1
|
Seif Eddine M, Biaso F, Arias‐Cartin R, Pilet E, Rendon J, Lyubenova S, Seduk F, Guigliarelli B, Magalon A, Grimaldi S. Probing the Menasemiquinone Binding Mode to Nitrate Reductase A by Selective2H and15N Labeling, HYSCORE Spectroscopy, and DFT Modeling. Chemphyschem 2017; 18:2704-2714. [DOI: 10.1002/cphc.201700571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Eric Pilet
- Aix Marseille University, CNRS, BIP Marseille France
- Faculté de Biologie, University Pierre et Marie Curie Paris France
| | - Julia Rendon
- Aix Marseille University, CNRS, BIP Marseille France
| | | | - Farida Seduk
- Aix Marseille University, CNRS, LCB Marseille France
| | | | - Axel Magalon
- Aix Marseille University, CNRS, LCB Marseille France
| | | |
Collapse
|
2
|
Choi SK, Lin MT, Ouyang H, Gennis RB. Searching for the low affinity ubiquinone binding site in cytochrome bo 3 from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:366-370. [PMID: 28235459 DOI: 10.1016/j.bbabio.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Abstract
The cytochrome bo3 ubiquinol oxidase is one of three respiratory oxygen reductases in the aerobic respiratory chain of Escherichia coli. The generally accepted model of catalysis assumes that cyt bo3 contains two distinct ubiquinol binding sites: (i) a low affinity (QL) site which is the traditional substrate binding site; and (ii) a high affinity (QH) site where a "permanently" bound quinone acts as a cofactor, taking two electrons from the substrate quinol and passing them one-by-one to the heme b component of the enzyme which, in turn, transfers them to the heme o3/CuB active site. Whereas the residues at the QH site are well defined, the location of the QL site remains unknown. The published X-ray structure does not contain quinone, and substantial amounts of the protein are missing as well. A recent bioinformatics study by Bossis et al. [Biochem J. (2014) 461, 305-314] identified a sequence motif G163EFX3GWX2Y173 as the likely QL site in the family of related quinol oxidases. In the current work, this was tested by site-directed mutagenesis. The results show that these residues are not important for catalytic function and do not define the QL substrate binding site.
Collapse
Affiliation(s)
- Sylvia K Choi
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801, USA
| | - Myat T Lin
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801, USA
| | - Hanlin Ouyang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Robert B Gennis
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Sun C, Taguchi AT, Vermaas JV, Beal NJ, O'Malley PJ, Tajkhorshid E, Gennis RB, Dikanov SA. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo 3 from Escherichia coli. Biochemistry 2016; 55:5714-5725. [PMID: 27622672 DOI: 10.1021/acs.biochem.6b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed 1H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.
Collapse
Affiliation(s)
- Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Josh V Vermaas
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nathan J Beal
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Patrick J O'Malley
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
De Almeida WB, O’Malley PJ. The effect of methoxy group rotation and hydrogen bonding on the redox properties of ubiquinone. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
6
|
Lin MT, Baldansuren A, Hart R, Samoilova RI, Narasimhulu KV, Yap LL, Choi SK, O'Malley PJ, Gennis RB, Dikanov SA. Interactions of intermediate semiquinone with surrounding protein residues at the Q(H) site of wild-type and D75H mutant cytochrome bo3 from Escherichia coli. Biochemistry 2012; 51:3827-38. [PMID: 22497216 DOI: 10.1021/bi300151q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective (15)N isotope labeling of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli with auxotrophs was used to characterize the hyperfine couplings with the side-chain nitrogens from residues R71, H98, and Q101 and peptide nitrogens from residues R71 and H98 around the semiquinone (SQ) at the high-affinity Q(H) site. The two-dimensional ESEEM (HYSCORE) data have directly identified N(ε) of R71 as an H-bond donor carrying the largest amount of unpaired spin density. In addition, weaker hyperfine couplings with the side-chain nitrogens from all residues around the SQ were determined. These hyperfine couplings reflect a distribution of the unpaired spin density over the protein in the SQ state of the Q(H) site and the strength of interaction with different residues. The approach was extended to the virtually inactive D75H mutant, where the intermediate SQ is also stabilized. We found that N(ε) of a histidine residue, presumably H75, carries most of the unpaired spin density instead of N(ε) of R71, as in wild-type bo(3). However, the detailed characterization of the weakly coupled (15)N atoms from selective labeling of R71 and Q101 in D75H was precluded by overlap of the (15)N lines with the much stronger ~1.6 MHz line from the quadrupole triplet of the strongly coupled (14)N(ε) atom of H75. Therefore, a reverse labeling approach, in which the enzyme was uniformly labeled except for selected amino acid types, was applied to probe the contribution of R71 and Q101 to the (15)N signals. Such labeling has shown only weak coupling with all nitrogens of R71 and Q101. We utilize density functional theory-based calculations to model the available information about (1)H, (15)N, and (13)C hyperfine couplings for the Q(H) site and to describe the protein-substrate interactions in both enzymes. In particular, we identify the factors responsible for the asymmetric distribution of the unpaired spin density and ponder the significance of this asymmetry to the quinone's electron transfer function.
Collapse
Affiliation(s)
- Myat T Lin
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Grimaldi S, Arias-Cartin R, Lanciano P, Lyubenova S, Szenes R, Endeward B, Prisner TF, Guigliarelli B, Magalon A. Determination of the proton environment of high stability Menasemiquinone intermediate in Escherichia coli nitrate reductase A by pulsed EPR. J Biol Chem 2011; 287:4662-70. [PMID: 22190684 DOI: 10.1074/jbc.m111.325100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (Q(D)) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the Q(D) site (MSQ(D)) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with (1)H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQ(D) binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme b(D). Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the Q(D) site are discussed, in light of the unusually high thermodynamic stability of MSQ(D).
Collapse
Affiliation(s)
- Stéphane Grimaldi
- Unité de Bioénergétique et Ingénierie des Protéines (UPR9036), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille University, 13009 Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chatterjee R, Coates CS, Milikisiyants S, Poluektov OG, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A High-Frequency D-Band EPR Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2011; 116:676-82. [DOI: 10.1021/jp210156a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher S. Coates
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
9
|
Witwicki M, Jezierska J. Effects of Solvents, Ligand Aromaticity, and Coordination Sphere on the g Tensor of Anionic o-Semiquinone Radicals Complexed by Mg2+ Ions: DFT Studies. J Phys Chem B 2011; 115:3172-84. [DOI: 10.1021/jp110515j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., Wroclaw 50-283, Poland
| | - Julia Jezierska
- Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., Wroclaw 50-283, Poland
| |
Collapse
|
10
|
MacMillan F, Kacprzak S, Hellwig P, Grimaldi S, Michel H, Kaupp M. Elucidating mechanisms in haemcopperoxidases: The high-affinity QHbinding site in quinol oxidase as studied by DONUT-HYSCOREspectroscopy and density functional theory. Faraday Discuss 2011; 148:315-44; discussion 421-41. [DOI: 10.1039/c005149g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Boesch SE, Wheeler RA. Isotropic 13C hyperfine coupling constants distinguish neutral from anionic ubiquinone-derived radicals. Chemphyschem 2010; 10:3187-9. [PMID: 19904797 DOI: 10.1002/cphc.200900503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Scott E Boesch
- Department of Chemistry & Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019, USA
| | | |
Collapse
|
12
|
Srinivasan N, Golbeck JH. Protein–cofactor interactions in bioenergetic complexes: The role of the A1A and A1B phylloquinones in Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1057-88. [DOI: 10.1016/j.bbabio.2009.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
13
|
Stoll S, Gunn A, Brynda M, Sughrue W, Kohler AC, Ozarowski A, Fisher AJ, Lagarias JC, Britt RD. Structure of the biliverdin radical intermediate in phycocyanobilin:ferredoxin oxidoreductase identified by high-field EPR and DFT. J Am Chem Soc 2009; 131:1986-95. [PMID: 19159240 DOI: 10.1021/ja808573f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyanobacterial enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the two-step four-electron reduction of biliverdin IXalpha to phycocyanobilin, the precursor of biliprotein chromophores found in phycobilisomes. It is known that catalysis proceeds via paramagnetic radical intermediates, but the structure of these intermediates and the transfer pathways for the four protons involved are not known. In this study, high-field electron paramagnetic resonance (EPR) spectroscopy of frozen solutions and single crystals of the one-electron reduced protein-substrate complex of two PcyA mutants D105N from the cyanobacteria Synechocystis sp. PCC6803 and Nostoc sp. PCC7120 are examined. Detailed analysis of Synechocystis D105N mutant spectra at 130 and 406 GHz reveals a biliverdin radical with a very narrow g tensor with principal values 2.00359(5), 2.00341(5), and 2.00218(5). Using density-functional theory (DFT) computations to explore the possible protonation states of the biliverdin radical, it is shown that this g tensor is consistent with a biliverdin radical where the carbonyl oxygen atoms on both the A and the D pyrrole rings are protonated. This experimentally confirms the reaction mechanism recently proposed (Tu, et al. Biochemistry 2007, 46, 1484).
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nasiri HR, Panisch R, Madej MG, Bats JW, Lancaster CRD, Schwalbe H. The correlation of cathodic peak potentials of vitamin K(3) derivatives and their calculated electron affinities. The role of hydrogen bonding and conformational changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:601-8. [PMID: 19265668 DOI: 10.1016/j.bbabio.2009.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/25/2022]
Abstract
2-methyl-1,4-naphtoquinone 1 (vitamin K(3), menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E(1/2)) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (E(A)). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (E(A)) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.
Collapse
Affiliation(s)
- Hamid Reza Nasiri
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Zipse H, Artin E, Wnuk S, Lohman GJS, Martino D, Griffin RG, Kacprzak S, Kaupp M, Hoffman B, Bennati M, Stubbe J, Lees N. Structure of the nucleotide radical formed during reaction of CDP/TTP with the E441Q-alpha2beta2 of E. coli ribonucleotide reductase. J Am Chem Soc 2009; 131:200-11. [PMID: 19128178 PMCID: PMC2651750 DOI: 10.1021/ja806693s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Indexed: 11/28/2022]
Abstract
The Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleotides and requires a diferric-tyrosyl radical cofactor for catalysis. RNR is composed of a 1:1 complex of two homodimeric subunits: alpha and beta. Incubation of the E441Q-alpha mutant RNR with substrate CDP and allosteric effector TTP results in loss of the tyrosyl radical and formation of two new radicals on the 200 ms to min time scale. The first radical was previously established by stopped flow UV/vis spectroscopy and pulsed high field EPR spectroscopy to be a disulfide radical anion. The second radical was proposed to be a 4'-radical of a 3'-keto-2'-deoxycytidine 5'-diphosphate. To identify the structure of the nucleotide radical [1'-(2)H], [2'-(2)H], [4'-(2)H], [5'-(2)H], [U-(13)C, (15)N], [U-(15)N], and [5,6 -(2)H] CDP and [beta-(2)H] cysteine-alpha were synthesized and incubated with E441Q-alpha2beta2 and TTP. The nucleotide radical was examined by 9 GHz and 140 GHz pulsed EPR spectroscopy and 35 GHz ENDOR spectroscopy. Substitution of (2)H at C4' and C1' altered the observed hyperfine interactions of the nucleotide radical and established that the observed structure was not that predicted. DFT calculations (B3LYP/IGLO-III/B3LYP/TZVP) were carried out in an effort to recapitulate the spectroscopic observations and lead to a new structure consistent with all of the experimental data. The results indicate, unexpectedly, that the radical is a semidione nucleotide radical of cytidine 5'-diphosphate. The relationship of this radical to the disulfide radical anion is discussed.
Collapse
Affiliation(s)
- Hendrik Zipse
- Department of Chemistry and Biochemistry, Ludwig-Maximilians Universitaet Muenchen, 81377 Muenchen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Asher JR, Kaupp M. Car-Parrinello molecular dynamics simulations and EPR property calculations on aqueous ubisemiquinone radical anion. Theor Chem Acc 2008. [DOI: 10.1007/s00214-007-0408-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Kacprzak S, Reviakine R, Kaupp M. Understanding the electon paramagnetic resonance parameters of protein-bound glycyl radicals. J Phys Chem B 2007; 111:820-31. [PMID: 17249826 DOI: 10.1021/jp0674571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The number of enzymes that require a glycyl-based radical for their function is growing. Here, we provide systematic quantum-chemical studies of spin-density distributions, electronic g-tensors, and hyperfine couplings of various models of protein-bound glycyl radicals. Similarly to what is found in a companion paper on N-acetylglycyl, the small g-anisotropy for this delocalized, unsymmetrical system presents appreciable challenges to state-of-the-art computational methodology. This pertains to the quality of structure optimization, as well as to the choice of the spin-orbit Hamiltonian and the gauge origin of the magnetic vector potential. Environmental effects due to hydrogen bonding are complicated and depend in a subtle fashion on the different intramolecular hydrogen bonding for different conformations of the radical. Indeed, the conformation has the largest overall effect on the computed g-tensors (less so on the hyperfine tensors). This is discussed in the context of different g-tensors obtained by recent high-field electron paramagnetic resonance (EPR) measurements for three different enzymes. On the basis of results of a parallel calibration study for N-acetylglycyl, it is suggested that the glycyl radical observed for E. coli anaerobic RNR may have a fully extended conformation, which differs from those of the corresponding radicals in pyruvate formate-lyase or benzylsuccinate synthase.
Collapse
Affiliation(s)
- Sylwia Kacprzak
- Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D 97074 Würzburg, Germany
| | | | | |
Collapse
|
18
|
Wu TR, Chong JM. Asymmetric conjugate alkenylation of enones catalyzed by chiral diols. J Am Chem Soc 2007; 129:4908-9. [PMID: 17402741 DOI: 10.1021/ja0713734] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T Robert Wu
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
19
|
Roura-Pérez G, Quiróz B, Aguilar-Martínez M, Frontana C, Solano A, Gonzalez I, Bautista-Martínez JA, Jiménez-Barbero J, Cuevas G. Remote Position Substituents as Modulators of Conformational and Reactive Properties of Quinones. Relevance of the π/π Intramolecular Interaction. J Org Chem 2007; 72:1883-94. [PMID: 17300203 DOI: 10.1021/jo061576v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have described that quinoid rings with electron-rich olefins at remote position experience changes in their redox potential. Since the original description of these changes, different approaches have been developed to describe the properties of the binding sites of ubiquinones. The origin of this phenomenon has been attributed to lateral chain flexibility and its effect on the recognition between proteins and substrates associated with their important biological activity. The use of electrochemical-electron spin resonance (EC-ESR) assays and theoretical calculations at MP2/6-31G(d,p) and MP2/6-31++G(d,p)//MP2/6-31G(d,p) levels of several conformers of perezone [(2-(1,5-dimethyl-4-hexenyl)-3-hydroxy-5-methyl-1,4-benzoquinone] established that a weak pi-pi interaction controls not only the molecular conformation but also its diffusion coefficient and electrochemical properties. An analogous interaction can be suggested as the origin of similar properties of ubiquinone Q10. The use of nuclear magnetic resonance rendered, for the first time, direct evidence of the participation of different perezone conformers in solution and explained the cycloaddition process observed when the aforementioned quinone is heated to form pipitzols, sesquiterpenes with a cedrene skeleton. The fact that biological systems can modulate the redox potential of this type of quinones depending on the conformer recognized by an enzyme during a biological transformation is of great relevance.
Collapse
Affiliation(s)
- Guillermo Roura-Pérez
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Apdo. Postal 70213, 04510, México, D. F. México
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Asher JR, Kaupp M. Hyperfine Coupling Tensors of the Benzosemiquinone Radical Anion from Car–Parrinello Molecular Dynamics. Chemphyschem 2007; 8:69-79. [PMID: 17121407 DOI: 10.1002/cphc.200600325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Based on Car-Parrinello ab initio molecular dynamics simulations of the benzosemiquinone radical anion in both aqueous solution and the gas phase, density functional calculations provide the currently most refined EPR hyperfine coupling (HFC) tensors of semiquinone nuclei and solvent protons. For snapshots taken at regular intervals from the molecular dynamics trajectories, cluster models with different criteria for inclusion of water molecules and an additional continuum solvent model are used to analyse the HFCs. These models provide a detailed picture of the effects of dynamics and of different intermolecular interactions on the spin-density distribution and HFC tensors. Comparison with static calculations allows an assessment of the importance of dynamical effects, and of error compensation in static DFT calculations. Solvent proton HFCs depend characteristically on the position relative to the semiquinone radical anion. A point-dipolar model works well for in-plane hydrogen-bonded protons but deviates from the quantum chemical values for out-of-plane hydrogen bonding.
Collapse
Affiliation(s)
- James R Asher
- Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
21
|
Rogowska A, Kuhl S, Schneider R, Walcarius A, Champagne B. Theoretical investigation of the EPR hyperfine coupling constants in amino derivatives. Phys Chem Chem Phys 2007; 9:828-36. [PMID: 17287876 DOI: 10.1039/b613275h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HFCCs of the radical cations of a series of amines have been determined at different levels of approximation including the CISD, QCISD, and CCSD ab initio correlated methods and density functional theory approaches employing the B3LYP, PBE0, BHandHLYP, TPSS, and BLYP exchange-correlation functionals. Although quantitative differences with respect to experimental data have been noticed, these are mostly systematic within a given class of N and H atoms. As a consequence, these different levels of theory are reliable in most cases to account for the substituent and structure effects on the HFCCs of amines. Linear regression fits have then been performed to reach quantitative agreement between the theoretical and experimental values. This has finally been substantiated by considering the EPR signal of the recently synthesized radical cations of two derivatives of [10-(4-aminophenyl)-9-anthryl]aniline as well as in confirming a recent assignment of the EPR signal of n-propylamine.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | | | | | | | | |
Collapse
|
22
|
Kacprzak S, Reviakine R, Kaupp M. Understanding the EPR Parameters of Glycine-Derived Radicals: The Case of N-Acetylglycyl in the N-Acetylglycine Single-Crystal Environment. J Phys Chem B 2006; 111:811-9. [PMID: 17249825 DOI: 10.1021/jp0660379] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a step toward an in-depth understanding of the electron paramagnetic resonance parameters of glycyl radicals in proteins, the hyperfine tensors and, particularly, the g-tensor of N-acetylglcyl in the environment of a single crystal of N-acetylglycine have been studied by systematic state-of-the-art quantum chemical calculations on various suitable model systems. The quantitative computation of the g-tensors for such glycyl-derived radicals is a veritable challenge, mainly because of the very small g-anisotropy combined with a nonsymmetrical, delocalized spin-density distribution and several atoms with comparable spin-orbit contributions to the g-tensors. The choice of gauge origin of the magnetic vector potential, and of approximate spin-orbit operators, both turn out to be more critical than found in previous studies of g-tensors for organic radicals. Environmental effects, included by supermolecular hydrogen-bonded models, were found to be moderate, because of a partial compensation between the influences from intramolecular and intermolecular hydrogen bonds. The largest effects on the g-tensor are caused by the conformation of the radical. The density functional theory methods employed systematically overestimate both the Delta gx and Delta gy components of the g-tensor. This is important for parallel investigations on the protein-glycyl radicals. The 1H alpha and 13C alpha hyperfine couplings depend only slightly on the supermolecular model chosen and appear less sensitive probes of detailed structure and environment.
Collapse
Affiliation(s)
- Sylwia Kacprzak
- Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D 97074 Würzburg, Germany
| | | | | |
Collapse
|
23
|
Sinnecker S, Flores M, Lubitz W. Protein–cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: Effect of hydrogen bonding on the electronic and geometric structure of the primary quinone. A density functional theory study. Phys Chem Chem Phys 2006; 8:5659-70. [PMID: 17149487 DOI: 10.1039/b612568a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of hydrogen bonding to the primary quinone (Q(A) and Q(*)(-)(A)) in bacterial reaction centers was studied using density functional theory (DFT) calculations. The charge neutral state Q(A) was investigated by optimizing the hydrogen atom positions of model systems extracted from 15 different X-ray structures. From this analysis, mean values of the H-bond lengths and directions were derived. It was found that the N(delta)-H of His M219 forms a shorter H-bond to Q(A) than the N-H of Ala M260. The H-bond of His M219 is linear and more twisted out of the quinone plane. The radical anion Q(*)(-)(A) in the protein environment was investigated by using a mixed quantum mechanics/molecular mechanics (QM/MM) approach. Two geometry optimizations with a different number of flexible atoms were performed. H-bond lengths were obtained and spectroscopic parameters calculated, i.e. the hyperfine and nuclear quadrupole couplings of magnetic nuclei coupled to the radical. Good agreement was found with the results provided by EPR/ENDOR spectroscopy. This implies that the calculated lengths and directions of the H-bonds to Q(*)(-)(A) are reliable values. From a comparison of the neutral and reduced state of Q(A) it was concluded that the H-bond distances are shortened by approximately 0.17 Angstroms (His M219) and approximately 0.13 Angstroms (Ala M260) upon single reduction of the quinone. It is shown that the point-dipole approximation can not be used for an estimation of H-bond lengths from measured hyperfine couplings in a system with out-of-plane H-bonding. In contrast, the evaluation of the nuclear quadrupole couplings of (2)H nuclei substituted in the hydrogen bonds yields H-bond lengths close to the values that were deduced from DFT geometry optimizations. The significance of hydrogen bonding to the quinone cofactors in biological systems is discussed.
Collapse
Affiliation(s)
- Sebastian Sinnecker
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|