1
|
Schlathölter T, Poully JC. Radiation-Induced Molecular Processes in DNA: A Perspective on Gas-Phase Interaction Studies. Chemistry 2024; 30:e202400633. [PMID: 38888393 DOI: 10.1002/chem.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 06/20/2024]
Abstract
Studying the direct effects of DNA irradiation is essential for understanding the impact of radiation on biological systems. Gas-phase interactions are especially well suited to uncover the molecular mechanisms underlying these direct effects. Only relatively recently, isolated DNA oligonucleotides were irradiated by ionizing particles such as VUV or X-ray photons or ion beams, and ionic products were analyzed by mass spectrometry. This article provides a comprehensive review of primarily experimental investigations in this field over the past decade, emphasizing the description of processes such as ionization, fragmentation, charge and hydrogen transfer triggered by photoabsorption or ion collision, and the recent progress made thanks to specific atomic photoabsorption. Then, we outline ongoing experimental developments notably involving ion-mobility spectrometry, crossed beams or time-resolved measurements. The discussion extends to potential research directions for the future.
Collapse
Affiliation(s)
- Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
- University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718, BG Groningen, The Netherlands
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA, CNRS, ENSICAEN, Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
2
|
Brundridge NM, Fritz JM, Dickerhoff J, Yang D, McLuckey SA. Negative Electron Transfer Collision-Induced Dissociation of G-Quadruplexes: Uncovering the Guanine Radical Anion Loss Pathway. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:756-766. [PMID: 38456425 PMCID: PMC11022967 DOI: 10.1021/jasms.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
G-quadruplex (G4) DNA can form highly stable secondary structures in the presence of metal cations, and research has shown its potential as a transcriptional regulator for oncogenes in the human genome. In order to explore the interactions of DNA with metal cations using mass spectrometry, employing complementary fragmentation methods can enhance structural information. This study explores the use of ion-ion reactions for sequential negative electron transfer collision-induced dissociation (nET-CID) as a complement to traditional ion-trap CID (IT-CID). The resulting nET-CID data for G4 anions with and without metal cations show an increase in fragment ion type diversity and yield of structurally informative ions relative to IT-CID. The nET-CID yields greater sequence coverage by virtue of fragmentation at the 3'-side of thymine residues, which is lacking with IT-CID. Potassium adductions to backbone fragments in IT-CID and nET-CID spectra were nearly identical. Of note is a prominent fragment resulting from a loss of a 149 Da anion seen in nET-CID of large, G-rich sequences, proposed to be radical anion guanine loss. Neutral loss of neutral guanine (151 Da) and deprotonated nucleobase loss (150 Da) have been previously reported, but this is the first report of radical anion guanine loss (149 Da). Confirmation of the identity of the 149 Da anion results from the examination of the homonucleobase sequence 5'-GGGGGGGG-3'. Loss of a charged adenine radical anion at much lower relative abundance was also noted for the sequence 5'-AAAAAAAA-3'. DFT modeling indicates that the loss of a nucleobase as a radical anion from odd-electron nucleic acid anions is a thermodynamically favorable fragmentation pathway for G.
Collapse
Affiliation(s)
- Nicole M Brundridge
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jordan M Fritz
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jonathan Dickerhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W. Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Danzhou Yang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W. Stadium Avenue, West Lafayette, Indiana 47904, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Nakamura K, Ito S, Koyasu K, Tsukuda T. Effect of total charge on the electronic structure of thiolate-protected X@Ag 12 superatoms (X = Ag, Au). Phys Chem Chem Phys 2023; 25:5955-5959. [PMID: 36649091 DOI: 10.1039/d2cp05079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electronic structures of chemically synthesized silver-based clusters [XAg16(TBBT)12]3- (X = Ag or Au; TBBT = 4-tert-butylbenzenethiolate) having an icosahedral X@Ag12 superatomic core were studied by gas-phase photoelectron spectroscopy and density functional theory calculations. The electron binding energy of the highest occupied molecular orbital (HOMO) with a 1P superatomic nature was determined to be 0.23 and 0.29 eV for X = Ag or Au, respectively. Resonant tunnelling electron emission through the repulsive Coulomb barrier (RCB) was observed. From the kinetic energy of the tunnelling electrons, it was estimated that the lowest unoccupied molecular orbital (LUMO) was supported at 1.51 and 1.62 eV above the vacuum level by the RCB for X = Ag or Au, respectively. The HOMO of [XAg16(TBBT)12]3- (X = Ag or Au) was destabilized by 3.74 and 3.71 eV, respectively, compared with those of [XAg24(DMBT)18]- (DMBT = 2,4-dimethylbenzenethiolate) having the icosahedral X@Ag12 core due to the larger negative charge imparted by the ligand layers.
Collapse
Affiliation(s)
- Katsunosuke Nakamura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Yuan Q, Chomicz-Mańka L, Makurat S, Cao W, Rak J, Wang XB. Photoelectron Spectroscopy and Theoretical Investigations of Gaseous Doubly Deprotonated 2'-Deoxynucleoside 5'-Monophosphate Dianions. J Phys Chem Lett 2021; 12:9463-9469. [PMID: 34558897 DOI: 10.1021/acs.jpclett.1c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A better understanding of the mechanism of oxidative DNA damage requires obtaining a molecular level description of nucleotides in various charge states. Herein, we report a systematic photoelectron spectroscopy and theoretical investigation of the electronic and geometric structures of four doubly deprotonated 2'-deoxynucleoside 5'-monophosphate dianions, the smallest quintessential DNA building block. These dianions are intrinsically stable with their adiabatic/vertical detachment energies (ADE/VDE) ranging from 0.85/1.07 (A) and 1.05/1.30 (G) to 1.20/1.50 (C) and 1.80/2.10 eV (T). The repulsive Coulomb barrier against electron detachment is 2.0 eV for purines and 2.5 eV for pyrimidines. Dianions are deprotonated at the phosphate group and the amino group of a nucleobase. The π-type HOMO orbital resides on the nucleobase moiety for each dianion. This spatial distribution of HOMO suggests that the most loosely bound electron is detached along the direction perpendicular to the nucleobase. When combined with the previous results, this work makes complete the depiction of basic building blocks of DNA at the molecular level.
Collapse
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lidia Chomicz-Mańka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Samanta Makurat
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Janusz Rak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Warneke J, Wang XB. Measuring Electronic Structure of Multiply Charged Anions to Understand Their Chemistry: A Case Study on Gaseous Polyhedral closo-Borate Dianions. J Phys Chem A 2021; 125:6653-6661. [PMID: 34323504 DOI: 10.1021/acs.jpca.1c04618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on multiply charged anions (MCAs) in the gas phase has been intensively performed during the past decades, mainly to understand fundamental molecular physics phenomena, for example, intramolecular Coulomb repulsion and existence of the repulsive Coulomb barrier. However, the relevance of these investigations with respect to understanding MCAs' chemistry appears often vague. Here, we discuss how insights into the electronic structure obtained from negative ion photoelectron spectroscopy (NIPES) combined with theoretical calculations and collision-induced dissociation can provide a fundamental understanding of the intrinsic chemical reactivity of MCAs and their fragments. This is exemplified in our studies on polyhedral closo-borate dianions [BnXn]2- (n = 6, 10, 11, 12; X = H, F-I, CN) and their fragment ions. For example, the rational design of closo-borate dianions with specific electronic properties is described, which leads to generating highly reactive fragments. Depending on the dianionic precursor, these fragments are tuned to either bind noble gases effectively or activate small molecules like CO and N2. The intrinsic electronic properties of closo-borate dianions are further compared to their electrochemistry in solutions, revealing solvent effects on the redox potentials. Neutral host molecules such as cyclodextrins are found to bind strongly to [BnXn]2-, and gas phase NIPES provides insights into the intrinsic host-guest interactions. Finally, outlooks including the direct NIPES of molecular fragment ions that cannot be generated in the condensed phase and their utilization in preparative mass spectrometry are discussed.
Collapse
Affiliation(s)
- Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany.,Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Castellani ME, Avagliano D, Verlet JRR. Ultrafast Dynamics of the Isolated Adenosine-5'-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J Phys Chem A 2021; 125:3646-3652. [PMID: 33882670 DOI: 10.1021/acs.jpca.1c01646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The excited state dynamics of the doubly deprotonated dianion of adenosine-5'-triphosphate, [ATP-H2]2-, has been spectroscopically explored by time-resolved photoelectron spectroscopy following excitation at 4.66 eV. Time-resolved photoelectron spectra show that two competing processes occur for the initially populated 1ππ* state. The first is rapid electron emission by tunneling through a repulsive Coulomb barrier as the 1ππ* state is a resonance. The second is nuclear motion on the 1ππ* state surface leading to an intermediate that no longer tunnels and subsequently decays by internal conversion to the ground electronic state. The spectral signatures of the features are similar to those observed for other adenine-derivatives, suggesting that this nucleobase is quite insensitive to the nearby negative charges localized on the phosphates, except of course for the appearance of the additional electron tunneling channel, which is open in the dianion.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, DH1 3LE Durham, U.K
| |
Collapse
|
7
|
Castellani ME, Avagliano D, González L, Verlet JRR. Site-Specific Photo-oxidation of the Isolated Adenosine-5'-triphosphate Dianion Determined by Photoelectron Imaging. J Phys Chem Lett 2020; 11:8195-8201. [PMID: 32886886 DOI: 10.1021/acs.jpclett.0c02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photoelectron imaging of the isolated adenosine-5'-triphosphate dianion excited to the 1ππ* states reveals that electron emission is predominantly parallel to the polarization axis of the light and arises from subpicosecond electron tunneling through the repulsive Coulomb barrier (RCB). The computed RCB shows that the most probable electron emission site is on the amino group of adenine. This is consistent with the photoelectron imaging: excitation to the 1ππ* states leads to an aligned ensemble distributed predominantly parallel to the long axis of adenine; the subsequent electron tunneling site is along this axis; and the negatively charged phosphate groups guide the outgoing electron mostly along this axis at long range. Imaging of electron tunneling from polyanions combined with computational chemistry may offer a general route for probing the intrinsic photo-oxidation site and dynamics as well as the overall structure of complex isolated species.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Tasaka Y, Nakamura K, Malola S, Hirata K, Kim K, Koyasu K, Häkkinen H, Tsukuda T. Electron Binding in a Superatom with a Repulsive Coulomb Barrier: The Case of [Ag 44(SC 6H 3F 2) 30] 4- in the Gas Phase. J Phys Chem Lett 2020; 11:3069-3074. [PMID: 32233374 DOI: 10.1021/acs.jpclett.0c00786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electron binding mechanism in [Ag44(SC6H3F2)30]4- (SC6H3F2 = 3,4-difluorobenzenethiolate) tetra-anion was studied by photoelectron spectroscopy (PES), collision-induced dissociation mass spectrometry (CID-MS), and density functional theory (DFT) computations. PES showed that [Ag44(SC6H3F2)30]4- is energetically metastable with respect to electron autodetachment {[Ag44(SC6H3F2)30]3- + e-} and features a repulsive Coulomb barrier (RCB) with a height of 2.7 eV. However, CID-MS revealed that [Ag44(SC6H3F2)30]4- does not release an electron upon collisional excitation but undergoes dissociation. DFT computations performed on the known structure of [Ag44(SC6H3F2)30]4- confirmed the negative adiabatic electron affinity of [Ag44(SC6H3F2)30]3- and interpreted the experimental PE spectrum by taking into account tunneling electron photodetachment through the RCB.
Collapse
Affiliation(s)
- Yuriko Tasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsunosuke Nakamura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Keisuke Hirata
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kuenhee Kim
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
9
|
Li W, Mjekiqi E, Douma W, Wang X, Kavatsyuk O, Hoekstra R, Poully J, Schlathölter T. Hole Migration in Telomere-Based Oligonucleotide Anions and G-Quadruplexes. Chemistry 2019; 25:16114-16119. [PMID: 31614016 PMCID: PMC6972685 DOI: 10.1002/chem.201904105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Indexed: 01/24/2023]
Abstract
Vacuum ultraviolet photoionization of a gas-phase oligonucleotide anion leads to the formation of a valence hole. This hole migrates towards an energetically favorable site where it can weaken bonds and ultimately lead to bond cleavage. We have studied Vacuum UV photoionization of deprotonated oligonucleotides containing the human telomere sequence dTTAGGG and G-quadruplex structures consisting of four dTGGGGT single strands, stabilized by NH4 + counter ions. The oligonucleotide and G-quadruplex anions were confined in a radiofrequency ion trap, interfaced with a synchrotron beamline and the photofragmentation was studied using time-of-flight mass spectrometry. Oligonucleotide 12-mers containing the 5'-TTAGGG sequence were found to predominantly break in the GGG region, whereas no selective bond cleavage region was observed for the reversed 5'-GGGATT sequence. For G-quadruplex structures, fragmentation was quenched and mostly non-dissociative single and double electron removal was observed.
Collapse
Affiliation(s)
- Wen Li
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Edita Mjekiqi
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Wessel Douma
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xin Wang
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Oksana Kavatsyuk
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
- University College GroningenUniversity of GroningenHoendiepskade 23/249718 BGGroningenThe Netherlands
| | - Ronnie Hoekstra
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jean‐Christophe Poully
- CIMAP laboratory UMR 6252Université de Caen Normandie/CEA/CNRS/ENSICAENBd Becquerel14070CAEN Cedex 5France
| | - Thomas Schlathölter
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
10
|
Daly S, Porrini M, Rosu F, Gabelica V. Electronic spectroscopy of isolated DNA polyanions. Faraday Discuss 2019; 217:361-382. [DOI: 10.1039/c8fd00207j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We address whether action spectroscopy could be used to investigate structural changes in gas-phase biomolecule (e.g. nucleic acid) ions, owing to changes in the environments of their chromophores, while taking advantage of the additional spectrometric separation of complex mixtures.
Collapse
Affiliation(s)
- Steven Daly
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle
- Université de Bordeaux
- Inserm & CNRS (ARNA, U1212, UMR5320)
- IECB
- 33607 Pessac
| | - Massimiliano Porrini
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle
- Université de Bordeaux
- Inserm & CNRS (ARNA, U1212, UMR5320)
- IECB
- 33607 Pessac
| | - Frédéric Rosu
- Institut Européen de Chimie et Biologie
- Université de Bordeaux
- CNRS & Inserm (IECB, UMS3033, US001)
- 33607 Pessac
- France
| | - Valérie Gabelica
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle
- Université de Bordeaux
- Inserm & CNRS (ARNA, U1212, UMR5320)
- IECB
- 33607 Pessac
| |
Collapse
|
11
|
Debiossac M, Schätti J, Kriegleder M, Geyer P, Shayeghi A, Mayor M, Arndt M, Köhler V. Tailored photocleavable peptides: fragmentation and neutralization pathways in high vacuum. Phys Chem Chem Phys 2018; 20:11412-11417. [PMID: 29645042 PMCID: PMC5932999 DOI: 10.1039/c8cp01058g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/23/2018] [Indexed: 01/31/2023]
Abstract
Photocleavable tags (PCTs) have the potential for excellent spatio-temporal control over the release of subunits of complex molecules. Here, we show that electrosprayed oligopeptides, functionalized by a tailored ortho-nitroarylether can undergo site-specific photo-activated cleavage under UV irradiation (266 nm) in high vacuum. The comparison of UV photodissociation (UVPD) and collision-induced dissociation (CID) points to the thermal nature of the cleavage mechanism, a picture corroborated by the temperature dependence of the process. Two competing photodissociation pathways can be identified. In one case a phenolate anion is separated from a neutral zwitterion. In the other case a neutral phenol derivative leaves a negatively charged peptide behind. To understand the factors favoring one channel over the other, we investigate the influence of the peptide length, the nature of the phenolic group and the position of the nitro-group (ortho vs. para). The observed gas phase cleavage of a para-nitro benzylic ether markedly differs from the established behavior in solution.
Collapse
Affiliation(s)
- M. Debiossac
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - J. Schätti
- Department of Chemistry, University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4058 Basel , Switzerland .
| | - M. Kriegleder
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - P. Geyer
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - A. Shayeghi
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - M. Mayor
- Department of Chemistry, University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4058 Basel , Switzerland .
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University (SYSU) , Xingang Rd. W. , Guangzhou , China
| | - M. Arndt
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - V. Köhler
- Department of Chemistry, University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4058 Basel , Switzerland .
| |
Collapse
|
12
|
Voss JM, Duffy EM, Marsh BM, Garand E. Mass Spectrometric and Vibrational Characterization of Reaction Intermediates in [Ru(bpy)(tpy)(H 2 O)] 2+ Catalyzed Water Oxidation. Chempluschem 2017; 82:691-694. [PMID: 31961527 DOI: 10.1002/cplu.201700085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Indexed: 11/09/2022]
Abstract
Mass spectrometry coupled with an in-line electrochemical electrospray ionization source is used to capture some of the reaction intermediates formed in the [Ru(bpy)(tpy)(H2 O)]2+ (bpy=2,2'-bipyridine, tpy=2,2':6',2"-terpyridine) catalyzed water oxidation reaction. By controlling the applied electrochemical potential, we identified the parent complex, as well as the first two oxidation complexes, identified as [Ru(bpy)(tpy)(OH)]2+ and [Ru(bpy)(tpy)(O)]2+ . The structures of the parent and first oxidation complexes are probed directly in the mass spectrometer by using infrared predissociation spectroscopy of D2 -tagged ions. Comparisons between experimental vibrational spectra and density functional theory calculations confirmed the identity and structure of these two complexes. Moreover, the frequency of the O-H stretching mode in [Ru(bpy)(tpy)(OH)]2+ shows that this complex features a Ru-OH interaction that is more covalent than ionic.
Collapse
Affiliation(s)
- Jonathan M Voss
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Erin M Duffy
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Brett M Marsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| |
Collapse
|
13
|
Stavros VG, Verlet JRR. Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics. Annu Rev Phys Chem 2016; 67:211-32. [PMID: 26980306 DOI: 10.1146/annurev-physchem-040215-112428] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach.
Collapse
Affiliation(s)
- Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, University of Durham, Durham, DH1 3LE, United Kingdom;
| |
Collapse
|
14
|
Sen A, Hou GL, Wang XB, Dessent CEH. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine, and Adenine. J Phys Chem B 2015; 119:11626-31. [DOI: 10.1021/acs.jpcb.5b07108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ananya Sen
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Gao-Lei Hou
- Physical
Sciences Division, Pacific Northwest National Laboratory, MS K8-88, P.O. Box 999, Richland, Washington 99352, United States
| | - Xue-Bin Wang
- Physical
Sciences Division, Pacific Northwest National Laboratory, MS K8-88, P.O. Box 999, Richland, Washington 99352, United States
| | | |
Collapse
|
15
|
Wang LS. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions. J Chem Phys 2015; 143:040901. [DOI: 10.1063/1.4927086] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
16
|
Abstract
Nucleic acids are diverse polymeric macromolecules that are essential for all life forms. These biomolecules possess a functional three-dimensional structure under aqueous physiological conditions. Mass spectrometry-based approaches have on the other hand opened the possibility to gain structural information on nucleic acids from gas-phase measurements. To correlate gas-phase structural probing results with solution structures, it is therefore important to grasp the extent to which nucleic acid structures are preserved, or altered, when transferred from the solution to a fully anhydrous environment. We will review here experimental and theoretical approaches available to characterize the structure of nucleic acids in the gas phase (with a focus on oligonucleotides and higher-order structures), and will summarize the structural features of nucleic acids that can be preserved in the gas phase on the experiment time scale.
Collapse
|
17
|
Vonderach M, Winghart MO, MacAleese L, Chirot F, Antoine R, Dugourd P, Weis P, Hampe O, Kappes MM. Conformer-selective photoelectron spectroscopy of α-lactalbumin derived multianions in the gas phase. Phys Chem Chem Phys 2014; 16:3007-13. [DOI: 10.1039/c3cp54596b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Horke DA, Chatterley AS, Verlet JRR. Influence of the repulsive Coulomb barrier on photoelectron spectra and angular distributions in a resonantly excited dianion. J Chem Phys 2013; 139:084302. [DOI: 10.1063/1.4818597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
19
|
Chatterley AS, Johns AS, Stavros VG, Verlet JRR. Base-specific ionization of deprotonated nucleotides by resonance enhanced two-photon detachment. J Phys Chem A 2013; 117:5299-305. [PMID: 23642262 DOI: 10.1021/jp4041315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intrinsic ionization energy of a base in DNA plays a critical role in determining the energies at which damage mechanisms may emerge. Here, a two-photon resonance-enhanced ionization scheme is presented that utilizes the (1)ππ* transition, localized on the DNA base, to elucidate the base-specific ionization in a deprotonated nucleotide. In contrast to previous reports, the scheme is insensitive to competing ionization channels arising from the sugar-phosphate backbone. Using this approach, we demonstrate that for all bases except guanine, the lowest electron detachment energy corresponds to detachment from the sugar-phosphate backbone and allows us to determine the lowest adiabatic ionization energy for the other three bases for the first time in an isolated nucleotide.
Collapse
Affiliation(s)
- Adam S Chatterley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | |
Collapse
|
20
|
Weber JM, Marcum J, Nielsen SB. UV Photophysics of DNA and RNA Nucleotides In Vacuo: Dissociation Channels, Time Scales, and Electronic Spectra. PHOTOPHYSICS OF IONIC BIOCHROMOPHORES 2013. [DOI: 10.1007/978-3-642-40190-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Vonderach M, Ehrler OT, Matheis K, Weis P, Kappes MM. Isomer-selected photoelectron spectroscopy of isolated DNA oligonucleotides: phosphate and nucleobase deprotonation at high negative charge states. J Am Chem Soc 2012; 134:7830-41. [PMID: 22524691 DOI: 10.1021/ja300619j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fractionation according to ion mobility and mass-to-charge ratio has been used to select individual isomers of deprotonated DNA oligonucleotide multianions for subsequent isomer-resolved photoelectron spectroscopy (PES) in the gas phase. Isomer-resolved PE spectra have been recorded for tetranucleotides, pentanucleotides, and hexanucleotides. These were studied primarily in their highest accessible negative charge states (3-, 4-, and 5-, respectively), as provided by electrospraying from room temperature solutions. In particular, the PE spectra obtained for pentanucleotide tetraanions show evidence for two coexisting classes of gas-phase isomeric structures. We suggest that these two classes comprise: (i) species with excess electrons localized exclusively at deprotonated phosphate backbone sites and (ii) species with at least one deprotonated base (in addition to several deprotonated phosphates). By permuting the sequence of bases in various [A(5-x)T(x)](4-) and [GT(4)](4-) pentanucleotides, we have established that the second type of isomer is most likely to occur if the deprotonated base is located at the first or last position in the sequence. We have used a combination of molecular mechanics and semiempirical calculations together with a simple electrostatic model to explore the photodetachment mechanism underlying our photoelectron spectra. Comparison of predicted to measured photoelectron spectra suggests that a significant fraction of the detected electrons originates from the DNA bases (both deprotonated and neutral).
Collapse
Affiliation(s)
- Matthias Vonderach
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
22
|
Brunet C, Antoine R, Lemoine J, Dugourd P. Soret Band of the Gas-Phase Ferri-Cytochrome c. J Phys Chem Lett 2012; 3:698-702. [PMID: 26286275 DOI: 10.1021/jz300070r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the first visible spectrum of a heme-protein in the gas phase. The aim of this work was to provide a reference for the optical absorption of an isolated heme-protein to better understand the influence of protein conformation and fluctuation and of solvent on its optical properties. After laser irradiation of gas-phase cytochrome c (cyt c), electron emission is observed. Electron photodetachment yield of cyt c 6- was recorded in the region of the Soret band of the porphyrin group, showing a maximum at 410 nm. Our results are compared with optical spectra of gas-phase heme and of cyt c in solution. We discuss the influence of the polypeptide chain and of the solvent on both the position and the broadening of the Soret band. Action spectrum of gas-phase cyt c is close to the absorption of native cyt c in solution, suggesting an efficient protection of the heme group from solvent accessibility by the polypeptide chain and similar interactions between the two moieties in solution and the gas phase.
Collapse
Affiliation(s)
- Claire Brunet
- †Université Lyon 1, Lyon, France
- ‡CNRS, LASIM UMR 5579, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
- §CNRS, Institut des Sciences Analytique UMR 5180, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Rodolphe Antoine
- †Université Lyon 1, Lyon, France
- ‡CNRS, LASIM UMR 5579, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Jérôme Lemoine
- †Université Lyon 1, Lyon, France
- §CNRS, Institut des Sciences Analytique UMR 5180, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Philippe Dugourd
- †Université Lyon 1, Lyon, France
- ‡CNRS, LASIM UMR 5579, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
23
|
Horke DA, Chatterley AS, Verlet JRR. Effect of internal energy on the repulsive Coulomb barrier of polyanions. PHYSICAL REVIEW LETTERS 2012; 108:083003. [PMID: 22463527 DOI: 10.1103/physrevlett.108.083003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Indexed: 05/28/2023]
Abstract
The nature of the repulsive Coulomb barrier in isolated molecular polyanions is studied by means of the photodetachment dynamics of the S(1) excited state of the fluorescein dianion which is bound solely by the repulsive Coulomb barrier. Photoelectron spectra reveal a feature at a constant electron kinetic energy, regardless of the excitation energy. This is explained by using an adiabatic tunneling picture for electron loss through successive repulsive Coulomb barriers correlating to vibrationally excited states. This physical picture is supported by time-resolved photoelectron spectra, showing that the tunneling lifetime is also invariant with excitation energy.
Collapse
Affiliation(s)
- Daniel A Horke
- Department of Chemistry, University of Durham, Durham, United Kingdom
| | | | | |
Collapse
|
24
|
Vogeler F, Siegert S, Marian CM, Weinkauf R. T1, T2 State Energies and Electron Affinities of Small α,ω-Diphenylpolyenes Investigated by Anion Photodetachment Photoelectron Spectroscopy and Excited-State Theory. Chemphyschem 2011; 12:1948-56. [DOI: 10.1002/cphc.201001083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/04/2011] [Indexed: 11/08/2022]
|
25
|
Lecointre J, Roberts GM, Horke DA, Verlet JRR. Ultrafast relaxation dynamics observed through time-resolved photoelectron angular distributions. J Phys Chem A 2011; 114:11216-24. [PMID: 20961158 DOI: 10.1021/jp1028855] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Time-resolved photoelectron imaging of the 7,7,8,8-tetracyanoquinodimethane (TCNQ) radical anion is presented. Photoelectron angular distributions (PADs) are qualitatively analyzed in terms of the simple s-p model that is based on symmetry arguments. The internal conversion dynamics from the first excited state (1(2)B(3u)) to the ground state ((2)B(2g)) may be observed through temporal changes in the PADs of the spectrally overlapping photoelectron features arising from photodetachment of the ground state and the excited state. A formulism for extracting the population dynamics from the β(2) anisotropy parameter of overlapping spectroscopic features is presented. This is used to extract the lifetime of the first excited state, which is in good agreement with that observed in the time-resolved photoelectron spectra.
Collapse
Affiliation(s)
- Julien Lecointre
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
| | | | | | | |
Collapse
|
26
|
Vonderach M, Ehrler OT, Weis P, Kappes MM. Combining Ion Mobility Spectrometry, Mass Spectrometry, and Photoelectron Spectroscopy in a High-Transmission Instrument. Anal Chem 2011; 83:1108-15. [DOI: 10.1021/ac1029677] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Matthias Vonderach
- Abteilung für Physikalische Chemie Mikroskopischer Systeme, Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Fritz-Haber Weg 2, 76128 Karlsruhe, Germany
| | - Oli T. Ehrler
- Abteilung für Physikalische Chemie Mikroskopischer Systeme, Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Fritz-Haber Weg 2, 76128 Karlsruhe, Germany
| | - Patrick Weis
- Abteilung für Physikalische Chemie Mikroskopischer Systeme, Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Fritz-Haber Weg 2, 76128 Karlsruhe, Germany
| | - Manfred M. Kappes
- Abteilung für Physikalische Chemie Mikroskopischer Systeme, Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Fritz-Haber Weg 2, 76128 Karlsruhe, Germany
| |
Collapse
|
27
|
Siegert S, Vogeler F, Marian CM, Weinkauf R. Throwing light on dark states of α-oligothiophenes of chain lengths 2 to 6: radical anion photoelectron spectroscopy and excited-state theory. Phys Chem Chem Phys 2011; 13:10350-63. [DOI: 10.1039/c0cp02712j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Vonderach M, Ehrler OT, Matheis K, Karpuschkin T, Papalazarou E, Brunet C, Antoine R, Weis P, Hampe O, Kappes MM, Dugourd P. Probing electrostatic interactions and structural changes in highly charged protein polyanions by conformer-selective photoelectron spectroscopy. Phys Chem Chem Phys 2011; 13:15554-8. [PMID: 21804966 DOI: 10.1039/c1cp21528k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Matthias Vonderach
- Institut für Physikalische Chemie, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McLuckey SA, Mentinova M. Ion/neutral, ion/electron, ion/photon, and ion/ion interactions in tandem mass spectrometry: do we need them all? Are they enough? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:3-12. [PMID: 21472539 PMCID: PMC3240857 DOI: 10.1007/s13361-010-0004-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/06/2010] [Accepted: 09/13/2010] [Indexed: 05/04/2023]
Abstract
A range of strategies and tools have been developed to facilitate the determination of primary structures of analyte molecules of interest via tandem mass spectrometry (MS/MS). The two main factors that determine the primary structural information present in an MS/MS spectrum are the type of ion generated from the analyte molecule and the dissociation method. The ion type subjected to dissociation is determined by the ionization method/conditions and ion transformation processes that might take place after initial gas-phase ion formation. Furthermore, the range of analyte-related ion types can be expanded via derivatization reactions prior to mass spectrometry. Dissociation methods include those that simply alter the population of internal states of the mass-selected ion (i.e., activation methods like collision-induced dissociation) as well as processes that rely on the transformation of the ion type prior to dissociation (e.g., electron capture dissociation). A variety of ion interactions have been studied for the purpose of ion dissociation and ion transformation, including ion/neutral, ion/photon, ion/electron, and ion/ion interactions. A wide range of phenomena have been observed, many of which have been explored/developed as means for structural analysis. The techniques arising from these phenomena are discussed within the context of the elements of structural determination in tandem mass spectrometry: ion-type definition and dissociation. Unique aspects of the various ion interactions are emphasized along with any barriers to widespread implementation.
Collapse
Affiliation(s)
- Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.
| | | |
Collapse
|
30
|
Joly L, Antoine R, Allouche AR, Broyer M, Lemoine J, Dugourd P. Optical Properties of Isolated Hormone Oxytocin Dianions: Ionization, Reduction, and Copper Complexation Effects. J Phys Chem A 2009; 113:6607-11. [DOI: 10.1021/jp810342s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laure Joly
- LASIM, UMR 5579, and Sciences Analytiques, UMR 5180, CNRS et Université Lyon 1, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| | - Rodolphe Antoine
- LASIM, UMR 5579, and Sciences Analytiques, UMR 5180, CNRS et Université Lyon 1, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| | - Abdul-Rahman Allouche
- LASIM, UMR 5579, and Sciences Analytiques, UMR 5180, CNRS et Université Lyon 1, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| | - Michel Broyer
- LASIM, UMR 5579, and Sciences Analytiques, UMR 5180, CNRS et Université Lyon 1, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| | - Jérôme Lemoine
- LASIM, UMR 5579, and Sciences Analytiques, UMR 5180, CNRS et Université Lyon 1, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| | - Philippe Dugourd
- LASIM, UMR 5579, and Sciences Analytiques, UMR 5180, CNRS et Université Lyon 1, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| |
Collapse
|
31
|
Marcum JC, Weber JM. Electronic photodissociation spectra and decay pathways of gas-phase IrBr[sub 6]2−]. J Chem Phys 2009; 131:194309. [DOI: 10.1063/1.3265956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
32
|
Marcum JC, Halevi A, Weber JM. Photodamage to isolated mononucleotides—photodissociation spectra and fragment channels. Phys Chem Chem Phys 2009; 11:1740-51. [DOI: 10.1039/b819273a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Matheis K, Joly L, Antoine R, Lépine F, Bordas C, Ehrler OT, Allouche AR, Kappes MM, Dugourd P. Photoelectron Spectroscopy of Gramicidin Polyanions: Competition between Delayed and Direct Emission. J Am Chem Soc 2008; 130:15903-6. [DOI: 10.1021/ja803758w] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katerina Matheis
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Laure Joly
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Rodolphe Antoine
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Franck Lépine
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Christian Bordas
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Oli T. Ehrler
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Abdul-Rahman Allouche
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Manfred M. Kappes
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| | - Philippe Dugourd
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, and Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR 5579, LASIM
| |
Collapse
|
34
|
Abstract
The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.
Collapse
Affiliation(s)
- Jack Simons
- Chemistry Department, Henry Eyring Center for Theoretical Chemistry, UniVersity of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
35
|
Barlow CK, Hodges BDM, Xia Y, O'Hair RAJ, McLuckey SA. Gas-phase ion/ion reactions of transition metal complex cations with multiply charged oligodeoxynucleotide anions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:281-293. [PMID: 18083525 DOI: 10.1016/j.jasms.2007.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 10/15/2007] [Accepted: 10/15/2007] [Indexed: 05/25/2023]
Abstract
Multiply deprotonated hexadeoxyadenylate anions, (A6-nH)(n-), where n = 3-5, have been subjected to reaction with a range of divalent transition-metal complex cations in the gas phase. The cations studied included the bis- and tris-1,10-phenanthroline complexes of CuII, FeII, and CoII, as well as the tris-1,10-phenanthroline complex of RuII. In addition, the hexadeoxyadenylate anions were subjected to reaction with the singly charged FeIII and CoIIIN,N'-ethylenebis(salicylideneiminato) complexes. The major competing reaction channels are electron-transfer from the oligodeoxynucleotide anion to the cation, the formation of a complex between the anion and cation, and the incorporation of the transition-metal into the oligodeoxynucleotide. The latter process proceeds via the anion/cation complex and involves displacement of the ligand(s) in the transition-metal complex by the oligodeoxynucleotide. Competition between the various reaction channels is governed by the identity of the transition-metal cation, the coordination environment of the metal complex, and the oligodeoxynucleotide charge state. In the case of the divalent metal phenanthroline complexes, competition between electron-transfer and metal ion incorporation is particularly sensitive to the coordination number of the reagent metal complexes. Both electron-transfer and metal ion incorporation occur to significant extents with the bis-phenanthroline ions, whereas the tris-phenanthroline ions react predominantly by metal ion incorporation. To our knowledge this work reports the first observations of the gas-phase incorporation of multivalent transition-metal cations into oligodeoxynucleotide anions and represents a means for the selective incorporation of transition-metal counter-ions into gaseous oligodeoxynucleotides.
Collapse
|
36
|
Joly L, Antoine R, Broyer M, Lemoine J, Dugourd P. Electron Photodetachment from Gas Phase Peptide Dianions. Relation with Optical Absorption Properties. J Phys Chem A 2008; 112:898-903. [DOI: 10.1021/jp0752365] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laure Joly
- Université de Lyon, Université Lyon 1, CNRS, LASIM UMR 5579, bât. A. Kastler, 43 Bvd. du 11 novembre 1918, 69622 Villeurbanne, France, and Université de Lyon, Université Lyon 1, CNRS, Sciences Analytiques, UMR 5180, 43 Bvd. du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | - Rodolphe Antoine
- Université de Lyon, Université Lyon 1, CNRS, LASIM UMR 5579, bât. A. Kastler, 43 Bvd. du 11 novembre 1918, 69622 Villeurbanne, France, and Université de Lyon, Université Lyon 1, CNRS, Sciences Analytiques, UMR 5180, 43 Bvd. du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | - Michel Broyer
- Université de Lyon, Université Lyon 1, CNRS, LASIM UMR 5579, bât. A. Kastler, 43 Bvd. du 11 novembre 1918, 69622 Villeurbanne, France, and Université de Lyon, Université Lyon 1, CNRS, Sciences Analytiques, UMR 5180, 43 Bvd. du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | - Jérôme Lemoine
- Université de Lyon, Université Lyon 1, CNRS, LASIM UMR 5579, bât. A. Kastler, 43 Bvd. du 11 novembre 1918, 69622 Villeurbanne, France, and Université de Lyon, Université Lyon 1, CNRS, Sciences Analytiques, UMR 5180, 43 Bvd. du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | - Philippe Dugourd
- Université de Lyon, Université Lyon 1, CNRS, LASIM UMR 5579, bât. A. Kastler, 43 Bvd. du 11 novembre 1918, 69622 Villeurbanne, France, and Université de Lyon, Université Lyon 1, CNRS, Sciences Analytiques, UMR 5180, 43 Bvd. du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| |
Collapse
|
37
|
Gabelica V, Rosu F, Tabarin T, Kinet C, Antoine R, Broyer M, De Pauw E, Dugourd P. Base-dependent electron photodetachment from negatively charged DNA strands upon 260-nm laser irradiation. J Am Chem Soc 2007; 129:4706-13. [PMID: 17378565 DOI: 10.1021/ja068440z] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA multiply charged anions stored in a quadrupole ion trap undergo one-photon electron ejection (oxidation) when subjected to laser irradiation at 260 nm (4.77 eV). Electron photodetachment is likely a fast process, given that photodetachment is able to compete with internal conversion or radiative relaxation to the ground state. The DNA [6-mer]3- ions studied here show a marked sequence dependence of electron photodetachment yield. Remarkably, the photodetachment yield (dG6 > dA6 > dC6 > dT6) is inversely correlated with the base ionization potentials (G < A < C < T). Sequences with guanine runs show increased photodetachment yield as the number of guanine increases, in line with the fact that positive holes are the most stable in guanine runs. This correlation between photodetachment yield and the stability of the base radical may be explained by tunneling of the electron through the repulsive Coulomb barrier. Theoretical calculations on dinucleotide monophosphates show that the HOMO and HOMO-1 orbitals are localized on the bases. The wavelength dependence of electron detachment yield was studied for dG63-. Maximum electron photodetachment is observed in the wavelength range corresponding to base absorption (260-270 nm). This demonstrates the feasibility of gas-phase UV spectroscopy on large DNA anions. The calculations and the wavelength dependence suggest that the electron photodetachment is initiated at the bases and not at the phosphates. This also indicates that, although direct photodetachment could also occur, autodetachment from excited states, presumably corresponding to base excitation, is the dominant process at 260 nm. Excited-state dynamics of large DNA strands still remains largely unexplored, and photo-oxidation studies on trapped DNA multiply charged anions can help in bridging the gap between gas-phase studies on isolated bases or base pairs and solution-phase studies on full DNA strands.
Collapse
Affiliation(s)
- Valérie Gabelica
- Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie Bat B6c, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I, Broyer M, De Pauw E, Dugourd P. Electron Photodetachment Dissociation of DNA Polyanions in a Quadrupole Ion Trap Mass Spectrometer. Anal Chem 2006; 78:6564-72. [PMID: 16970335 DOI: 10.1021/ac060753p] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We hereby explore the effects of irradiating DNA polyanions stored in a quadrupole ion trap mass spectrometer with an optical parametric oscillator laser between 250 and 285 nm. We studied DNA 6-20-mer single strands and 12-base pair double strands. In all cases, laser irradiation causes electron detachment from the multiply charged DNA anions. Electron photodetachment efficiency directly depends on the number of guanines in the strand, and maximum efficiency is observed between 260 and 275 nm. Subsequent collision-induced dissociation (CID) of the radical anions produced by electron photodetachment results in extensive fragmentation. In addition to neutral losses, a large number of fragments from the w, d, a*, and z* ion series are obtained, contrasting with the w and (a-base) ion series observed in regular CID. The major advantage of this technique, coined electron photodetachment dissociation (EPD) is the absence of internal fragments, combined with good sequence coverage. EPD is therefore a highly promising approach for de novo sequencing of oligonucleotides. EPD of nucleic acids is also expected to give specific radical-induced strand cleavages, with conservation of other fragile bonds, including noncovalent bonds. In effect, preliminary results on a DNA hairpin and on double strands suggest that EPD could also be used to probe intra- and intermolecular interactions in nucleic acids.
Collapse
Affiliation(s)
- Valérie Gabelica
- Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat B6c, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Feuerbacher S, Cederbaum LS. A small and stable covalently bound trianion. J Chem Phys 2006; 124:044320. [PMID: 16460175 DOI: 10.1063/1.2162894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stable doubly charged anions have become well known over the past decade, but the knowledge about higher-charged molecules is still sparse. Especially the minimum size of a covalently bound trianion which is still stable is an open question. Here, we present the smallest trianion of this kind known up to now, namely, B(C(2)CO(2))(3) (3-). After establishing its geometrical parameters, we investigate its stability with respect to electron autodetachment and fragmentation of the molecular framework. Our results lend strong support to the notion that this trianion indeed represents a stable compound which should be observable in the gas phase.
Collapse
Affiliation(s)
- Sven Feuerbacher
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany.
| | | |
Collapse
|
40
|
Boxford WE, Dessent CEH. Probing the intrinsic features and environmental stabilization of multiply charged anions. Phys Chem Chem Phys 2006; 8:5151-65. [PMID: 17203139 DOI: 10.1039/b609123g] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multiply charged anions (MCAs) represent exotic, highly energetic species in the gas-phase due to their propensity to undergo unimolecular decay via electron loss or ionic fragmentation. There is considerable fundamental interest in these systems since they display novel potential energy surfaces that are characterized by Coulomb barriers. Over recent years, considerable progress has been made in understanding the factors that affect the stability, decay pathways and reactivity of gas-phase MCAs, mainly as a result of the application of electrospray ionization as a generic technique for transferring solution-phase MCAs into the gas-phase for detailed characterization. We review contemporary work in this field, focusing on the factors that control the intrinsic stability of MCAs, both as isolated gas-phase ions, and on their complexation with solvent molecules and counter-ions. While studies of MCAs are primarily of fundamental interest, several classes of important biological ions are commonly observed as MCAs in the gas-phase (e.g. oligonucleotides, sugars). Recent results for biologically relevant ions are emphasised, since a fundamental understanding of the properties of gas-phase MCAs will be highly valuable for developing further analytical methods to study these important systems.
Collapse
|
41
|
de Groot M, Buma WJ. Comment on “Gas-Phase Photochemistry of the Photoactive Yellow Protein Chromophore trans-p-Coumaric Acid”. J Phys Chem A 2005; 109:6135-6. [PMID: 16833951 DOI: 10.1021/jp052128e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mattijs de Groot
- Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Nieuwe Achtergracht 127-129, 1018 WV Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Meyer AE, Leevy WM, Pajewski R, Suzuki I, Weber ME, Gokel GW. The influence of aromatic residues in hydraphile spacer units: assay by ion selective electrode methods and in bacteria. Bioorg Med Chem 2005; 13:3321-7. [PMID: 15809167 PMCID: PMC2617748 DOI: 10.1016/j.bmc.2005.01.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
A small library of hydraphiles has been prepared that incorporates either 1,4-phenylenedioxy or 2,6-naphthalenedioxy within the spacer chains. The side chains attached to the distal macrocycles in these tris(macrocyclic) compounds are either n-dodecyl or benzyl. The presence of the arenes subunits significantly affect sodium cation release from vesicles. The efficacy of ion transport is paralleled by the toxicity of these compounds to Bacillus subtilis.
Collapse
Affiliation(s)
- Adam E Meyer
- Department of Chemistry, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
43
|
Marian C, Nolting D, Weinkauf R. The electronic spectrum of protonated adenine: Theory and experiment. Phys Chem Chem Phys 2005; 7:3306-16. [PMID: 16240045 DOI: 10.1039/b507422c] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we present the results of a combined experimental and theoretical study concerned with the question how a proton changes the electronic spectrum and dynamics of adenine. In the experimental part, isolated adenine ions have been formed by electro-spray ionisation, stored, mass-selected and cooled in a Paul trap and dissociated by resonant photoexcitation with ns UV laser pulses. The S(0)-S1 spectrum of protonated adenine recorded by fragment ion detection lies in a similar energy range as the first pipi* transition of neutral 9H-adenine. It shows a flat onset with a broad substructure, indicating a large S(0)-S1 geometry shift and an ultra-short lifetime. In the theoretical part, relative energies of the ground and the excited states of the most important tautomers have been calculated by means of a combined density functional theory and multi-reference configuration interaction approach. Protonation at the nitrogen in position 1 of the neutral 9H-adenine tautomer yields the most stable protonated adenine species, 1H-9H-A+. The 3H-7H-A+ and the 3H-9H-A+ tautomers, formed by protonation of 7H- and 9H-adenine in 3-position, are higher in energy by 162 cm(-1) and 688 cm(-1), respectively. Other tautomers lie at considerably higher energies. Calculated vertical absorption spectra are reported for all investigated tautomers whereas geometry optimisations of excited states have been carried out only for the most interesting ones. The S1 state energies and geometries are found to depend on the protonation site. The theoretical data match best with the experimental onset of the spectrum for the 1H-9H-A+ tautomer although we cannot definitely exclude contributions to the experimental spectrum from the 3H-7H-A+ tautomer at higher energies. The vertical S(0)--> S1 excitation energy is similar to the one in neutral 9H-adenine. As for the neutral adenine, we find a conical intersection of the S1 of protonated adenine with the ground state in an out-of-plane coordinate but at lower energies and accessible without barrier.
Collapse
Affiliation(s)
- Christel Marian
- Institut für Theoretische Chemie, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|