1
|
Yan R, Li X, Liu Y, Ye X. Design, Synthesis, and Bioassay of 2′-Modified Kanamycin A. Molecules 2022; 27:molecules27217482. [PMID: 36364310 PMCID: PMC9654810 DOI: 10.3390/molecules27217482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Chemical modification of old drugs is an important way to obtain new ones, and it has been widely used in developing new aminoglycoside antibiotics. However, many of the previous modifying strategies seem arbitrary for their lack of support from structural biological detail. In this paper, based on the structural information of aminoglycoside and its drug target, we firstly analyzed the reason that some 2′-N-acetylated products of aminoglycosides caused by aminoglycoside-modifying enzyme AAC(2′) can partially retain activity, and then we designed, synthesized, and evaluated a series of 2′-modified kanamycin A derivatives. Bioassay results showed our modifying strategy was feasible. Our study provided valuable structure–activity relationship information, which would help researchers to develop new aminoglycoside antibiotics more effectively.
Collapse
Affiliation(s)
- Ribai Yan
- National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (R.Y.); (X.Y.)
| | - Xiaonan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuheng Liu
- Department of Medical Chemistry, College of Pharmaceutical Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (R.Y.); (X.Y.)
| |
Collapse
|
2
|
Valenti GE, Alfei S, Caviglia D, Domenicotti C, Marengo B. Antimicrobial Peptides and Cationic Nanoparticles: A Broad-Spectrum Weapon to Fight Multi-Drug Resistance Not Only in Bacteria. Int J Mol Sci 2022; 23:ijms23116108. [PMID: 35682787 PMCID: PMC9181033 DOI: 10.3390/ijms23116108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, antibiotic resistance and, analogously, anticancer drug resistance have increased considerably, becoming one of the main public health problems. For this reason, it is crucial to find therapeutic strategies able to counteract the onset of multi-drug resistance (MDR). In this review, a critical overview of the innovative tools available today to fight MDR is reported. In this direction, the use of membrane-disruptive peptides/peptidomimetics (MDPs), such as antimicrobial peptides (AMPs), has received particular attention, due to their high selectivity and to their limited side effects. Moreover, similarities between bacteria and cancer cells are herein reported and the hypothesis of the possible use of AMPs also in anticancer therapies is discussed. However, it is important to take into account the limitations that could negatively impact clinical application and, in particular, the need for an efficient delivery system. In this regard, the use of nanoparticles (NPs) is proposed as a potential strategy to improve therapy; moreover, among polymeric NPs, cationic ones are emerging as promising tools able to fight the onset of MDR both in bacteria and in cancer cells.
Collapse
Affiliation(s)
- Giulia E. Valenti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy;
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy;
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
- Correspondence: ; Tel.: +39-010-353-8830
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
3
|
Quirke JCK, Sati GC, Sonousi A, Gysin M, Haldimann K, Bottger EC, Vasella A, Hobbie SN, Crich D. Structure-Activity Relationships for 5''-Modifications of 4,5-Aminoglycoside Antibiotics. ChemMedChem 2022; 17:e202200120. [PMID: 35385605 DOI: 10.1002/cmdc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Modification at the 5''-position of 4,5-disubstituted aminoglycoside antibiotics (AGAs) to circumvent inactivation by the APH(3',5'') class of aminoglycoside modifying enzymes (AMEs) has been widely reported. Such modifications, however, impact activity against wild type bacteria and affect target selectivity in unpredictable ways thereby hindering drug development. We present a systematic survey of modifications to the 5''-position of the 4,5-AGAs and of the related 5- O -furanosyl apramycin derivatives. In the neomycin and the apralog series, all modifications were well-tolerated, but other 4,5-AGAs require the presence of a hydrogen bonding group at the 5''-position for maintenance of high antibacterial activity. Though the 5''-amino modification resulted in comparable activity to the parent compounds, reduced selectivity against the human cytosolic decoding A site renders this modification generally unfavorable in paromomycin, propylamycin, and ribostamycin. Installation of a 5''-formamido group and, to a lesser degree, a 5''-ureido group resulted in comparable activity to the parents without the selectivity cost of the 5''-amino modification. The lessons learned from this work will aid in the design of next-generation AGAs capable of circumventing susceptibility to AMEs while maintaining high antibacterial activity and target selectivity.
Collapse
Affiliation(s)
| | | | - Amr Sonousi
- Cairo University, Pharmaceutical Organic Chemistry, EGYPT
| | - Marina Gysin
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | | | - Erik C Bottger
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - Andrea Vasella
- ETH-Zürich LOC: Eidgenossische Technische Hochschule Zurich Laboratorium fur Organische Chemie, Chemistry, SWITZERLAND
| | - Sven N Hobbie
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - David Crich
- University of Georgia, Pharmaceutical and Biomedical Sciences, 240 West Green Street, 30602, Athens, UNITED STATES
| |
Collapse
|
4
|
Flavonoid-Decorated Nano-gold for Antimicrobial Therapy Against Gram-negative Bacteria Escherichia coli. Appl Biochem Biotechnol 2021; 193:1727-1743. [PMID: 33713270 DOI: 10.1007/s12010-021-03543-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Nano-gold (Aunps) have emerged as promising options that exhibit unique features discrete from traditional materials suited for biomedical applications. Aunps were synthesized using flavonoid quercetin (Q) as reducing agent, and resultant nanoparticles were further conjugated with the flavonoid. The resultant nano-system was expected to perform a dual role as antibacterial and as antioxidant agent. Nano-gold surface plasmon peaks were recorded at 560 nm with size around 62 nm and having slim distribution pattern. Spherical particle with smooth surface was observed under TEM and AFM studies. TEM micrographs confirmed a homogeneous particle population of size around 30 nm. Quercetin association to nano-gold was corroborated through FTIR and EDAX analysis. Antioxidant nature of nano-gold prevented rapid oxidation of brilliant cresyl blue dye, in presence of sodium hypochlorite. Antimicrobial action of QuAunp was tested against Gram-negative bacteria Escherichia coli. Nano-gold designed produced a minimum inhibitory concentration of 7.6 μg/ml and minimum bactericidal concentration 10.5 μg/ml against E. coli. Further TEM analysis and membrane permeability studies revealed the impact of QuAunps on bacterial membrane leading to cell damage.
Collapse
|
5
|
Singh K, Tripathi RP. An Overview on Glyco-Macrocycles: Potential New Lead and their Future in Medicinal Chemistry. Curr Med Chem 2020; 27:3386-3410. [PMID: 30827227 DOI: 10.2174/0929867326666190227232721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Macrocycles cover a small segment of molecules with a vast range of biological activity in the chemotherapeutic world. Primarily, the natural sources derived from macrocyclic drug candidates with a wide range of biological activities are known. Further evolutions of the medicinal chemistry towards macrocycle-based chemotherapeutics involve the functionalization of the natural product by hemisynthesis. More recently, macrocycles based on carbohydrates have evolved a considerable interest among the medicinal chemists worldwide. Carbohydrates provide an ideal scaffold to generate chiral macrocycles with well-defined pharmacophores in a decorated fashion to achieve the desired biological activity. We have given an overview on carbohydrate-derived macrocycle involving their synthesis in drug design and discovery and potential role in medicinal chemistry.
Collapse
Affiliation(s)
- Kartikey Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.,National Institute of Pharmaceutical Education and Research Raebareli, New Transit Campus, Bijnor Road, Sarojani Nagar Near CRPF Base Camp, Lucknow 226002, U.P., India
| |
Collapse
|
6
|
Aradi K, Di Giorgio A, Duca M. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond. Chemistry 2020; 26:12273-12309. [PMID: 32539167 DOI: 10.1002/chem.202002258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Indexed: 01/04/2023]
Abstract
Natural aminoglycosides are therapeutically useful antibiotics and very efficient RNA ligands. They are oligosaccharides that contain several ammonium groups able to interfere with the translation process in prokaryotes upon binding to bacterial ribosomal RNA (rRNA), and thus, impairing protein synthesis. Even if aminoglycosides are commonly used in therapy, these RNA binders lack selectivity and are able to bind to a wide number of RNA sequences/structures. This is one of the reasons for their toxicity and limited applications in therapy. At the same time, the ability of aminoglycosides to bind to various RNAs renders them a great source of inspiration for the synthesis of new binders with improved affinity and specificity toward several therapeutically relevant RNA targets. Thus, a number of studies have been performed on these complex and highly functionalized compounds, leading to the development of various synthetic methodologies toward the synthesis of conjugated aminoglycosides. The aim of this review is to highlight recent progress in the field of aminoglycoside conjugation, paying particular attention to modifications performed toward the improvement of affinity and especially to the selectivity of the resulting compounds. This will help readers to understand how to introduce a desired chemical modification for future developments of RNA ligands as antibiotics, antiviral, and anticancer compounds.
Collapse
Affiliation(s)
- Klara Aradi
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 06100, Nice, France
| |
Collapse
|
7
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
8
|
Sati GC, Sarpe VA, Furukawa T, Mondal S, Mantovani M, Hobbie SN, Vasella A, Böttger EC, Crich D. Modification at the 2'-Position of the 4,5-Series of 2-Deoxystreptamine Aminoglycoside Antibiotics To Resist Aminoglycoside Modifying Enzymes and Increase Ribosomal Target Selectivity. ACS Infect Dis 2019; 5:1718-1730. [PMID: 31436080 PMCID: PMC6788953 DOI: 10.1021/acsinfecdis.9b00128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A series
of derivatives of the 4,5-disubstituted class of 2-deoxystreptamine
aminoglycoside antibiotics neomycin, paromomycin, and ribostamycin
was prepared and assayed for (i) their ability to inhibit protein
synthesis by bacterial ribosomes and by engineered bacterial ribosomes
carrying eukaryotic decoding A sites, (ii) antibacterial activity
against wild type Gram negative and positive pathogens, and (iii)
overcoming resistance due to the presence of aminoacyl transferases
acting at the 2′-position. The presence of five suitably positioned
residual basic amino groups was found to be necessary for activity
to be retained upon removal or alkylation of the 2′-position
amine. As alkylation of the 2′-amino group overcomes the action
of resistance determinants acting at that position and in addition
results in increased selectivity for the prokaryotic over eukaryotic
ribosomes, it constitutes an attractive modification for introduction
into next generation aminoglycosides. In the neomycin series, the
installation of small (formamide) or basic (glycinamide) amido groups
on the 2′-amino group is tolerated.
Collapse
Affiliation(s)
- Girish C. Sati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Vikram A. Sarpe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sujit Mondal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matilde Mantovani
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
9
|
Dreger A, Kharwb O, Agoglitta O, Bülbül EF, Melesina J, Sippl W, Holl R. Chiral Pool Synthesis, Biological Evaluation and Molecular Docking Studies ofC‐Furanosidic LpxC Inhibitors. ChemMedChem 2019; 14:871-886. [DOI: 10.1002/cmdc.201900068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Alexander Dreger
- Department of Chemistry, Institute of Organic ChemistryUniversity of Hamburg Martin-Luther-King Platz 6 20146 Hamburg Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems Germany
| | - Omar Kharwb
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of Münster Corrensstr. 48 48149 Münster Germany
| | - Oriana Agoglitta
- Department of Chemistry, Institute of Organic ChemistryUniversity of Hamburg Martin-Luther-King Platz 6 20146 Hamburg Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems Germany
- NRW Graduate School of ChemistryUniversity of Münster Germany
| | - Emre F. Bülbül
- Institute of PharmacyMartin Luther University of Halle-Wittenberg Wolfgang-Langenbeck Str. 4 06120 Halle/Saale Germany
| | - Jelena Melesina
- Institute of PharmacyMartin Luther University of Halle-Wittenberg Wolfgang-Langenbeck Str. 4 06120 Halle/Saale Germany
| | - Wolfgang Sippl
- Institute of PharmacyMartin Luther University of Halle-Wittenberg Wolfgang-Langenbeck Str. 4 06120 Halle/Saale Germany
| | - Ralph Holl
- Department of Chemistry, Institute of Organic ChemistryUniversity of Hamburg Martin-Luther-King Platz 6 20146 Hamburg Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems Germany
| |
Collapse
|
10
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
11
|
Zárate SG, Claure MLDLC, Benito-Arenas R, Revuelta J, Santana AG, Bastida A. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Molecules 2018; 23:molecules23020284. [PMID: 29385736 PMCID: PMC6017855 DOI: 10.3390/molecules23020284] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 01/26/2018] [Indexed: 11/17/2022] Open
Abstract
Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice. Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics to meet the challenge of resistance. The most prevalent source of clinically relevant resistance against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore, a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the antibiotics and solvent is of paramount importance in order to facilitate the design of more effective and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to modifying enzymes.
Collapse
Affiliation(s)
- Sandra G. Zárate
- Facultad de Tecnología-Carrera de Ingeniería Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B, Sucre, Bolivia;
| | - M. Luisa De la Cruz Claure
- Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Dalence 51, Casilla 497, Sucre, Bolivia;
| | - Raúl Benito-Arenas
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
| | - Julia Revuelta
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
| | - Andrés G. Santana
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
- Correspondence: (A.G.S.); (A.B.); Tel: +34-915-612-800 (A.B.)
| | - Agatha Bastida
- Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (R.B.-A.); (J.R.)
- Correspondence: (A.G.S.); (A.B.); Tel: +34-915-612-800 (A.B.)
| |
Collapse
|
12
|
Mandhapati AR, Yang G, Kato T, Shcherbakov D, Hobbie SN, Vasella A, Böttger EC, Crich D. Structure-Based Design and Synthesis of Apramycin-Paromomycin Analogues: Importance of the Configuration at the 6'-Position and Differences between the 6'-Amino and Hydroxy Series. J Am Chem Soc 2017; 139:14611-14619. [PMID: 28892368 PMCID: PMC5647259 DOI: 10.1021/jacs.7b07754] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The preparation of a series of four analogues of the aminoglycoside antibiotics neomycin and paromomycin is described in which ring I, involved in critical binding interactions with the ribosomal target, is replaced by an apramycin-like dioxabicyclo[4.4.0]octane system. The effect of this modification is to lock the hydroxymethyl side chain of the neomycin or paromomycin ring I, as part of the dioxabicyclooctane ring, into either the gauche-gauche or the gauche-trans conformation (respectively, axial or equatorial to the bicyclic system). The antiribosomal activity of these compounds is investigated with cell-free translation assays using both bacterial ribosomes and recombinant hybrid ribosomes carrying eukaryotic decoding A site cassettes. Compounds substituted with an equatorial hydroxyl or amino group in the newly formed ring are considerably more active than their axial diastereomers, lending strong support to crystallographically derived models of aminoglycoside-ribosome interactions. One such bicyclic compound carrying an equatorial hydroxyl group has activity equal to that of the parent yet displays better ribosomal selectivity, predictive of an enhanced therapeutic index. A paromomycin analog lacking the hydroxymethyl ring I side chain is considerably less active than the parent. Antibacterial activity against model Gram negative and Gram positive bacteria is reported for selected compounds, as is activity against ESKAPE pathogens and recombinant bacteria carrying specific resistance determinants. Analogues with a bicyclic ring I carrying equatorial amino or hydroxyl groups mimicking the bound side chains of neomycin and paromomycin, respectively, show excellent activity and, by virtue of their novel structure, retain this activity in strains that are insensitive to the parent compounds.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Guanyu Yang
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zurich , 8093 Zurich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
13
|
Deshayes S, Xian W, Schmidt NW, Kordbacheh S, Lieng J, Wang J, Zarmer S, Germain SS, Voyen L, Thulin J, Wong GCL, Kasko AM. Designing Hybrid Antibiotic Peptide Conjugates To Cross Bacterial Membranes. Bioconjug Chem 2017; 28:793-804. [DOI: 10.1021/acs.bioconjchem.6b00725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Nathan W. Schmidt
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Feng Y, Chen W, Jia Y, Tian Y, Zhao Y, Long F, Rui Y, Jiang X. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. NANOSCALE 2016; 8:13223-13227. [PMID: 27355451 DOI: 10.1039/c6nr03317b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs.
Collapse
Affiliation(s)
- Yan Feng
- College of Resources and Environmental Sciences, China Agricultural University, 2 YuanMingYuan West Road, HaiDian District, Beijing 100193, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jiménez-Moreno E, Montalvillo-Jiménez L, Santana AG, Gómez AM, Jiménez-Osés G, Corzana F, Bastida A, Jiménez-Barbero J, Cañada FJ, Gómez-Pinto I, González C, Asensio JL. Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. J Am Chem Soc 2016; 138:6463-74. [DOI: 10.1021/jacs.6b00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ester Jiménez-Moreno
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Andrés G. Santana
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
- Institute of Biocomputation and Physics of Complex Systems
(BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Bizkaia, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Bizkaia, Spain
| | | | - Irene Gómez-Pinto
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
16
|
Cramer DL, Bera S, Studer A. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates. Chemistry 2016; 22:7403-7. [PMID: 27038068 DOI: 10.1002/chem.201601398] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/11/2023]
Abstract
The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide.
Collapse
Affiliation(s)
- David L Cramer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Srikrishna Bera
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
17
|
Santana AG, Zárate SG, Asensio JL, Revuelta J, Bastida A. Selective modification of the 3''-amino group of kanamycin prevents significant loss of activity in resistant bacterial strains. Org Biomol Chem 2016; 14:516-525. [PMID: 26501183 DOI: 10.1039/c5ob01599e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides are highly potent, wide-spectrum bactericidals. N-1 modification of aminoglycosides has thus far been the best approach to regain bactericidal efficiency of this class of antibiotics against resistant bacterial strains. In the present study we have evaluated the effect that both, the number of modifications and their distribution on the aminoglycoside amino groups (N-1, N-3, N-6' and N-3''), have on the antibiotic activity. The modification of N-3'' in the antibiotic kanamycin A is the key towards the design of new aminoglycoside antibiotics. This derivative maintains the antibiotic activity against aminoglycoside acetyl-transferase- and nucleotidyl-transferase-expressing strains, which are two of the most prevalent modifying enzymes found in aminoglycoside resistant bacteria.
Collapse
Affiliation(s)
- Andrés G Santana
- CSIC, Department of Bioorganic Chemistry, c/Juan de la Cierva, 3, 28006-Madrid, Spain.
| | | | | | | | | |
Collapse
|
18
|
Bera S, Mondal D, Palit S, Schweizer F. Structural modifications of the neomycin class of aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00079g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review encompasses comprehensive literature on synthetic modification and biological activities of clinically used neomycin-class aminoglycoside antibiotics to alleviate dose-related toxicity and pathogenic resistance.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Dhananjoy Mondal
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology Campus
- Kolkata-700 032
- India
| | - Frank Schweizer
- Department of Chemistry and Medical Microbiology
- University of Manitoba
- Winnipeg
- Canada
| |
Collapse
|
19
|
Zhan P, Itoh Y, Suzuki T, Liu X. Strategies for the Discovery of Target-Specific or Isoform-Selective Modulators. J Med Chem 2015; 58:7611-33. [PMID: 26086931 DOI: 10.1021/acs.jmedchem.5b00229] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Zhan
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Yukihiro Itoh
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Takayoshi Suzuki
- Graduate
School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Xinyong Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
20
|
Fosso MY, Zhu H, Green KD, Garneau-Tsodikova S, Fredrick K. Tobramycin Variants with Enhanced Ribosome-Targeting Activity. Chembiochem 2015; 16:1565-70. [PMID: 26033429 DOI: 10.1002/cbic.201500256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 01/16/2023]
Abstract
With the increased evolution of aminoglycoside (AG)-resistant bacterial strains, the need to develop AGs with 1) enhanced antimicrobial activity, 2) the ability to evade resistance mechanisms, and 3) the capability of targeting the ribosome with higher efficiency is more and more pressing. The chemical derivatization of the naturally occurring tobramycin (TOB) by attachment of 37 different thioether groups at the 6''-position led to the identification of generally poorer substrates of TOB-targeting AG-modifying enzymes (AMEs). Thirteen of these displayed better antibacterial activity than the parent TOB while retaining ribosome-targeting specificity. Analysis of these compounds in vitro shed light on the mechanism by which they act and revealed three with clearly enhanced ribosome-targeting activity.
Collapse
Affiliation(s)
- Marina Y Fosso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536-0596 (USA)
| | - Hongkun Zhu
- Department of Microbiology, Center for RNA Biology, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210-1292 (USA)
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536-0596 (USA)
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536-0596 (USA).
| | - Kurt Fredrick
- Department of Microbiology, Center for RNA Biology, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210-1292 (USA).
| |
Collapse
|
21
|
Conformational restriction: an effective tactic in 'follow-on'-based drug discovery. Future Med Chem 2015; 6:885-901. [PMID: 24962281 DOI: 10.4155/fmc.14.50] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The conformational restriction (rigidification) of a flexible ligand has often been a commonly used strategy in drug design, as it can minimize the entropic loss associated with the ligand adopting a preferred conformation for binding, which leads to enhanced potency for a given physiological target, improved selectivity for isoforms and reduced the possibility of drug metabolism. Therefore, the application of conformational restriction strategy is a core aspect of drug discovery and development that is widely practiced by medicinal chemists either deliberately or subliminally. The present review will highlight current representative examples and a brief overview on the rational design of conformationally restricted agents as well as discuss its advantages over the flexible counterparts.
Collapse
|
22
|
Duscha S, Boukari H, Shcherbakov D, Salian S, Silva S, Kendall A, Kato T, Akbergenov R, Perez-Fernandez D, Bernet B, Vaddi S, Thommes P, Schacht J, Crich D, Vasella A, Böttger EC. Identification and evaluation of improved 4'-O-(alkyl) 4,5-disubstituted 2-deoxystreptamines as next-generation aminoglycoside antibiotics. mBio 2014; 5:e01827-14. [PMID: 25271289 PMCID: PMC4196235 DOI: 10.1128/mbio.01827-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The emerging epidemic of drug resistance places the development of efficacious and safe antibiotics in the spotlight of current research. Here, we report the design of next-generation aminoglycosides. Discovery efforts were driven by rational synthesis focusing on 4' alkylations of the aminoglycoside paromomycin, with the goal to alleviate the most severe and disabling side effect of aminoglycosides-irreversible hearing loss. Compounds were evaluated for target activity in in vitro ribosomal translation assays, antibacterial potency against selected pathogens, cytotoxicity against mammalian cells, and in vivo ototoxicity. The results of this study produced potent compounds with excellent selectivity at the ribosomal target, promising antibacterial activity, and little, if any, ototoxicity upon chronic administration. The favorable biocompatibility profile combined with the promising antibacterial activity emphasizes the potential of next-generation aminoglycosides in the treatment of infectious diseases without the risk of ototoxicity. IMPORTANCE The ever-widening epidemic of multidrug-resistant infectious diseases and the paucity of novel antibacterial agents emerging from modern screening platforms mandate the reinvestigation of established drugs with an emphasis on improved biocompatibility and overcoming resistance mechanisms. Here, we describe the preparation and evaluation of derivatives of the established aminoglycoside antibiotic paromomycin that effectively remove its biggest deficiency, ototoxicity, and overcome certain bacterial resistance mechanisms.
Collapse
Affiliation(s)
- Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Sumantha Salian
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Sandrina Silva
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Ann Kendall
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Takayuki Kato
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | | | - Bruno Bernet
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | | | - Pia Thommes
- Euprotec Limited, Manchester, United Kingdom
| | - Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
24
|
Xie J, Bogliotti N. Synthesis and applications of carbohydrate-derived macrocyclic compounds. Chem Rev 2014; 114:7678-739. [PMID: 25007213 DOI: 10.1021/cr400035j] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan Xie
- PPSM, Institut d'Alembert, ENS Cachan, CNRS, UMR 8531 , 61 av. Président Wilson, F-94235 Cachan Cedex, France
| | | |
Collapse
|
25
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
26
|
Perez-Fernandez D, Shcherbakov D, Matt T, Leong NC, Kudyba I, Duscha S, Boukari H, Patak R, Dubbaka SR, Lang K, Meyer M, Akbergenov R, Freihofer P, Vaddi S, Thommes P, Ramakrishnan V, Vasella A, Böttger EC. 4'-O-substitutions determine selectivity of aminoglycoside antibiotics. Nat Commun 2014; 5:3112. [PMID: 24473108 PMCID: PMC3942853 DOI: 10.1038/ncomms4112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/16/2013] [Indexed: 02/04/2023] Open
Abstract
Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4'-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets.
Collapse
Affiliation(s)
- Déborah Perez-Fernandez
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
- These authors contributed equally to this work
| | - Dmitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
- These authors contributed equally to this work
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Ng Chyan Leong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- These authors contributed equally to this work
| | - Iwona Kudyba
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Rashmi Patak
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Srinivas Reddy Dubbaka
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Kathrin Lang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Martin Meyer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Pietro Freihofer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Swapna Vaddi
- Euprotec Limited, Unit 12 Williams House, Manchester Science Park, Lloyd Street North, Manchester M15 6SE, UK
| | - Pia Thommes
- Euprotec Limited, Unit 12 Williams House, Manchester Science Park, Lloyd Street North, Manchester M15 6SE, UK
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| |
Collapse
|
27
|
Schitter G, Wrodnigg TM. Update on carbohydrate-containing antibacterial agents. Expert Opin Drug Discov 2013; 4:315-56. [PMID: 23489128 DOI: 10.1517/17460440902778725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Since the first known use of antibiotics > 2,500 years ago, a research field with immense importance for the welfare of mankind has been developed. After a decrease in interest in this topic by the end of the 20th century the occurrence of (poly-)resistant strains of bacteria induced a revival of antibiotics research. Health systems have been seeking viable and reliable solutions to this dangerous and expansive threat. OBJECTIVE This review will focus on carbohydrate-containing antibiotics and will give an outline of recently published novel isolated, semisynthetic as well as synthetic structures, their mechanism of action, if known, and the strategies for the design of compounds with potential by improved antibacterial properties. METHODS The literature between 2000 and 2008 was screened with main focus on recent examples of novel structures and strategies for the lead finding of exclusively antibacterial agents. RESULTS/CONCLUSION With the explanation of the role of the carbohydrate moieties in the respective antibacterial agents together with better synthetic strategies in carbohydrate chemistry as well as improvements in assay development for high throughput screening methods, carbohydrate-containing antibiotics can be used for the finding of potential drug leads that contribute to the fight against infections and diseases caused by (resistant) bacterial pathogens.
Collapse
Affiliation(s)
- Georg Schitter
- Technical University Graz, Institute of Organic Chemistry, Univ.-Doz. TMW, Dip.-Ing. GS, Glycogroup, A-8010 Graz, Austria +43 316 873 8744 ; +43 316 873 8740 ;
| | | |
Collapse
|
28
|
Zhang W, Chen Y, Liang Q, Li H, Jin H, Zhang L, Meng X, Li Z. Design, Synthesis, and Antibacterial Activities of Conformationally Constrained Kanamycin A Derivatives. J Org Chem 2012; 78:400-9. [DOI: 10.1021/jo302247x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenxuan Zhang
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Ying Chen
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Qingzhao Liang
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Hongwei Jin
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Liangren Zhang
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhongjun Li
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
29
|
Salian S, Matt T, Akbergenov R, Harish S, Meyer M, Duscha S, Shcherbakov D, Bernet BB, Vasella A, Westhof E, Böttger EC. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups. Antimicrob Agents Chemother 2012; 56:6104-8. [PMID: 22948879 PMCID: PMC3497201 DOI: 10.1128/aac.01326-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/26/2012] [Indexed: 11/20/2022] Open
Abstract
The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2' forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6'-OH substituent is present.
Collapse
Affiliation(s)
- Sumantha Salian
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Shinde Harish
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Martin Meyer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Dmitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Bruno B. Bernet
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique, Strasbourg, France
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Romanowska J, Reuter N, Trylska J. Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Proteins 2012; 81:63-80. [PMID: 22907688 DOI: 10.1002/prot.24163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022]
Abstract
Aminoglycoside antibiotics are used against severe bacterial infections. They bind to the bacterial ribosomal RNA and interfere with the translation process. However, bacteria produce aminoglycoside modifying enzymes (AME) to resist aminoglycoside actions. AMEs form a variable group and yet they specifically recognize and efficiently bind aminoglycosides, which are also diverse in terms of total net charge and the number of pseudo-sugar rings. Here, we present the results of 25 molecular dynamics simulations of three AME representatives and aminoglycoside ribosomal RNA binding site, unliganded and complexed with an aminoglycoside, kanamycin A. A comparison of the aminoglycoside binding sites in these different receptors revealed that the enzymes efficiently mimic the nucleic acid environment of the ribosomal RNA binding cleft. Although internal dynamics of AMEs and their interaction patterns with aminoglycosides differ, the energetical analysis showed that the most favorable sites are virtually the same in the enzymes and RNA. The most copied interactions were of electrostatic nature, but stacking was also replicated in one AME:kanamycin complex. In addition, we found that some water-mediated interactions were very stable in the simulations of the complexes. We show that our simulations reproduce well findings from NMR or X-ray structural studies, as well as results from directed mutagenesis. The outcomes of our analyses provide new insight into aminoglycoside resistance mechanism that is related to the enzymatic modification of these drugs.
Collapse
Affiliation(s)
- Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland.
| | | | | |
Collapse
|
31
|
Matesanz R, Diaz JF, Corzana F, Santana AG, Bastida A, Asensio JL. Multiple keys for a single lock: the unusual structural plasticity of the nucleotidyltransferase (4')/kanamycin complex. Chemistry 2012; 18:2875-89. [PMID: 22298309 DOI: 10.1002/chem.201101888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/05/2011] [Indexed: 11/09/2022]
Abstract
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme-catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non- inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside-modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular-recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4'(ANT(4')), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4') seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non-inactivable derivatives a challenging task.
Collapse
Affiliation(s)
- Ruth Matesanz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Sattelle BM, Almond A. Assigning kinetic 3D-signatures to glycocodes. Phys Chem Chem Phys 2012; 14:5843-8. [DOI: 10.1039/c2cp40071e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Szychowski J, Kondo J, Zahr O, Auclair K, Westhof E, Hanessian S, Keillor JW. Inhibition of aminoglycoside-deactivating enzymes APH(3')-IIIa and AAC(6')-Ii by amphiphilic paromomycin O2''-ether analogues. ChemMedChem 2011; 6:1961-6. [PMID: 21905229 DOI: 10.1002/cmdc.201100346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Janek Szychowski
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Bera S, Zhanel GG, Schweizer F. Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates. Carbohydr Res 2011; 346:560-8. [PMID: 21353205 DOI: 10.1016/j.carres.2011.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
Abstract
Amphiphilic lysine-ligated neomycin B building blocks were prepared by reductive amination of a protected C5″-modified neomycin B-based aldehyde and side chain-unprotected lysine or lysine-containing peptides. It was demonstrated that a suitably protected lysine-ligated neomycin B conjugate (NeoK) serves as a building block for peptide synthesis, enabling incorporation of aminoglycoside binding sites into peptides. Antibacterial testing of three amphiphilic lysine-ligated neomycin B conjugates against a representative panel of Gram-positive and Gram-negative strains demonstrates that C5″-modified neomycin-lysine conjugate retains antibacterial activity. However, in most cases the lysine-ligated neomycin B analogs display reduced potency against Gram-positive strains when compared to unmodified neomycin B or unligated peptide. An exception is MRSA where an eightfold enhancement was observed. When compared to unmodified neomycin B, the prepared lysine-neomycin conjugates exhibited a 4-8-fold enhanced Gram-negative activity against Pseudomonas aeruginosa and up to 12-fold enhanced activity was observed when compared to unligated reference peptides.
Collapse
Affiliation(s)
- Smritilekha Bera
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | |
Collapse
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
36
|
Rational design and synthesis of potent aminoglycoside antibiotics against resistant bacterial strains. Bioorg Med Chem 2011; 19:30-40. [DOI: 10.1016/j.bmc.2010.11.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/27/2010] [Accepted: 11/30/2010] [Indexed: 11/20/2022]
|
37
|
Cottin T, Pyrkotis C, Stathakis CI, Mavridis I, Katsoulis IA, Anastasopoulou P, Kythreoti G, Zografos AL, Nahmias VR, Papakyriakou A, Vourloumis D. Designed Spiro-Bicyclic Analogues Targeting the Ribosomal Decoding Center. Chembiochem 2010; 12:71-87. [DOI: 10.1002/cbic.201000591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:209-32. [DOI: 10.1002/wrna.60] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Andac CA, Stringfellow TC, Hornemann U, Noyanalpan N. NMR and amber analysis of the neamine pharmacophore for the design of novel aminoglycoside antibiotics. Bioorg Chem 2010; 39:28-41. [PMID: 21115188 DOI: 10.1016/j.bioorg.2010.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 11/18/2022]
Abstract
The dependence of the solution structure of neamine on pH was determined by NMR and AMBER molecular dynamics methods at pD 3.3, pD 6.5, and pD 7.4 in D(2)O at 25°C. Unlike neamine structures at pD 3.3 and 6.5, which essentially showed only one conformer, slowly exchanging primary, P-state, and secondary, S-state, neamine conformers populated on the NMR time scale at ~80% and ~20%, respectively, were detected at pD 7.4 with kinetic constants k(on(P→S))=1.9771s(-1) and k(off(S→P))=1.1319s(-1). A tertiary, T-state, neamine species populated at ~3% was also detected by NMR at pD 7.4. The pKa values determined by NMR titration experiments are pKa1 6.44±0.13 for N3 of ring-II, pKa2 7.23±0.09 for N2' of ring-I, pKa3 7.77±0.19 for N1 of ring-II, and pKa4 8.08±0.15 for N6' of ring-I. Ring-I and ring-II of the P-state neamine and ring-I of the S and T-states of neamine possess the (4)C(1) chair conformation between pD 3.3 and pD=7.4. In contrast, ring-II of the S and T-states of neamine most likely adopt the (6)rH(1) half-chair conformation. The P and S-states of neamine exhibit a negative syn-ψ glycosidic geometry. The exocyclic aminomethyl group of ring-I adopts the gt exocyclic rotamer conformation around physiological pHs while the gg exocyclic rotamer conformation predominates in acidic solutions near and below pH 4.5. Neamine exists in the P-state as a mixture of tetra-/tri-/di-protonated species between pD 4.5 and pD 7.4, while the S-state neamine exist only in a di-protonated species around physiological pDs. The existence of the S-state neamine may facilitate binding of neamine-like aminoglycosides by favorable entropy of binding to the A-site of 16S ribosomal RNA, suggesting that novel aminoglycoside compounds carrying a S-state neamine pharmacophore can be developed.
Collapse
Affiliation(s)
- Cenk A Andac
- Department of Pharmacology, Medical School, Dicle University, Diyarbakir, Turkey.
| | | | | | | |
Collapse
|
40
|
Vacas T, Corzana F, Jiménez-Osés G, González C, Gómez AM, Bastida A, Revuelta J, Asensio JL. Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. J Am Chem Soc 2010; 132:12074-90. [DOI: 10.1021/ja1046439] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatiana Vacas
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Francisco Corzana
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Carlos González
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Julia Revuelta
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| |
Collapse
|
41
|
Matt T, Akbergenov R, Shcherbakov D, Böttger EC. The Ribosomal A-site: Decoding, Drug Target, and Disease. Isr J Chem 2010. [DOI: 10.1002/ijch.201000003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Revuelta J, Corzana F, Bastida A, Asensio J. The Unusual Nucleotide Recognition Properties of the Resistance Enzyme ANT(4′): Inorganic Tri/Polyphosphate as a Substrate for Aminoglycoside Inactivation. Chemistry 2010; 16:8635-40. [DOI: 10.1002/chem.201000641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Wu S, Fu Y, Yan R, Wu Y, Lei X, Ye XS. Synthesis of neamine–carboline conjugates for RNA binding and their antibacterial activities. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Revuelta J, Vacas T, Corzana F, Gonzalez C, Bastida A, Asensio JL. Structure-based design of highly crowded ribostamycin/kanamycin hybrids as a new family of antibiotics. Chemistry 2010; 16:2986-91. [PMID: 20162651 DOI: 10.1002/chem.200903003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Revuelta
- Departamento de Química Bio-orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Bera S, Zhanel GG, Schweizer F. Evaluation of amphiphilic aminoglycoside-peptide triazole conjugates as antibacterial agents. Bioorg Med Chem Lett 2010; 20:3031-5. [PMID: 20413307 DOI: 10.1016/j.bmcl.2010.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
The solid- and solution-phase synthesis of amphiphilic aminoglycoside-peptide triazole conjugates (APTCs) accessed by copper(I)-catalyzed 1,3-dipolar cycloaddition reaction between a hydrophobic and ultrashort peptide-based alkyne and a neomycin B- or kanamycin A-derived azide is presented. Antibacterial evaluation demonstrates that the antibacterial potency is affected by the nature of the peptide component. Several APTCs exhibit superior activity against neomycin B- and kanamycin A-resistant strains when compared to their parent aminoglycoside while displaying reduced activity against neomycin B- and kanamycin A-susceptible strains.
Collapse
Affiliation(s)
- Smritilekha Bera
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | | |
Collapse
|
46
|
Fong DH, Lemke CT, Hwang J, Xiong B, Berghuis AM. Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila. J Biol Chem 2010; 285:9545-9555. [PMID: 20089863 DOI: 10.1074/jbc.m109.038364] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoglycoside phosphotransferases (APHs) constitute a diverse group of enzymes that are often the underlying cause of aminoglycoside resistance in the clinical setting. Several APHs have been extensively characterized, including the elucidation of the three-dimensional structure of two APH(3') isozymes and an APH(2'') enzyme. Although many APHs are plasmid-encoded and are capable of inactivating numerous 2-deoxystreptmaine aminoglycosides with multiple regiospecificity, APH(9)-Ia, isolated from Legionella pneumophila, is an unusual enzyme among the APH family for its chromosomal origin and its specificity for a single non-2-deoxystreptamine aminoglycoside substrate, spectinomycin. We describe here the crystal structures of APH(9)-Ia in its apo form, its binary complex with the nucleotide, AMP, and its ternary complex bound with ADP and spectinomycin. The structures reveal that APH(9)-Ia adopts the bilobal protein kinase-fold, analogous to the APH(3') and APH(2'') enzymes. However, APH(9)-Ia differs significantly from the other two types of APH enzymes in its substrate binding area and that it undergoes a conformation change upon ligand binding. Moreover, kinetic assay experiments indicate that APH(9)-Ia has stringent substrate specificity as it is unable to phosphorylate substrates of choline kinase or methylthioribose kinase despite high structural resemblance. The crystal structures of APH(9)-Ia demonstrate and expand our understanding of the diversity of the APH family, which in turn will facilitate the development of new antibiotics and inhibitors.
Collapse
Affiliation(s)
- Desiree H Fong
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6
| | - Christopher T Lemke
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiyoung Hwang
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6
| | - Bing Xiong
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
47
|
Katsoulis IA, Pyrkotis C, Papakyriakou A, Kythreoti G, Zografos AL, Mavridis I, Nahmias VR, Anastasopoulou P, Vourloumis D. Unnatural Rigid Scaffolds Targeting the Bacterial Ribosome. Chembiochem 2009; 10:1969-72. [DOI: 10.1002/cbic.200900268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Setny P, Trylska J. Search for novel aminoglycosides by combining fragment-based virtual screening and 3D-QSAR scoring. J Chem Inf Model 2009; 49:390-400. [PMID: 19434840 DOI: 10.1021/ci800361a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoglycosides are antibiotics targeting the 16S RNA A site of the bacterial ribosome. There have been many efforts directed toward design of their synthetic derivatives, however with only few successes. As RNA binders, aminoglycosides are also a difficult target for computational drug design, since most of the existing methods were developed for protein ligands. Here, we present an approach that allows for evading the problems related to still poorly developed RNA docking and scoring algorithms. It is aimed at identification of new molecular scaffolds potentially binding to the A site. The considered molecules are based on the neamine core, which is common for all aminoglycosides and provides specificity toward the binding site, linked with diverse molecular fragments via its O5 or O6 oxygen atom. Suitable fragments are selected with the use of 3D searches of molecular fragments library against two distinct pharmacophores designed on the basis of available structural data for aminoglycoside-RNA complexes. The compounds resulting from fragments assembly with neamine are then scored with a 3D-QSAR model developed using the biological data for known aminoglycoside derivatives. Twenty-one new potential ligands are obtained, four of which have predicted activities comparable to less potent aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Piotr Setny
- Interdisciplinary Centre for Mathematical and Computational Modelling and Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| | | |
Collapse
|
49
|
Chittapragada M, Roberts S, Ham YW. Aminoglycosides: molecular insights on the recognition of RNA and aminoglycoside mimics. PERSPECTIVES IN MEDICINAL CHEMISTRY 2009; 3:21-37. [PMID: 19812740 PMCID: PMC2754922 DOI: 10.4137/pmc.s2381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
RNA is increasingly recognized for its significant functions in biological systems and has recently become an important molecular target for therapeutics development. Aminoglycosides, a large class of clinically significant antibiotics, exert their biological functions by binding to prokaryotic ribosomal RNA (rRNA) and interfering with protein translation, resulting in bacterial cell death. They are also known to bind to viral mRNAs such as HIV-1 RRE and TAR. Consequently, aminoglycosides are accepted as the single most important model in understanding the principles that govern small molecule-RNA recognition, which is essential for the development of novel antibacterial, antiviral or even anti-oncogenic agents. This review outlines the chemical structures and mechanisms of molecular recognition and antibacterial activity of aminoglycosides and various aminoglycoside mimics that have recently been devised to improve biological efficacy, binding affinity and selectivity, or to circumvent bacterial resistance.
Collapse
Affiliation(s)
- Maruthi Chittapragada
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| | | | | |
Collapse
|
50
|
Bera S, Zhanel GG, Schweizer F. Design, Synthesis, and Antibacterial Activities of Neomycin−Lipid Conjugates: Polycationic Lipids with Potent Gram-Positive Activity. J Med Chem 2008; 51:6160-4. [DOI: 10.1021/jm800345u] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Smritilekha Bera
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg R3E 3P4, Manitoba, Canada
| | - George G. Zhanel
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg R3E 3P4, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg R3E 3P4, Manitoba, Canada
| |
Collapse
|