1
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Appel L, Willistein M, Dahl C, Ermler U, Boll M. Functional diversity of prokaryotic HdrA(BC) modules: Role in flavin-based electron bifurcation processes and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148379. [PMID: 33460586 DOI: 10.1016/j.bbabio.2021.148379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
In methanogenic archaea, the archetypical complex of heterodisulfide reductase (HdrABC) and hydrogenase (MvhAGD) couples the endergonic reduction of CO2 by H2 to the exergonic reduction of the CoB-S-S-CoM heterodisulfide by H2 via flavin-based electron bifurcation. Presently known enzymes containing HdrA(BC)-like components play key roles in methanogenesis, acetogenesis, respiratory sulfate reduction, lithotrophic reduced sulfur compound oxidation, aromatic compound degradation, fermentations, and probably many further processes. This functional diversity is achieved by a modular architecture of HdrA(BC) enzymes, where a big variety of electron input/output modules may be connected either directly or via adaptor modules to the HdrA(BC) components. Many, but not all HdrA(BC) complexes are proposed to catalyse a flavin-based electron bifurcation/confurcation. Despite the availability of HdrA(BC) crystal structures, fundamental questions of electron transfer and energy coupling processes remain. Here, we address the common properties and functional diversity of HdrA(BC) core modules integrated into electron-transfer machineries of outstanding complexity.
Collapse
Affiliation(s)
- Lena Appel
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany
| | - Max Willistein
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Matthias Boll
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Ernst C, Kayastha K, Koch T, Venceslau SS, Pereira IAC, Demmer U, Ermler U, Dahl C. Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans. FEBS J 2020; 288:1664-1678. [PMID: 32750208 DOI: 10.1111/febs.15505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023]
Abstract
Many bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution. The sHdrA core structure is similar to that of methanogenic HdrA (mHdrA) which binds the electron-bifurcating flavin adenine dinucleotide (FAD), the heart of the HdrABC-[NiFe]-hydrogenase catalyzed reaction. Each sHdrA homodimer carries two FADs and two [4Fe-4S] clusters being linked by electron conductivity. Redox titrations monitored by electron paramagnetic resonance and visible spectroscopy revealed a redox potential between -203 and -188 mV for the [4Fe-4S] center. The potentials for the FADH•/FADH- and FAD/FADH• pairs reside between -174 and -156 mV and between -81 and -19 mV, respectively. The resulting stable semiquinone FADH• species already detectable in the visible and electron paramagnetic resonance spectra of the as-isolated state of sHdrA is incompatible with basic principles of flavin-based electron bifurcation such that the sHdr complex does not apply this new mode of energy coupling. The inverted one-electron FAD redox potentials of sHdr and mHdr are clearly reflected in the different FAD-polypeptide interactions. According to this finding and the assumption that the sHdr complex forms an asymmetric HdrAA'B1C1B2C2 hexamer, we tentatively propose a mechanism that links protein-bound sulfane oxidation to sulfite on HdrB1 with NAD+ reduction via lipoamide disulfide reduction on HdrB2. The FAD of HdrA thereby serves as an electron storage unit. DATABASE: Structural data are available in PDB database under the accession number 6TJR.
Collapse
Affiliation(s)
- Corvin Ernst
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ulrike Demmer
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
4
|
Wagner T, Koch J, Ermler U, Shima S. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science 2017; 357:699-703. [DOI: 10.1126/science.aan0425] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
|
5
|
Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat Chem 2017. [PMID: 28644475 DOI: 10.1038/nchem.2714] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.
Collapse
|
6
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
7
|
Advanced electron paramagnetic resonance on the catalytic iron–sulfur cluster bound to the CCG domain of heterodisulfide reductase and succinate: quinone reductase. J Biol Inorg Chem 2013; 18:905-15. [DOI: 10.1007/s00775-013-1037-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
8
|
Kim J, Copley SD. The orphan protein bis-γ-glutamylcystine reductase joins the pyridine nucleotide disulfide reductase family. Biochemistry 2013; 52:2905-13. [PMID: 23560638 DOI: 10.1021/bi4003343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Facile DNA sequencing became possible decades after many enzymes had been purified and characterized. Consequently, there are still "orphan" enyzmes for which activities are known but for which encoding genes have not been identified. Identification of the genes encoding orphan enzymes is important because it allows correct annotation of genes of unknown function or with misassigned function. Bis-γ-glutamylcystine reductase (GCR) is an orphan protein that was purified in 1988. This enzyme catalyzes the reduction of bis-γ-glutamylcystine. γ-Glutamylcysteine is the major low-molecular weight thiol in halobacteria. We purified GCR from Halobacterium sp. NRC-1 and identified the sequence of 23 tryptic peptides by nano-liquid chromatography electrospray ionization tandem mass spectrometry. These peptides cover 62% of the protein predicted to be encoded by a gene in Halobacterium sp. NRC-1 that is annotated as mercuric reductase. GCR and mercuric reductase activities were assayed using enzyme that was expressed in Escherichia coli and refolded from inclusion bodies. The enzyme had robust GCR activity but no mercuric reductase activity. The genomes of most, but not all, halobacteria for which whole genome sequences are available have close homologues of GCR, suggesting that there is more to be learned about the low-molecular weight thiols used in halobacteria.
Collapse
Affiliation(s)
- Juhan Kim
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
9
|
Cammack R, MacMillan F. Electron Magnetic Resonance of Iron–Sulfur Proteins in Electron-Transfer Chains: Resolving Complexity. METALS IN BIOLOGY 2010. [DOI: 10.1007/978-1-4419-1139-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Hamann N, Bill E, Shokes JE, Scott RA, Bennati M, Hedderich R. The CCG-domain-containing subunit SdhE of succinate:quinone oxidoreductase from Sulfolobus solfataricus P2 binds a [4Fe-4S] cluster. J Biol Inorg Chem 2008; 14:457-70. [PMID: 19085017 PMCID: PMC2754724 DOI: 10.1007/s00775-008-0462-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/03/2008] [Indexed: 11/03/2022]
Abstract
In type E succinate:quinone reductase (SQR), subunit SdhE (formerly SdhC) is thought to function as monotopic membrane anchor of the enzyme. SdhE contains two copies of a cysteine-rich sequence motif (CX(n)CCGX(m)CXXC), designated as the CCG domain in the Pfam database and conserved in many proteins. On the basis of the spectroscopic characterization of heterologously produced SdhE from Sulfolobus tokodaii, the protein was proposed in a previous study to contain a labile [2Fe-2S] cluster ligated by cysteine residues of the CCG domains. Using UV/vis, electron paramagnetic resonance (EPR), (57)Fe electron-nuclear double resonance (ENDOR) and Mössbauer spectroscopies, we show that after an in vitro cluster reconstitution, SdhE from S. solfataricus P2 contains a [4Fe-4S] cluster in reduced (2+) and oxidized (3+) states. The reduced form of the [4Fe-4S](2+) cluster is diamagnetic. The individual iron sites of the reduced cluster are noticeably heterogeneous and show partial valence localization, which is particularly strong for one unique ferrous site. In contrast, the paramagnetic form of the cluster exhibits a characteristic rhombic EPR signal with g (zyx) = 2.015, 2.008, and 1.947. This EPR signal is reminiscent of a signal observed previously in intact SQR from S. tokodaii with g (zyx) = 2.016, 2.00, and 1.957. In addition, zinc K-edge X-ray absorption spectroscopy indicated the presence of an isolated zinc site with an S(3)(O/N)(1) coordination in reconstituted SdhE. Since cysteine residues in SdhE are restricted to the two CCG domains, we conclude that these domains provide the ligands to both the iron-sulfur cluster and the zinc site.
Collapse
Affiliation(s)
- Nils Hamann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Hamann N, Mander GJ, Shokes JE, Scott RA, Bennati M, Hedderich R. A cysteine-rich CCG domain contains a novel [4Fe-4S] cluster binding motif as deduced from studies with subunit B of heterodisulfide reductase from Methanothermobacter marburgensis. Biochemistry 2007; 46:12875-85. [PMID: 17929940 PMCID: PMC3543786 DOI: 10.1021/bi700679u] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]3+ cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX31-39CCX35-36CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (gzyx = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. 57Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with 57Fe hyperfine couplings very similar to that of CoM-HDR. CoM-33SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S3(O/N)1 geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn site.
Collapse
Affiliation(s)
| | | | | | | | | | - Reiner Hedderich
- To whom correspondence should be addressed. Phone: +49-(0)-6421-178-230. Fax: +49-(0)6421-178-299.
| |
Collapse
|
12
|
Pereira PM, Teixeira M, Xavier AV, Louro RO, Pereira IAC. The Tmc complex from Desulfovibrio vulgaris hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation. Biochemistry 2006; 45:10359-67. [PMID: 16922512 DOI: 10.1021/bi0610294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three membrane-bound redox complexes have been reported in Desulfovibrio spp., whose genes are not found in the genomes of other sulfate reducers such as Desulfotalea psycrophila and Archaeoglobus fulgidus. These complexes contain a periplasmic cytochrome c subunit of the cytochrome c(3) family, and their presence in these organisms probably correlates with the presence of a pool of periplasmic cytochromes c(3), also absent in the two other sulfate reducers. In this work we report the isolation and characterization of the first of such complexes, Tmc from D. vulgaris Hildenborough, which is associated with the tetraheme type II cytochrome c(3). The isolated Tmc complex contains four subunits, including the TpIIc(3) (TmcA), an integral membrane cytochrome b (TmcC), and two cytoplasmically predicted proteins, an iron-sulfur protein (TmcB) and a tryptophan-rich protein (TmcD). Spectroscopic studies indicate the presence of eight hemes c and two hemes b in the complex pointing to an alpha(2)betagammadelta composition (TmcA(2)BCD). EPR analysis reveals the presence of a [4Fe4S](3+) center and up to three other iron-sulfur centers in the cytoplasmic subunit. Nearly full reduction of the redox centers in the Tmc complex could be obtained upon incubation with hydrogenase/TpIc(3), supporting the role of this complex in transmembrane transfer of electrons resulting from periplasmic oxidation of hydrogen.
Collapse
Affiliation(s)
- Patrícia M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
13
|
Ramić E, Eichel RA, Dinse KP, Titz A, Schmidt B. Complexation of Copper(II)−Chelidamate: A Multifrequency-Pulsed Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Analysis. J Phys Chem B 2006; 110:20655-63. [PMID: 17034256 DOI: 10.1021/jp061940u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) techniques were used to obtain structural information about the copper(II)-chelidamate complex. Well-resolved nitrogen ENDOR spectra could be recorded from solid solution samples by using selective excitation of spin packets. Evaluation of nuclear quadrupole and dipolar hyperfine interaction of the directly ligated nitrogen allowed for an identification of the bond direction to the copper ion within the eigen frame of the copper g-matrix. Invoking two-dimensional EPR techniques, additional hyperfine interaction with a "distant" nitrogen spin, identified as resulting from the solvent dimethylformamide (DMF), was observed. The experimental data are only consistent with formation of a stable pseudoplanar copper complex with single solvent ligation via its oxygen atom.
Collapse
Affiliation(s)
- Elvir Ramić
- Eduard-Zintl-Institute and Clemens-Schöpf-Institute, Darmstadt University of Technology, D-64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
14
|
Hedderich R, Hamann N, Bennati M. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Biol Chem 2005; 386:961-70. [PMID: 16218868 DOI: 10.1515/bc.2005.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterodisulfide reductase (HDR) from methanogenic archaea is an iron-sulfur protein that catalyzes reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol-coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). Via the characterization of a paramagnetic reaction intermediate generated upon oxidation of the enzyme in the presence of coenzyme M, the enzyme was shown to contain a [4Fe-4S] cluster in its active site that catalyzes reduction of the disulfide substrate in two one-electron reduction steps. The formal thiyl radical generated by the initial one-electron reduction of the disulfide is stabilized via reduction and coordination of the resultant thiol to the [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Reiner Hedderich
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, D-35043 Marburg, Germany.
| | | | | |
Collapse
|
15
|
Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC. Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP ComplexA Membrane-Bound Redox Complex Involved in the Sulfate Respiratory Pathway. Biochemistry 2005; 45:249-62. [PMID: 16388601 DOI: 10.1021/bi0515265] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfate-reducing organisms use sulfate as an electron acceptor in an anaerobic respiratory process. Despite their ubiquitous occurrence, sulfate respiration is still poorly characterized. Genome analysis of sulfate-reducing organisms sequenced to date permitted the identification of only two strictly conserved membrane complexes. We report here the purification and characterization of one of these complexes, DsrMKJOP, from Desulfovibrio desulfuricans ATCC 27774. The complex has hemes of the c and b types and several iron-sulfur centers. The corresponding genes in the genome of Desulfovibrio vulgaris were analyzed. dsrM encodes an integral membrane cytochrome b; dsrK encodes a protein homologous to the HdrD subunit of heterodisulfide reductase; dsrJ encodes a triheme periplasmic cytochrome c; dsrO encodes a periplasmic FeS protein; and dsrM encodes another integral membrane protein. Sequence analysis and EPR studies indicate that DsrJ belongs to a novel family of multiheme cytochromes c and that its three hemes have different types of coordination, one bis-His, one His/Met, and the third a very unusual His/Cys coordination. The His/Cys-coordinated heme is only partially reduced by dithionite. About 40% of the hemes are reduced by menadiol, but no reduction is observed upon treatment with H2 and hydrogenase, irrespective of the presence of cytochrome c3. The aerobically isolated Dsr complex displays an EPR signal with similar characteristics to the catalytic [4Fe-4S]3+ species observed in heterodisulfide reductases. Further five different [4Fe-4S](2+/1+) centers are observed during a redox titration followed by EPR. The role of the DsrMKJOP complex in the sulfate respiratory chain of Desulfovibrio spp. is discussed.
Collapse
Affiliation(s)
- Ricardo H Pires
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Shokes JE, Duin EC, Bauer C, Jaun B, Hedderich R, Koch J, Scott RA. Direct interaction of coenzyme M with the active-site Fe-S cluster of heterodisulfide reductase. FEBS Lett 2005; 579:1741-4. [PMID: 15757669 DOI: 10.1016/j.febslet.2005.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/08/2005] [Accepted: 02/10/2005] [Indexed: 11/19/2022]
Abstract
Heterodisulfide reductase (HDR) catalyzes the formation of coenzyme M (CoM-SH) and coenzyme B (CoB-SH) by the reversible reduction of the heterodisulfide, CoM-S-S-CoB. This reaction recycles the two thiol coenzymes involved in the final step of microbial methanogenesis. Electron paramagnetic resonance (EPR) and variable-temperature magnetic circular dichroism spectroscopic experiments on oxidized HDR incubated with CoM-SH revealed a S=1/2 [4Fe-4S]3) cluster, the EPR spectrum of which is broadened in the presence of CoM-33SH [Duin, E.C., Madadi-Kahkesh, S., Hedderich, R., Clay, M.D. and Johnson, M.K. (2002) Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett. 512, 263-268; Duin, E.C., Bauer, C., Jaun, B. and Hedderich, R. (2003) Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme. FEBS Lett. 538, 81-84]. These results provide indirect evidence that the disulfide binds to the iron-sulfur cluster during reduction. We report here direct structural evidence for this interaction from Se X-ray absorption spectroscopic investigation of HDR treated with the selenium analog of coenzyme M (CoM-SeH). Se K edge extended X-ray absorption fine structure confirms a direct interaction of the Se in CoM-SeH-treated HDR with an Fe atom of the Fe-S cluster at an Fe-Se distance of 2.4A.
Collapse
Affiliation(s)
- Jacob E Shokes
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602-2556, USA
| | | | | | | | | | | | | |
Collapse
|