1
|
Mahanta CS, Hansdah S, Khuntia K, Jena BB, Swain BR, Acharya S, Dash BP, Debata PR, Satapathy R. Novel carboranyl-BODIPY conjugates: design, synthesis and anti-cancer activity. RSC Adv 2024; 14:34643-34660. [PMID: 39479484 PMCID: PMC11521004 DOI: 10.1039/d4ra07241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
A series of four carboranyl-BODIPY conjugates (o-CB-10, m-CB-15, Me-o-CB-28, and Me-o-CB-35) and one phenylene-BODIPY conjugate (PB-20) were synthesized. The carboranyl-BODIPY conjugates incorporate boron clusters, specifically ortho- and meta-carboranes, covalently linked to BODIPY fluorophores while the phenylene-BODIPY conjugate features a phenylene ring covalently linked to BODIPY fluorophore. The newly synthesized conjugates were characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, FT-IR, and high-resolution mass spectral analysis. In vitro cytotoxicity of the synthesized conjugates has been evaluated against the HeLa cervical cancer cell line. The study reveals that o-CB-10 shows a maximum cell death potential at lower concentrations (12.03 μM) and inhibited cell proliferation and migration in cancer (HeLa) cells. Additionally, flow cytometry study reveals that o-CB-10 and Me-o-CB-28 arrest the cell cycle at the S phase. The results indicate that the carboranyl-BODIPY conjugates have the potential to be effective anticancer agents.
Collapse
Affiliation(s)
| | - Sunitee Hansdah
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Kabita Khuntia
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Bibhuti Bhusan Jena
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Biswa Ranjan Swain
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Subhadeep Acharya
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | | | - Priya Ranjan Debata
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Rashmirekha Satapathy
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| |
Collapse
|
2
|
Jakubowski R, Abdulmojeed MB, Hietsoi O, Friedli AC, Kaszyński P. [ closo-B 10H 8-1-CN-10-Azinium] - Anions: Photoactive Heteroditopic Ligands for Metal Complexes. Inorg Chem 2024; 63:17774-17784. [PMID: 39239937 PMCID: PMC11423411 DOI: 10.1021/acs.inorgchem.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A new class of rigid, photoactive heteroditopic anionic ligands based on the 1,10-disubstituted [closo-B10H10]2- anion was designed and six of these compounds were obtained from [closo-B10H10]2- in three steps with yields in the range of 25-30%. The design includes two apical substituents, a metal coordinating cyano group and an azinium (4-cyanopyridinium, 4,4'-bipyridinium, pyrazinium, pyrimidinium, and pyridazinium), which provides a secondary binding site. The azinium substituent is involved in an efficient intramolecular charge transfer process and compensates one of the two delocalized negative charges of the boron cluster. The compounds exhibit intramolecular CT bands with maxima in the range of 340-410 nm (MeCN) and two are weakly fluorescent with significant Stokes shifts. A highly colored bis-zwitterionic byproduct with two clusters, [closo-1-CN-B10H8-10-(pyrazinium-1,4-diyl)-10'-B10H8-1'-CN-closo]2-, was also obtained in a low yield. The ligands were structurally characterized (XRD) and their geometrical and photophysical properties were compared to those of the analogues lacking the CN group and the parent pyridinium derivative. A comparative analysis of experimental data was augmented with DFT and TD-DFT results. Two of the ligands (with the 4,4'-bipyridinium and pyrazinium) were converted to (η5-Cp)(dppe)Fe complexes and one of them was used to obtain a heterodinuclear complex with Cu(pdc)(H2O)3 to demonstrate the ditopic function of the ligand. All three iron complexes were characterized by the XRD method.
Collapse
Affiliation(s)
- Rafał Jakubowski
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Mustapha B Abdulmojeed
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Oleksandr Hietsoi
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Andrienne C Friedli
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Piotr Kaszyński
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
3
|
Wu L, Holzapfel M, Schmiedel A, Peng F, Moos M, Mentzel P, Shi J, Neubert T, Bertermann R, Finze M, Fox MA, Lambert C, Ji L. Optically induced charge-transfer in donor-acceptor-substituted p- and m- C 2B 10H 12 carboranes. Nat Commun 2024; 15:3005. [PMID: 38589381 PMCID: PMC11001991 DOI: 10.1038/s41467-024-47384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Icosahedral carboranes, C2B10H12, have long been considered to be aromatic but the extent of conjugation between these clusters and their substituents is still being debated. m- and p-Carboranes are compared with m- and p-phenylenes as conjugated bridges in optical functional chromophores with a donor and an acceptor as substituents here. The absorption and fluorescence data for both carboranes from experimental techniques (including femtosecond transient absorption, time-resolved fluorescence and broadband fluorescence upconversion) show that the absorption and emission processes involve strong intramolecular charge transfer between the donor and acceptor substituents via the carborane cluster. From quantum chemical calculations on these carborane systems, the charge transfer process depends on the relative torsional angles of the donor and acceptor groups where an overlap between the two frontier orbitals exists in the bridging carborane cluster.
Collapse
Affiliation(s)
- Lin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Fuwei Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paul Mentzel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Thomas Neubert
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mark A Fox
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
4
|
Cui PF, Liu XR, Jin GX. Supramolecular Architectures Bearing Half-Sandwich Iridium- or Rhodium-Based Carboranes: Design, Synthesis, and Applications. J Am Chem Soc 2023; 145:19440-19457. [PMID: 37643971 DOI: 10.1021/jacs.3c05563] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The utilization of carboranes in supramolecular chemistry has attracted considerable attention. The unique spatial configuration and weak interaction forces of carboranes can help to explore the properties of supramolecular complexes, particularly via host-guest chemistry. Additionally, certain difficulties encountered in carborane development─such as controlled B-H bond activation─can be overcome by judiciously selecting metal centers and their adjacent ligands. However, few studies are being conducted in this nascent research area. With advances in this field, novel carborane-based supramolecular complexes will likely be prepared, structurally characterized, and intrinsically investigated. To expedite these efforts, we present major findings from recent studies, including π-π interactions, host-guest associations, and steric effects, which have been leveraged to implement a regioselective process for activating B(2,9)-, B(2,8)-, and B(2,7)-H bonds of para-carboranes and B(4,7)-H bonds of ortho-carboranes. Future studies should clarify the unique weak interactions of carboranes and their potential for enhancing the utility of supramolecular complexes. Although carboranes exhibit several unique weak interactions (such as dihydrogen-bond [Bδ+-Hδ-···Hδ+-Cδ-], Bδ+-Hδ-···M+, and Bδ+-Hδ-···π interactions), the manner in which they can be utilized remains unclear. Supramolecular complexes, particularly those based on host-guest chemistry, can be utilized as a platform for demonstrating potential applications of these weak interactions. Owing to the importance of alkane separation, applications related to the recognition and separation of alkane isomers via dihydrogen-bond interactions are primarily summarized. Advances in the research of unique weak interactions in carboranes will certainly lead to more possibilities for supramolecular chemistry.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
5
|
Jia H, Qiu Z. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
6
|
Guo ST, Cui PF, Liu XR, Jin GX. Synthesis of Carborane-Backbone Metallacycles for Highly Selective Capture of n-Pentane. J Am Chem Soc 2022; 144:22221-22228. [PMID: 36442076 DOI: 10.1021/jacs.2c10201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specific recognition and separation of alkanes with similar molecular structures and close boiling points face significant scientific challenges and industrial demands. Here, rectangular carborane-based metallacycles were designed to selectively encapsulate n-pentane from n-pentane, iso-pentane, and cyclo-pentane mixtures in a simple-to-operate and more energy-efficient way. Metallacycle 1, bearing 1,2-di(4-pyridyl) ethylene, can selectively separate n-pentane from these three-component mixtures with a purity of 97%. The selectivity is ascribed to the capture of the preferred guest with matching size, C-H···π interactions, and potential B-Hδ-···Hδ+-C interactions. Besides, the removal of n-pentane gives rise to original guest-free carborane-based metallacycles, which can be recycled without losing performance. Considering the variety of substituted carborane derivatives, metal ions, and organic linkers, these new carborane-based supramolecular coordination complexes (SCCs) may be broadly applicable to other challenging recognition and separation systems with good performance.
Collapse
Affiliation(s)
- Shu-Ting Guo
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site-Selective Functionalization of Carboranes at the Electron-Rich Boron Vertex: Photocatalytic B-C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022; 61:e202205672. [PMID: 35670361 DOI: 10.1002/anie.202205672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshi Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songlin Tian
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site‐Selective Functionalization of Carboranes at Electron‐Rich Boron Vertex: Photocatalytic B‐C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Chen
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshi Zhao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Songlin Tian
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
9
|
Zhang Z, Yao Y, He L, Hong T, Li S, Huang F, Stang PJ. Coordination-driven self-assembly of dibenzo-18-crown-6 functionalized Pt(II) metallacycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Cui PF, Liu XR, Lin YJ, Li ZH, Jin GX. Highly Selective Separation of Benzene and Cyclohexane in a Spatially Confined Carborane Metallacage. J Am Chem Soc 2022; 144:6558-6565. [PMID: 35357171 DOI: 10.1021/jacs.2c01668] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Separation of light hydrocarbons (C1-C9) represents one of the "seven chemical separations to change the world". Boron clusters can potentially play an important role in chemical separation, due to their unique three-dimensional structures and their ability to promote a potentially rich array of weak noncovalent interactions. Herein, we report the rational design of metallacages with carborane functionality and cooperative dihydrogen binding sites for the highly selective capture of cyclohexane molecules. The metallacage 1, bearing the ligand 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT), can produce cyclohexane with a purity of 98.5% in a single adsorption-desorption cycle from an equimolar mixture of benzene and cyclohexane. In addition, cyclohexene molecules can be also encapsulated inside the metallacage 1. This selective encapsulation was attributed to spatial confinement effects, C-H···π interactions, and particularly dihydrogen-bond interactions. This work suggests exciting future applications of carborane cages in supramolecular chemistry for the selective adsorption and separation of alkane molecules and may open up a new research direction in host-guest chemistry.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
11
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
12
|
Ko GH, Lee JK, Han SH, Lee PH. Rhodium-Catalyzed B(4)-H and B(3)-H Alkylation Reaction of Pyridyl o-Carboranes with α-Diazodicarboxylates. Org Lett 2022; 24:1507-1512. [PMID: 35142522 DOI: 10.1021/acs.orglett.2c00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Rh-catalyzed B(4)-H and B(3)-H alkylation reaction was demonstrated from the reactions of a variety of pyridyl o-carboranes with α-diazodicarboxylates with the release of molecular nitrogen, leading to the production of B(4)-H and B(3)-H alkylated o-carboranes in good to excellent yields with high selectivity, a wide substrate scope, and good functional group tolerance.
Collapse
Affiliation(s)
- Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Kwon Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea.,KIIT (Kangwon Institute of Inclusive Technology), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
Ge Y, Qiu Z, Xie Z. Pd-Catalyzed One-Pot Synthesis of Difunctionalized o-Carboranes via Construction of B—C and B—Heteroatom Bonds ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Ready AD, Becwar S, Jung D, Kallistova A, Schueller E, Anderson KP, Kubena R, Seshadri R, Chmelka BF, Spokoyny A. Synthesis and structural properties of a 2D Zn(II) dodecahydroxy-closo-dodecaborate coordination polymer. Dalton Trans 2022; 51:11547-11557. [DOI: 10.1039/d2dt01292h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we discuss the synthesis and characterization of a 2D coordination polymer composed of a dianionic perhydroxylated boron cluster, [B12(OH)12]2-, coordinated to Zn(II)—the first example of a transition...
Collapse
|
15
|
Ni H, Lu Z, Xie Z. Light-enabled alkenylation of iodocarboranes with unactivated alkenes. Dalton Trans 2021; 51:104-110. [PMID: 34870668 DOI: 10.1039/d1dt03726a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of alkenylated-o-carboranes via photoalkenylation of iodocarboranes with unactivated alkenes has been achieved. This strategy features a transition metal-free protocol, a light-promoted reaction under mild reaction conditions, broad substrate scope and good functional group tolerance. Control experiments suggest that the reaction may involve the cage C-centered radical species.
Collapse
Affiliation(s)
- Hangcheng Ni
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin N. T., Hong Kong, China.
| | - Zhenpin Lu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin N. T., Hong Kong, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin N. T., Hong Kong, China.
| |
Collapse
|
16
|
Cheng B, Chen Y, Zhou P, Xie Z. Rhodium-catalyzed sequential B(3)-, B(4)-, and B(5)-trifunctionalization of o-carboranes with three different substituents. Chem Commun (Camb) 2021; 58:629-632. [PMID: 34913450 DOI: 10.1039/d1cc05936j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A rhodium-catalyzed one-pot trifunctionalization of o-carboranes with three different substituents via a carboxy group directed sequential B(5)-alkenylation, B(4)-alkyne annulation and B(3)-acyloxylation has been developed for the first time, leading to the synthesis of a new class of B(3,4,5)-trisubstituted o-carborane derivatives. Treatment of 1-COOH-2-CH3-o-C2B10H10 with ArCCAr in the presence of a [Cp*RhCl2]2 catalyst and a Cu(OPiv)2 oxidant gave 1,4-[COOC(Ar)C(Ar)]-2-Me-3-OPiv-5-[C(Ar)CH(Ar)-o-C2B10H7 in good to high yields. This protocol represents a new strategy for the catalytic selective polyfunctionalization of carboranes with different substituents.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yu Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Peng Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
17
|
Cao HJ, Wei X, Sun F, Zhang X, Lu C, Yan H. Metal-catalyzed B-H acylmethylation of pyridylcarboranes: access to carborane-fused indoliziniums and quinoliziniums. Chem Sci 2021; 12:15563-15571. [PMID: 35003585 PMCID: PMC8654026 DOI: 10.1039/d1sc05296a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-catalyzed mono-acylmethylation of pyridylcarboranes has been realized using α-carbonyl sulfoxonium ylides as a coupling partner. The reaction features high efficiency, excellent site-selectivity and good functional group tolerance. In the presence of pyridyl and enolizable acylmethyl groups, a post-coordination mode has been proposed and validated by in situ high resolution mass spectroscopy (HRMS) to rationalize the unique mono-substitution. Post-functionalization at the newly incorporated alkyl site provides additional utility of this method, including the construction of carborane-fused indoliziniums and quinoliziniums. We believe that these mono-alkylated carboranes, together with their post-functionalized derivatives, may find applications in luminescent materials and drug discovery in the near future.
Collapse
Affiliation(s)
- Hou-Ji Cao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
18
|
Cheng B, Chen Y, Xie Z. Iridium-Catalyzed Annulation of o-Carboranyl Carboxylic Acids with Alkynes: Synthesis of Carborano-Isocoumarins. J Org Chem 2021; 86:12412-12418. [PMID: 34365793 DOI: 10.1021/acs.joc.1c01395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient iridium-catalyzed formal [4+2] annulation of carboranyl carboxylic acids with alkynes is developed, resulting in the facile synthesis of a new class of carborano-isocoumarin derivatives. The carboxyl group not only serves as a directing group to control the regioselectivity but also ingeniously becomes a part of the final products. The reaction mechanism involves sequential carboxyl-directed B(4)-H metalation, alkyne insertion, and reductive elimination.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
19
|
You DK, So H, Ryu CH, Kim M, Lee KM. Strategic molecular design of closo-ortho-carboranyl luminophores to manifest thermally activated delayed fluorescence. Chem Sci 2021; 12:8411-8423. [PMID: 34221322 PMCID: PMC8221186 DOI: 10.1039/d1sc00791b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
In this paper, we propose a strategic molecular design of closo-o-carborane-based donor-acceptor dyad system that exhibits thermally activated delayed fluorescence (TADF) in the solution state at ambient temperature. Planar 9,9-dimethyl-9H-fluorene-based compounds with closo- and nido-o-carborane cages appended at the C2-, C3-, and C4-positions of each fluorene moiety (closo-type: 2FC, 3FC, 4FC, and 4FCH, and nido-type: nido-4FC = [nido-form of 4FC]·[NBu4]) were prepared and characterized. The solid-state molecular structure of 4FC exhibited a significantly distorted fluorene plane, which suggests the existence of severe intramolecular steric hindrance. In photoluminescence measurements, 4FC exhibits a noticeable intramolecular charge transition (ICT)-based emission in all states (solution at 298 K and 77 K, and solid states); however, emissions by other closo-compounds were observed in only the rigid state (solution at 77 K and film). Furthermore, nido-4FC did not exhibit emissive traces in any state. These observations verify that all radiative decay processes correspond to ICT transitions triggered by closo-o-carborane, which acts as an electron acceptor. Relative energy barriers calculated by TD-DFT as dihedral angles around o-carborane cages change in closo-compounds, which indicates that the structural formation of 4FC is nearly fixed around its S0-optimized structure. This differs from that for other closo-compounds, wherein the free rotation of their o-carborane cages occurs easily at ambient temperature. Such rigidity in the structural geometry of 4FC results in ICT-based emission in solution at 298 K and enhancement of quantum efficiency and radiative decay constants compared to those for other closo-compounds. Furthermore, 4FC displays short-lived (∼0.5 ns) and long-lived (∼30 ns) PL decay components in solution at 298 K and in the film state, respectively, which can be attributed to prompt fluorescence and TADF, respectively. The calculated energy difference (ΔE ST) between the first excited singlet and triplet states of the closo-compounds demonstrate that the TADF characteristic of 4FC originates from a significantly small ΔE ST maintained by the rigid structural fixation around its S0-optimized structure. Furthermore, the strategic molecular design of the o-carborane-appended π-conjugated (D-A) system, which forms a rigid geometry due to severe intramolecular steric hindrance, can enhance the radiative efficiency for ICT-based emission and trigger the TADF nature.
Collapse
Affiliation(s)
- Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Hyunhee So
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Chan Hee Ryu
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Mingi Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| |
Collapse
|
20
|
Xia Q, Zhang J, Chen X, Cheng C, Chu D, Tang X, Li H, Cui Y. Synthesis, structure and property of boron-based metal–organic materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Zhang J, Xie Z. Ene Reaction of o-Carboryne with Alkynes and Alkenes at Room Temperature: Synthesis of o-Carboranyl Allenes and Alkenes. Org Lett 2021; 23:2971-2975. [PMID: 33797268 DOI: 10.1021/acs.orglett.1c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
o-Carboryne undergoes at room temperature an efficient ene reaction with a large variety of alkynes and alkenes possessing an α-CH proton to give a series of o-carboranyl allenes and alkenes in good to high isolated yields. This reaction has a broad substrate scope from alkyl and aryl to silyl substituents. This protocol provides a facile synthetic method for accessing cage C-substituted carboranyl allenes and alkenes, which may be utilized as useful starting materials to synthesize multifunctionalized carboranes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
22
|
Cui PF, Liu XR, Guo ST, Lin YJ, Jin GX. Steric-Effects-Directed B-H Bond Activation of para-Carboranes. J Am Chem Soc 2021; 143:5099-5105. [PMID: 33761746 DOI: 10.1021/jacs.1c00779] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The controllable B-H bond activation of carboranes has long been a compelling challenge. However, as the symmetry of para-carborane places the same charge on all of its ten boron atoms, controlling the regiochemistry of B-H bond activation in these molecules has remained out of reach ever since their discovery. Herein, we describe how to use steric effects to achieve a regioselective process for B-H activation of para-carborane. In this strategy, B(2,8)-H or B(2,7)-H activation patterns were achieved by taking advantage of the π-π interactions between pyridine ligands. Interestingly, by employing host-guest interactions in metallacage compounds, B(2,8)-H bond activation could be avoided and exclusive B(2,9)-H bond activation can be achieved. Steric hindrance was also found to be beneficial for regioselective B(2,8)-H bond activation in metallacage species. In this work, we demonstrate that steric effects can be a promising driving force for controllable activation of the B-H bonds of carboranes and open new opportunities in this field.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Shu-Ting Guo
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
23
|
Lee SH, Mun MS, Lee JH, Im S, Lee W, Hwang H, Lee KM. Impact of the Electronic Environment in Carbazole-Appended o-Carboranyl Compounds on the Intramolecular-Charge-Transfer-Based Radiative Decay Efficiency. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Seok Ho Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Min Sik Mun
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sehee Im
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Wonchul Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
24
|
Au YK, Xie Z. Recent Advances in Transition Metal-Catalyzed Selective B-H Functionalization ofo-Carboranes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200366] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| |
Collapse
|
25
|
Zhang J, Xie Z. Tandem [4 + 2]/[2 + 2] cycloaddition of o-carboryne with enynes: facile construction of carborane-fused tricyclics. Chem Sci 2021; 12:5616-5620. [PMID: 34168796 PMCID: PMC8179614 DOI: 10.1039/d0sc07047e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
o-Carboryne (1,2-dehydro-o-carborane) is a very useful synthon for the synthesis of a variety of carborane-functionalized molecules. With 1-Li-2-OTf-o-C2B10H10 as the precursor, o-carboryne undergoes an efficient [4 + 2] cycloaddition with various conjugated enynes, followed by a subsequent [2 + 2] cycloaddition at room temperature, generating a series of carborane-fused tricyclo[6.4.0.02,7]dodeca-2,12-dienes in moderate to high isolated yields. This reaction is compatible with many functional groups and has a broad substrate scope. A reactive carborane-fused 1,2-cyclohexadiene intermediate is involved, which is supported by experimental results and DFT calculations. This protocol offers a convenient strategy for the construction of complex carborane-functionalized tricyclics.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| |
Collapse
|
26
|
Ni H, Lu Z, Xie Z. Light-promoted copper-catalyzed cage C-arylation of o-carboranes: facile synthesis of 1-aryl- o-carboranes and o-carborane-fused cyclics. NEW J CHEM 2021. [DOI: 10.1039/d0nj02029j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Light-promoted, copper catalyzed cage C–H arylation of o-carboranes with aryl halides has been achieved, leading to the facile synthesis of a variety of 1-aryl-o-carboranes and o-carborane-fused cyclics.
Collapse
Affiliation(s)
- Hangcheng Ni
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zhenpin Lu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
27
|
Lian L, Lin C, Yu Y, Yuan Y, Ye KY. Phosphine oxide-directed palladium-catalyzed B(3)–H arylation of o-carboranes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Ni H, Lu Z, Xie Z. Transition-Metal-Free Cross-Coupling Reaction of Iodocarboranes with Terminal Alkynes Enabled by UV Light: Synthesis of 1-Alkynyl- o-Carboranes and Carborane-Fused Cyclics. J Am Chem Soc 2020; 142:18661-18667. [PMID: 33048535 DOI: 10.1021/jacs.0c08652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal-free coupling protocol between iodocarboranes and terminal alkynes enabled by light at room temperature has been developed, leading to the synthesis of a variety of 1-alkynyl-o-carboranes. Moreover, following this strategy, the introduction of 1-I-3-aryl-o-carboranes or 1-I-2-aryl-o-carboranes results in the formation of o-carborane-fused cyclics. Interestingly, when 1-I-3-(p-R-C6H4)-o-carboranes are chosen as coupling partners, unexpected R-group migration products are also isolated. On the basis of the results of control experiments and isolation of the key intermediates, a possible reaction mechanism is then proposed, involving the formation of spiro radical species.
Collapse
Affiliation(s)
- Hangcheng Ni
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Zhenpin Lu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
29
|
Zhang J, Tang C, Xie Z. Magnesium-mediated sp 3 C-H activation in cascade cyclization of 1-arylethynyl-2-alkyl- o-carboranes: efficient synthesis of carborane-fused cyclopentanes. Chem Sci 2020; 11:9925-9929. [PMID: 34094253 PMCID: PMC8162123 DOI: 10.1039/d0sc04465b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 01/03/2023] Open
Abstract
This work reports an unprecedented cascade cyclization of 1-arylethynyl-2-alkyl-o-carboranes promoted by magnesium-mediated sp3 C-H activation. Treatment of 1-arylethynyl-2-alkyl-o-carboranes with MeMgBr gives a series of carborane-fused cyclopentanes in very good yields. Deuterium labelling and control experiments suggest that HMgBr, resulting in situ from the nucleophilic substitution of cage B-H bonds with Grignard reagent, initiates the reaction, in which magnesium-promoted intramolecular sp3 C-H activation serves as a key step. This work not only offers a new route for the synthesis of carborane-fused cyclopentanes, but also sheds some light on Mg-mediated C-H activation and functionalization.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Cen Tang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Zuowei Xie
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| |
Collapse
|
30
|
Au YK, Quan Y, Xie Z. Palladium‐Catalyzed Carbonylative Annulation of 1‐Hydroxy‐
o
‐Carborane and Internal Alkynes via Regioselective B‐H Activation. Chem Asian J 2020; 15:2170-2173. [DOI: 10.1002/asia.202000642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| |
Collapse
|
31
|
Baek Y, Cheong K, Ko GH, Han GU, Han SH, Kim D, Lee K, Lee PH. Iridium-Catalyzed Cyclative Indenylation and Dienylation through Sequential B(4)–C Bond Formation, Cyclization, and Elimination from o-Carboranes and Propargyl Alcohols. J Am Chem Soc 2020; 142:9890-9895. [DOI: 10.1021/jacs.0c02121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yonghyeon Baek
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kiun Cheong
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
32
|
Zhang J, Xie Z. [2 + 2] Cycloaddition of o-Carboryne with Vinyl Ethers: Synthesis of Carborane-Fused Cyclobutanes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
33
|
Cui PF, Lin YJ, Li ZH, Jin GX. Dihydrogen Bond Interaction Induced Separation of Hexane Isomers by Self-Assembled Carborane Metallacycles. J Am Chem Soc 2020; 142:8532-8538. [DOI: 10.1021/jacs.0c03176] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People’s Republic of China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People’s Republic of China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People’s Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
34
|
One‐Pot Process to Carborano‐Coumarin
via
Catalytic CascadeDehydrogenative Cross‐Coupling. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900475] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Chen Y, Quan Y, Xie Z. Ir-catalyzed selective dehydrogenative cross-coupling of aryls with o-carboranes via a mixed directing-group strategy. Chem Commun (Camb) 2020; 56:7001-7004. [DOI: 10.1039/d0cc02531c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ir-catalyzed highly selective B–H/C–H cross dehydrogenative coupling between o-carboranes and (hetero)aryls has been achieved using a mixed directing-group strategy.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| |
Collapse
|
36
|
Yan J, Yang W, Zhang Q, Yan Y. Introducing borane clusters into polymeric frameworks: architecture, synthesis, and applications. Chem Commun (Camb) 2020; 56:11720-11734. [DOI: 10.1039/d0cc04709k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This feature article summarizes the preparation and applications of borane cluster-containing polymers and covers research progress and future trends of borane cluster-containing linear, dendritic, macrocyclic polymers and metal–organic frameworks.
Collapse
Affiliation(s)
- Jing Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Weihong Yang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Qiuyu Zhang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Yi Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| |
Collapse
|
37
|
Wang Q, Tian S, Zhang C, Li J, Wang Z, Du Y, Zhou L, Lu J. Rh-Catalyzed Regioselective Dialkylation of Cage B–H bonds in o-Carboranes: Oxidative Heck Reactions via an Enol Isomerization. Org Lett 2019; 21:8018-8021. [DOI: 10.1021/acs.orglett.9b03009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Song Tian
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Chuyi Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Jiangwei Li
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Zhixuan Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Yongmei Du
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| |
Collapse
|
38
|
Au YK, Lyu H, Quan Y, Xie Z. Catalytic Cascade Dehydrogenative Cross-Coupling of BH/CH and BH/NH: One-Pot Process to Carborano-Isoquinolinone. J Am Chem Soc 2019; 141:12855-12862. [PMID: 31306583 DOI: 10.1021/jacs.9b06204] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A proof-of-principle study of cascade dehydrogenative cross-coupling of carboranyl carboxylic acid with readily available benzamide has been achieved, resulting in the facile synthesis of previously inaccessible carborano-isoquinolinone derivatives in a simple one-pot process, in which two cage B-H, one aryl C-H, and one N-H bond were sequentially activated to construct efficiently new B-C and B-N bonds, respectively. Under suitable reaction conditions, such cascade cyclization can be stopped at the first B-H/C-H cross-coupling step to give a series of α-carboranyl benzamides, suggesting the preferential occurrence of B-C cross-coupling over that of B-N. The carboxylic acid directing group plays a key role in the B-C cross-coupling step, which is then removed through in situ decarboxylation. The CV results combined with control experiments indicate that high-valent Ir(V)-species may be involved in the reaction pathways, which is crucial for such cascade dehydrogenative cross-coupling reactions. The isolation and structural identification of a key intermediate, its controlled transformations, and deuterium labeling experiments support a new Ir-nitrene-mediated amination for B-H/N-H dehydrocoupling.
Collapse
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| |
Collapse
|
39
|
Computational Investigation of Nickel-Mediated B–H Activation and Regioselective Cage B–C(sp2) Coupling of o-Carborane. Catalysts 2019. [DOI: 10.3390/catal9060548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Density functional theory (DFT) methods including LC-ωPBE, CAM-B3LYP, B3LYP, and B3LYP-D3, combined with double Zeta all-electron DZVP basis set, have been employed to conduct computational investigations on nickel-mediated reaction of o-carboranylzirconacycle, n-hexene, and 2-bromophenyltrimethylsilylacetylene in toluene solution. A multistep mechanism leading to the C,C,B-substituted carborane-fused tricyclics, including (1) sequential insertion of alkene and alkyne into Ni–C bonds; (2) double 1,2-migration of the TMS group; (3) B–H activation assisted by Cs2CO3 additive; and (4) reduction cage B–C (sp2) coupling, was proposed. Among these steps, the B–H activation of o-carborane was located as rate-determining step (RDS). With assistance of Cs2CO3 additive (replaced by K2CO3 in simulation), the RDS free-energy barrier at PCM-LC-ωPBE/DZVP level was calculated to be 23.1–23.9 kcal·mol−1, transferring to a half-life of 3.9–15.1 h at 298 K. The predicted half-life coincides well with 80% experimental yields of C,C,B-substituted carborane-fused tricyclics after 12 h. Kinetic data obtained by employing LC-ωPBE method also reproduced the experimental diastereoselective ratio well. Various B–H activation pathways with and without Cs2CO3 additive were taken into consideration, which illustrates Cs2CO3 as an essential guarantee for smooth occurrence of this reaction at room temperature.
Collapse
|
40
|
Lyu H, Zhang J, Yang J, Quan Y, Xie Z. Catalytic Regioselective Cage B(8)–H Arylation of o-Carboranes via “Cage-Walking” Strategy. J Am Chem Soc 2019; 141:4219-4224. [DOI: 10.1021/jacs.9b00302] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Jingting Yang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
41
|
Gao Y, Guo ST, Cui PF, Aznarez F, Jin GX. Iridium-induced regioselective B–H and C–H activations at azo-substitutedm-carboranes: facile access to polynuclear complexes. Chem Commun (Camb) 2019; 55:210-213. [DOI: 10.1039/c8cc09084j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iridium-induced selective C–H and B(2,3)–H bond activations have been achieved atm-carboranes featuring azobenzene directing groups. A series of mononuclear, dinuclear and trinuclear complexes have been obtained.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - Shu-Ting Guo
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - Francisco Aznarez
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| |
Collapse
|
42
|
Zhang CY, Cao K, Xu TT, Wu J, Jiang L, Yang J. A facile approach for the synthesis of nido-carborane fused oxazoles via one pot deboronation/cyclization of 9-amide-o-carboranes. Chem Commun (Camb) 2019; 55:830-833. [DOI: 10.1039/c8cc07728b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One pot deboronation/cyclization of 9-amide-o-carboranes for construction of nido-7,8-carborane fused oxazoles.
Collapse
Affiliation(s)
- Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Tao-Tao Xu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Ji Wu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Linhai Jiang
- Instrumental Analysis Center
- Shenzhen University (Xili Campus)
- P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|
43
|
Quan Y, Xie Z. Controlled functionalization of o-carborane via transition metal catalyzed B–H activation. Chem Soc Rev 2019; 48:3660-3673. [DOI: 10.1039/c9cs00169g] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes recent advances in transition metal catalyzed vertex-specific BH functionalization of o-carborane for controlled synthesis of its derivatives.
Collapse
Affiliation(s)
- Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- New Territories
- China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- New Territories
- China
| |
Collapse
|
44
|
Aullón G, Laguna A, Filippov OA, Oliva-Enrich JM. Trinuclear Gold-Carborane Cluster as a Host Structure. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gabriel Aullón
- Departament de Química Inorgànica i Orgànica (secció Química Inorgànica) and Institut de Química Teòrica i Computacional (IQTCUB); Universitat de Barcelona; 08028 Barcelona Spain
| | - Antonio Laguna
- Departamento de Química Inorgánica; Instituto de Ciencia de Materiales de Aragón; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Oleg A. Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str. 28 119991 Moscow Russia
| | - Josep M. Oliva-Enrich
- Instituto de Química-Física “Rocasolano”; Consejo Superior de Investigaciones Científicas (CSIC); 28006 Madrid Spain
| |
Collapse
|
45
|
|
46
|
Lyu H, Quan Y, Xie Z. Rhodium catalyzed cascade cyclization featuring B-H and C-H activation: one-step construction of carborane-fused N-polyheterocycles. Chem Sci 2018; 9:6390-6394. [PMID: 30310567 PMCID: PMC6115682 DOI: 10.1039/c8sc01568f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
A one-pot strategy for efficient and facile synthesis of C,B-substituted carborane-fused N-polyheterocycles is reported. A rhodium catalyzed cascade cyclization of carboranyl N-arylimines with vinyl ketones enables the effective construction of three new B-C and C-C bonds in one reaction. Both carboranyl B-H and aryl C-H bonds are sequentially activated, leading to a series of previously unavailable C,B-substituted carborane-fused cyclopenta[b]quinoline derivatives, for potential applications in pharmaceuticals and materials, in a step-economical manner. The successful isolation and structural identification of a key intermediate provide solid evidence for the reaction mechanism, involving a tandem sequence of regioselective B-H activation, alkene insertion, nucleophilic cyclization, C-H activation, nucleophilic cyclization, dehydration and oxidative aromatization.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong , China . ;
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong , China . ;
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong , China . ;
| |
Collapse
|
47
|
Wu GY, Chen LJ, Xu L, Zhao XL, Yang HB. Construction of supramolecular hexagonal metallacycles via coordination-driven self-assembly: Structure, properties and application. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Gao Y, Cui PF, Aznarez F, Jin GX. Iridium-Induced Regioselective B−H and C−C Activations at Azo-Substitutedo-Carboranes. Chemistry 2018; 24:10357-10363. [DOI: 10.1002/chem.201801381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Yang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Francisco Aznarez
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| |
Collapse
|
49
|
Zhang R, Yuan Y, Qiu Z, Xie Z. Reaction of o
-Carboryne with Furans: Facile Synthesis of Carborane- Fused Oxanorbornenes and Their Derivatives. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rongyi Zhang
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
| | - Yinggen Yuan
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
- Department of Chemistry; The Chinese University of Hong Kong; Shatin New Territories Hong Kong, China
| |
Collapse
|
50
|
Cook AR, Valášek M, Funston AM, Poliakov P, Michl J, Miller JR. p-Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds. J Phys Chem A 2018; 122:798-810. [DOI: 10.1021/acs.jpca.7b10885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew R. Cook
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michal Valášek
- Institute
of Organic Chemistry and Biochemistry, ASCR, Prague 6 16610, Czech Republic
| | - Alison M. Funston
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Pavel Poliakov
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Josef Michl
- Institute
of Organic Chemistry and Biochemistry, ASCR, Prague 6 16610, Czech Republic
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - John R. Miller
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|