmb.2013.03.018] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
|
38
|
Kim H, Cho M. Infrared Probes for Studying the Structure and Dynamics of Biomolecules. Chem Rev 2013; 113:5817-47. [DOI: 10.1021/cr3005185] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Heejae Kim
- Department of Chemistry, Korea University, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-713, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute,
Seoul 136-713, Korea
| |
Collapse
|
39
|
Batista ANL, Batista Jr JM, Bolzani VS, Furlan M, Blanch EW. Selective DMSO-induced conformational changes in proteins from Raman optical activity. Phys Chem Chem Phys 2013; 15:20147-52. [DOI: 10.1039/c3cp53525h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Dzwolak W, Kalinowski J, Johannessen C, Babenko V, Zhang G, Keiderling TA. On the DMSO-Dissolved State of Insulin: A Vibrational Spectroscopic Study of Structural Disorder. J Phys Chem B 2012; 116:11863-71. [DOI: 10.1021/jp3062674] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wojciech Dzwolak
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093
Warsaw, Poland
| | - Jarosław Kalinowski
- Institute of High
Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Christian Johannessen
- Manchester Interdisciplinary
Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Viktoria Babenko
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093
Warsaw, Poland
| | - Ge Zhang
- Department of Chemistry, University of Illinois at Chicago, 845
West Taylor Street (m/c 111), Chicago, Illinois 60607-7061, United
States
| | - Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago, 845
West Taylor Street (m/c 111), Chicago, Illinois 60607-7061, United
States
| |
Collapse
|
41
|
Perney NM, Braddick L, Jurna M, Garbacik ET, Offerhaus HL, Serpell LC, Blanch E, Holden-Dye L, Brocklesby WS, Melvin T. Polyglutamine aggregate structure in vitro and in vivo; new avenues for coherent anti-Stokes Raman scattering microscopy. PLoS One 2012; 7:e40536. [PMID: 22911702 PMCID: PMC3401212 DOI: 10.1371/journal.pone.0040536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 06/11/2012] [Indexed: 12/22/2022] Open
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ) aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D2Q15K2) were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross β-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the β-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm−1. CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm−1) and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP) with polyQ (Q40) expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites) revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm−1) signals than in surrounding tissues at the resonance for the cross β-sheet polyQ in vitro.
Collapse
Affiliation(s)
- Nicolas M. Perney
- Optoelectronics Research Centre, University of Southampton, Highfield, Hampshire, United Kingdom
| | - Lucy Braddick
- Optoelectronics Research Centre, University of Southampton, Highfield, Hampshire, United Kingdom
| | - Martin Jurna
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Erik T. Garbacik
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Herman L. Offerhaus
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, Sussex, United Kingdom
| | - Ewan Blanch
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Highfield, Hampshire, United Kingdom
| | - William S. Brocklesby
- Optoelectronics Research Centre, University of Southampton, Highfield, Hampshire, United Kingdom
| | - Tracy Melvin
- Optoelectronics Research Centre, University of Southampton, Highfield, Hampshire, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Barron LD. From cosmic chirality to protein structure: Lord Kelvin's legacy. Chirality 2012; 24:879-93. [PMID: 22522780 DOI: 10.1002/chir.22017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/18/2012] [Indexed: 12/11/2022]
Abstract
A selection of my work on chirality is sketched in two distinct parts of this lecture. Symmetry and Chirality explains how the discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. The concepts of true chirality (time-invariant enantiomorphism) and false chirality (time-noninvariant enantiomorphism) that emerge provide an extension of Lord Kelvin's original definition of chirality to situations where motion is an essential ingredient thereby clarifying, inter alia, the nature of physical influences able to induce absolute enantioselection. Consideration of symmetry violations reveals that strict enantiomers (exactly degenerate) are interconverted by the combined CP operation. Raman optical activity surveys work, from first observation to current applications, on a new chiroptical spectroscopy that measures vibrational optical activity via Raman scattering of circularly polarized light. Raman optical activity provides incisive information ranging from absolute configuration and complete solution structure of smaller chiral molecules and oligomers to protein and nucleic acid structure of intact viruses.
Collapse
Affiliation(s)
- Laurence D Barron
- Department of Chemistry, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
43
|
Duitch L, Toal S, Measey TJ, Schweitzer-Stenner R. Triaspartate: A Model System for Conformationally Flexible DDD Motifs in Proteins. J Phys Chem B 2012; 116:5160-71. [DOI: 10.1021/jp2121565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Duitch
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| | - Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| | - Thomas J. Measey
- Department of Chemistry, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
44
|
Mori H, Endo T. Amino-Acid-Based Block Copolymers by RAFT Polymerization. Macromol Rapid Commun 2012; 33:1090-107. [DOI: 10.1002/marc.201100887] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/19/2012] [Indexed: 12/21/2022]
|
45
|
Conformational analyses of peptides and proteins by vibrational Raman optical activity. Anal Bioanal Chem 2012; 403:2203-12. [DOI: 10.1007/s00216-012-5891-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
46
|
Detecting biochemical changes in the rodent cervix during pregnancy using Raman spectroscopy. Ann Biomed Eng 2012; 40:1814-24. [PMID: 22411265 DOI: 10.1007/s10439-012-0541-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
The goal of this research is to determine whether Raman spectroscopy (RS), an optical method that probes the vibrational modes of tissue components, can be used in vivo to study changes in the mouse cervix during pregnancy. If successful, such a tool could be used to detect cervical changes due to pregnancy, both normal and abnormal, in animal models and humans. For this study, Raman spectra were acquired before, during and after a 19-day mouse gestational period. In some cases, after Raman data was obtained, cervices were excised for structural testing and histological staining for collagen and smooth muscle. Various peaks of the Raman spectra, such as the areas corresponding to fatty acid content and collagen organization, changed as the cervix became softer in preparation for labor and delivery. These findings correspond to the increase in compliance of the tissue and the collagen disorganization visualized with the histological staining. The results of this study suggest that non-invasive RS can be used to study cervical changes during pregnancy, labor and delivery and can possibly predict preterm delivery before overt clinical manifestations, potentially lead to more effective preventive and therapeutic interventions.
Collapse
|
47
|
He L, Navarro AE, Shi Z, Kallenbach NR. End Effects Influence Short Model Peptide Conformation. J Am Chem Soc 2012; 134:1571-6. [DOI: 10.1021/ja2070363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liu He
- School of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Abel E. Navarro
- Department of Chemistry, New York University, 100 Washington Square East, New
York, New York 10003, United States
| | - Zhengshuang Shi
- School of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Neville R. Kallenbach
- Department of Chemistry, New York University, 100 Washington Square East, New
York, New York 10003, United States
| |
Collapse
|
48
|
Yamamoto S, Watarai H. Raman optical activity study on insulin amyloid- and prefibril intermediate. Chirality 2011; 24:97-103. [DOI: 10.1002/chir.21029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/11/2011] [Indexed: 11/06/2022]
|
49
|
Profant V, Baumruk V, Li X, Šafařík M, Bouř P. Tracking of the Polyproline Folding by Density Functional Computations and Raman Optical Activity Spectra. J Phys Chem B 2011; 115:15079-89. [DOI: 10.1021/jp207706p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Václav Profant
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Baumruk
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Xiaojun Li
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
50
|
Jacob CR. Theoretical Study of the Raman Optical Activity Spectra of 310-Helical Polypeptides. Chemphyschem 2011; 12:3291-306. [DOI: 10.1002/cphc.201100593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Indexed: 11/06/2022]
|