1
|
Pinheiro VB, Holliger P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol 2014; 32:321-8. [PMID: 24745974 PMCID: PMC4039137 DOI: 10.1016/j.tibtech.2014.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Nucleic acids display remarkable properties beyond information storage and propagation. The well-understood base pairing rules have enabled nucleic acids to be assembled into nanostructures of ever increasing complexity. Although nanostructures can be constructed using other building blocks, including peptides and lipids, it is the capacity to evolve that sets nucleic acids apart from all other nanoscale building materials. Nonetheless, the poor chemical and biological stability of DNA and RNA constrain their applications. Recent advances in nucleic acid chemistry and polymerase engineering enable the synthesis, replication, and evolution of a range of synthetic genetic polymers (XNAs) with improved chemical and biological stability. We discuss the impact of this technology on the generation of XNA ligands, enzymes, and nanostructures with tailor-made chemistry.
Collapse
Affiliation(s)
- Vitor B Pinheiro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
2
|
Reetz MT. Artificial Metalloenzymes as Catalysts in Stereoselective Diels-Alder Reactions. CHEM REC 2012; 12:391-406. [DOI: 10.1002/tcr.201100043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 11/05/2022]
|
3
|
Park S, Sugiyama H. Hybridkatalysatoren auf DNA-Basis für die asymmetrische organische Synthese. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Park S, Sugiyama H. DNA-Based Hybrid Catalysts for Asymmetric Organic Synthesis. Angew Chem Int Ed Engl 2010; 49:3870-8. [DOI: 10.1002/anie.200905382] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Gagnon KT, Ju SY, Goshe MB, Maxwell ES, Franzen S. A role for hydrophobicity in a Diels-Alder reaction catalyzed by pyridyl-modified RNA. Nucleic Acids Res 2009; 37:3074-82. [PMID: 19304744 PMCID: PMC2685102 DOI: 10.1093/nar/gkp177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New classes of RNA enzymes or ribozymes have been obtained by in vitro evolution and selection of RNA molecules. Incorporation of modified nucleotides into the RNA sequence has been proposed to enhance function. DA22 is a modified RNA containing 5-(4-pyridylmethyl) carboxamide uridines, which has been selected for its ability to promote a Diels–Alder cycloaddition reaction. Here, we show that DA_TR96, the most active member of the DA22 RNA sequence family, which was selected with pyridyl-modified nucleotides, accelerates a cycloaddition reaction between anthracene and maleimide derivatives with high turnover. These widely used reactants were not used in the original selection for DA22 and yet here they provide the first demonstration of DA_TR96 as a true multiple-turnover catalyst. In addition, the absence of a structural or essential kinetic role for Cu2+, as initially postulated, and nonsequence-specific hydrophobic interactions with the anthracene substrate have led to a reevaluation of the pyridine modification's role. These findings broaden the catalytic repertoire of the DA22 family of pyridyl-modified RNAs and suggest a key role for the hydrophobic effect in the catalytic mechanism.
Collapse
Affiliation(s)
- Keith T Gagnon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
6
|
Kelly BT, Baret JC, Taly V, Griffiths AD. Miniaturizing chemistry and biology in microdroplets. Chem Commun (Camb) 2007:1773-88. [PMID: 17476389 DOI: 10.1039/b616252e] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
By compartmentalizing reactions in aqueous microdroplets of water-in-oil emulsions, reaction volumes can be reduced by factors of up to 10(9) compared to conventional microtitre-plate based systems. This allows massively parallel processing of as many as 10(10) reactions in a total volume of only 1 ml of emulsion. This review describes the use of emulsions for directed evolution of proteins and RNAs, and for performing polymerase chain reactions (PCRs). To illustrate these applications we describe certain specific experiments, each of which exemplifies a different facet of the technique, in some detail. These examples include directed evolution of Diels-Alderase and RNA ligase ribozymes and several classes of protein enzymes, including DNA polymerases, phosphotriesterases, beta-galactosidases and thiolactonases. We also describe the application of emulsion PCR to screen for rare mutations and for new ultra-high throughput sequencing technologies. Finally, we discuss the recent development of microfluidic tools for making and manipulating microdroplets and their likely impact on the future development of the field.
Collapse
Affiliation(s)
- Bernard T Kelly
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, UKCB2 2QH
| | | | | | | |
Collapse
|
7
|
Abstract
One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer by nucleotide templated synthesis, enantioselective catalysis by RNA/DNAzymes and DNA-based asymmetric catalysis. In this article the concepts behind these strategies as well as the important achievements in this field will be discussed.
Collapse
Affiliation(s)
- Gerard Roelfes
- Department of Organic Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
8
|
Affiliation(s)
- Gerard Roelfes
- Department of Organic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
9
|
Pichlmair S, de Lera Ruiz M, Basu K, Paquette LA. Evaluation of possible intramolecular [4+2] cycloaddition routes for assembling the central tetracyclic core of the potent marine antiinflammatory agent mangicol A. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.11.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Jäger S, Rasched G, Kornreich-Leshem H, Engeser M, Thum O, Famulok M. A versatile toolbox for variable DNA functionalization at high density. J Am Chem Soc 2006; 127:15071-82. [PMID: 16248646 DOI: 10.1021/ja051725b] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To broaden the applicability of chemically modified DNAs in nano- and biotechnology, material science, sensor development, and molecular recognition, strategies are required for introducing a large variety of different modifications into the same nucleic acid sequence at once. Here, we investigate the scope and limits for obtaining functionalized dsDNA by primer extension and PCR, using a broad variety of chemically modified deoxynucleotide triphosphates (dNTPs), DNA polymerases, and templates. All natural nucleobases in each strand were substituted with up to four different base-modified analogues. We studied the sequence dependence of enzymatic amplification to yield high-density functionalized DNA (fDNA) from modified dNTPs, and of fDNA templates, and found that GC-rich sequences are amplified with decreased efficiency as compared to AT-rich ones. There is also a strong dependence on the polymerase used. While family A polymerases generally performed poorly on "demanding" templates containing consecutive stretches of a particular base, family B polymerases were better suited for this purpose, in particular Pwo and Vent (exo-) DNA polymerase. A systematic analysis of fDNAs modified at increasing densities by CD spectroscopy revealed that single modified bases do not alter the overall B-type DNA structure, regardless of their chemical nature. A density of three modified bases induces conformational changes in the double helix, reflected by an inversion of the CD spectra. Our study provides a basis for establishing a generally applicable toolbox of enzymes, templates, and monomers for generating high-density functionalized DNAs for a broad range of applications.
Collapse
Affiliation(s)
- Stefan Jäger
- Kekuké-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Agresti JJ, Kelly BT, Jäschke A, Griffiths AD. Selection of ribozymes that catalyse multiple-turnover Diels-Alder cycloadditions by using in vitro compartmentalization. Proc Natl Acad Sci U S A 2005; 102:16170-5. [PMID: 16260754 PMCID: PMC1283419 DOI: 10.1073/pnas.0503733102] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vitro compartmentalization (IVC) has previously been used to evolve protein enzymes. Here, we demonstrate how IVC can be applied to select RNA enzymes (ribozymes) for a property that has previously been unselectable: true intermolecular catalysis. Libraries containing 10(11) ribozyme genes are compartmentalized in the aqueous droplets of a water-in-oil emulsion, such that most droplets contain no more than one gene, and transcribed in situ. By coencapsulating the gene, RNA, and the substrates/products of the catalyzed reaction, ribozymes can be selected for all enzymatic properties: substrate recognition, product formation, rate acceleration, and turnover. Here we exploit the complementarity of IVC with systematic evolution of ligands by exponential enrichment (SELEX), which allows selection of larger libraries (>/=10(15)) and for very small rate accelerations (k(cat)/k(uncat)) but only selects for intramolecular single-turnover reactions. We selected approximately 10(14) random RNAs for Diels-Alderase activity with five rounds of SELEX, then six to nine rounds with IVC. All selected ribozymes catalyzed the Diels-Alder reaction in a truly bimolecular fashion and with multiple turnover. Nearly all ribozymes selected by using eleven rounds of SELEX alone contain a common catalytic motif. Selecting with SELEX then IVC gave ribozymes with significant sequence variations in this catalytic motif and ribozymes with completely novel motifs. Interestingly, the catalytic properties of all of the selected ribozymes were quite similar. The ribozymes are strongly product inhibited, consistent with the Diels-Alder transition state closely resembling the product. More efficient Diels-Alderases may need to catalyze a second reaction that transforms the product and prevents product inhibition.
Collapse
Affiliation(s)
- Jeremy J Agresti
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
12
|
Dalla Cort A, Mandolini L, Pasquini C, Schiaffino L. Inherently Chiral Uranyl-Salophen Macrocycles: Computer-Aided Design and Resolution. J Org Chem 2005; 70:9814-21. [PMID: 16292810 DOI: 10.1021/jo0515430] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] A flipping motion rapidly inverts the bent structure of uranyl-salophen compounds and, consequently, causes fast enantiomerization of nonsymmetrically substituted derivatives. This process has been previously slowed by introducing bulky substituents in the imine bond region. Since the resulting complexes dissociate upon chromatographic treatment, an alternative approach to the design and synthesis of robust, nonflipping uranyl-salophen compounds is here described. Such an approach is based on the idea that the flipping motion would be blocked by connecting the para positions with respect to the phenoxide oxygens by means of polymethylene bridges of suitable length. Analysis of a number of uranyl-salophen compounds by molecular mechanics, while showing that bulky substituents in the imine bond region cause severe distortions of the ligand backbone, suggested that the best chain lengths are those that fit the gap between the phenoxide rings without altering the natural geometry of the parent uranyl-salophen compound. Calculations showed that such chains are those composed of 12 and 13 methylene units. Accordingly, chiral uranyl-salophen macrocycles bridged with 12- and 13-methylene chains were synthesized in fairly good yields and resolved by chiral HPLC.
Collapse
Affiliation(s)
- Antonella Dalla Cort
- Dipartimento di Chimica and IMC-CNR Sezione Meccanismi di Reazione, Università La Sapienza, Box 34 Roma 62, 00185 Roma, Italy.
| | | | | | | |
Collapse
|
13
|
|
14
|
Serganov A, Keiper S, Malinina L, Tereshko V, Skripkin E, Höbartner C, Polonskaia A, Phan AT, Wombacher R, Micura R, Dauter Z, Jäschke A, Patel DJ. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation. Nat Struct Mol Biol 2005; 12:218-24. [PMID: 15723077 PMCID: PMC4692364 DOI: 10.1038/nsmb906] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 01/24/2005] [Indexed: 11/08/2022]
Abstract
The majority of structural efforts addressing RNA's catalytic function have focused on natural ribozymes, which catalyze phosphodiester transfer reactions. By contrast, little is known about how RNA catalyzes other types of chemical reactions. We report here the crystal structures of a ribozyme that catalyzes enantioselective carbon-carbon bond formation by the Diels-Alder reaction in the unbound state and in complex with a reaction product. The RNA adopts a lambda-shaped nested pseudoknot architecture whose preformed hydrophobic pocket is precisely complementary in shape to the reaction product. RNA folding and product binding are dictated by extensive stacking and hydrogen bonding, whereas stereoselection is governed by the shape of the catalytic pocket. Catalysis is apparently achieved by a combination of proximity, complementarity and electronic effects. We observe structural parallels in the independently evolved catalytic pocket architectures for ribozyme- and antibody-catalyzed Diels-Alder carbon-carbon bond-forming reactions.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|