1
|
Gao YL, Yang Y, Wu C, Xie MS, Guo HM. Chemoselectivity Switch between Enantioselective [2,3]-Wittig Rearrangement and Conia-Ene-Type Reactions of Propargyloxyoxindoles. Chemistry 2024; 30:e202402556. [PMID: 39051982 DOI: 10.1002/chem.202402556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Despite the existence of three competing reactions for propargyloxyoxindoles, we report a chemoselectivity switch between enantioselective propargyl [2,3]-Wittig rearrangement and Conia-ene-type reactions, with suppression of the [1,2]-Wittig-type rearrangement. Using C1-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand and Ni(acac)2 as the Lewis acid, diverse 3-hydroxy 3-substituted oxindoles containing allenyl groups were obtained in up to 98 % yield and 99 % ee via asymmetric propargyl [2,3]-Wittig rearrangement. In the presence of AgOTf-Duanphos, chiral spiro dihydrofuran oxindoles were given in up to 98 % yield and 91 % ee through a Conia-ene-type reaction.
Collapse
Affiliation(s)
- Yu-Lin Gao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chen Wu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Bisek B, Kochaniak K, Chaładaj W. Lithium Enables Pd-Catalyzed 5 -endo-dig Cyclization/Coupling of α-Homopropargyl-β-ketoesters with Aryl Bromides and Triflates. Org Lett 2024; 26:8254-8259. [PMID: 39298715 PMCID: PMC11459523 DOI: 10.1021/acs.orglett.4c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Tight chelation of enolate by lithium alters the selectivity of tandem palladium-catalyzed cyclization/coupling of terminal α-homopropargyl-β-ketoesters with aryl halides. In the presence of LiOH, substituted cyclopentenes are preferentially formed via 5-endo-dig carbocyclization, in contrast to the 6-exo-dig oxocyclization exclusively observed in the absence of a hard, chelating metal center. The disclosed transformation, featuring mild conditions and broad functional group tolerance, can be applied for a variety of (hetero)aryl bromides as well as aryl and vinyl triflates.
Collapse
Affiliation(s)
- Bartosz Bisek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katarzyna Kochaniak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Zhang K, Jiang Q, He C, Hu M, Cheng Y, Duan XH, Liu L. Photoredox Catalyzed Conia-Ene-Type Cyclization/Smiles Rearrangement Cascade Reactions to Access Substituted Methylenecarbocycles. Org Lett 2024; 26:7971-7975. [PMID: 39259671 DOI: 10.1021/acs.orglett.4c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
We report a novel visible-light-driven photoredox-catalyzed cascade reaction involving Conia-ene-type cyclization and Smiles rearrangement initiated from alkyne-tethered α-sulfonyl esters. This methodology not only facilitates the rapid synthesis of a broad spectrum of highly substituted methylenecarbocycles but also introduces a new mechanistic pathway with aryl group migration, surpassing the conventional 1,5-hydrogen shift typically observed in Conia-ene reactions.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi Jiang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Cheng
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Peng PK, Isho A, May JA. Regio- and enantioselective synthesis of acyclic quaternary carbons via organocatalytic addition of organoborates to (Z)-Enediketones. Nat Commun 2024; 15:504. [PMID: 38218961 PMCID: PMC10787796 DOI: 10.1038/s41467-024-44744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
The chemical synthesis of molecules with closely packed atoms having their bond coordination saturated is a challenge to synthetic chemists, especially when three-dimensional control is required. The organocatalyzed asymmetric synthesis of acyclic alkenylated, alkynylated and heteroarylated quaternary carbon stereocenters via 1,4-conjugate addition is here catalyzed by 3,3´-bisperfluorotoluyl-BINOL. The highly useful products (31 examples) are produced in up to 99% yield and 97:3 er using enediketone substrates and potassium trifluoroorganoborate nucleophiles. In addition, mechanistic experiments show that the (Z)-isomer is the reactive form, ketone rotation at the site of bond formation is needed for enantioselectivity, and quaternary carbon formation is favored over tertiary. Density functional theory-based calculations show that reactivity and selectivity depend on a key n→π* donation by the unbound ketone's oxygen lone pair to the boronate-coordinated ketone in a 5-exo-trig cyclic ouroboros transition state. Transformations of the conjugate addition products to key quaternary carbon-bearing synthetic building blocks proceed in good yield.
Collapse
Affiliation(s)
- Po-Kai Peng
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Andrew Isho
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
5
|
Cerveri A, Vettori M, Serafino A, Maestri G. Base-promoted Conia-ene cyclization of propargyl amides. Org Biomol Chem 2023; 21:7311-7315. [PMID: 37671579 DOI: 10.1039/d3ob01107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
We report a tBuOK-promoted synthesis of 1,3-dihydro-2H-pyrrol-2-one and 4-methylenepyrrolidin-2-one systems via Conia-ene like intramolecular cyclization. The method features extremely short reaction times (5 min) and mild reaction conditions (rt), enabling the trapping of a propargyl unit by an amide enolate. An intriguing anionic chain mechanism is at work, which can trigger the isomerization of an exo-alkene giving access to the otherwise elusive endo-product.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Mattia Vettori
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Serafino
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Giovanni Maestri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
6
|
Narode AS, Ho YS, Cheng MJ, Liu RS. Gold-Catalyzed Addition of β-Oxo Enols at Tethered Alkynes via a Non-Conia-ene Pathway: Observation of a Formal 1,3-Hydroxymethylidene Migration. Org Lett 2023; 25:1589-1594. [PMID: 36861973 DOI: 10.1021/acs.orglett.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
With the relay process of Ag(I)/Au(I) catalysts, a one-pot synthesis of skeletally rearranged (1-hydroxymethylidene)indene derivatives from 2-alkynylbenzaldehydes and α-diazo esters is described. This cascade sequence involves Au(I)-catalyzed 5-endo-dig attack of highly enolizable aldehydes at the tethered alkynes, leading to carbocyclizations with a formal 1,3-hydroxymethylidene transfer. On the basis of density functional theory calculations, the mechanism likely involves formation of cyclopropylgold carbenes, followed by an appealing 1,2-cyclopropane migration.
Collapse
Affiliation(s)
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan City, Taiwan (ROC) 701
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan City, Taiwan (ROC) 701
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan (ROC) 300
| |
Collapse
|
7
|
Chen YY, Zhou CD, Li XT, Yang TY, Han WY, Wan NW, Chen YZ, Cui BD. Cooperative Tertiary Amine/Palladium-Catalyzed Sequential [4 + 3] Cyclization/[1,3]-Rearrangement for Stereoselective Synthesis of Spiro [Methylenecyclopentane-1,3'-oxindolines]. J Org Chem 2023; 88:371-383. [PMID: 36563325 DOI: 10.1021/acs.joc.2c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A cooperative tertiary amine/palladium-catalyzed sequential reaction process, proceeding via a [4 + 3] cyclization of isatin-derived Morita-Baylis-Hillman Expansion (MBH) carbonates and tert-butyl 2-(hydroxymethyl)allyl carbonates followed by a [1,3]-rearrangement, has been found and developed. A range of structurally diverse spiro[methylene cyclopentane-1,3'-oxindolines] bearing two adjacent β,γ-acyl quaternary carbon stereocenters, which are difficult to obtain by conventional strategies, were obtained in good yields. Further synthetic utility of this protocol is highlighted by its excellent regio- and stereocontrol as well as the large-scale synthesis and diverse functional transformations of the synthetic compounds. Moreover, the control experiments probably established the plausible mechanism for this sequential [4 + 3] cyclization/[1,3]-rearrangement process.
Collapse
Affiliation(s)
- Yue-You Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Chen-Dong Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xing-Tong Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting-You Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
8
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
9
|
Huo X, Li G, Wang X, Zhang W. Bimetallic Catalysis in Stereodivergent Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210086. [DOI: 10.1002/anie.202210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xi Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
10
|
Meng L, Liu H, Lin Z, Wang J. Synthetic and Computational Study of the Enantioselective [3+2]-Cycloaddition of Chromones with MBH Carbonates. Org Lett 2022; 24:5890-5895. [PMID: 35925800 DOI: 10.1021/acs.orglett.2c01922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly efficient and straightforward access to enantioenriched five-membered ring-fused chromanones is developed via [3+2]-cycloaddition of 3-cyanochromones with Morita-Baylis-Hillman carbonates. Densely functionalized chiral cyclopenta[b]chromanones with three continuous quaternary and tertiary stereogenic carbon centers were obtained in high yields with high ee and dr (≤97% yield, 97% ee, and >20:1 dr). Moreover, density functional theory calculations have been carried out to investigate the mechanism and regio- and diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518000, P. R. China
| | - Heyang Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518000, P. R. China
| |
Collapse
|
11
|
Huo X, Li G, Wang X, Zhang W. Bimetallic Catalysis in Stereodivergent Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaohong Huo
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China 200240 Shanghai CHINA
| | - Guanlin Li
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xi Wang
- Shanghai Jiao Tong University - Minhang Campus: Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wanbin Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
12
|
Bain AI, Chinthapally K, Hunter AC, Sharma I. Dual Catalysis in Rhodium (II) Carbenoid Chemistry. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anae I Bain
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Kiran Chinthapally
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Arianne C. Hunter
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Indrajeet Sharma
- University of Oklahoma Chemistry and Biochemistry Stephenson Life Sciences Research Center101 Stephenson Parkway 73019-5251 Norman UNITED STATES
| |
Collapse
|
13
|
Wang J, He F, Yang X. Asymmetric construction of acyclic quaternary stereocenters via direct enantioselective additions of α-alkynyl ketones to allenamides. Nat Commun 2021; 12:6700. [PMID: 34795297 PMCID: PMC8602376 DOI: 10.1038/s41467-021-27028-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Acyclic quaternary stereocenters are widely present in a series of biologically active natural products and pharmaceuticals. However, development of highly efficient asymmetric catalytic methods for the construction of these privileged motifs represents a longstanding challenge in organic synthesis. Herein, an efficient chiral phosphoric acid catalyzed direct asymmetric addition of α-alkynyl acyclic ketones with allenamides has been developed, furnishing the acyclic all-carbon quaternary stereocenters with excellent regioselectivities and high enantioselectivities. Extensive and detailed experimental mechanistic studies were performed to investigate the mechanism of this reaction. Despite a novel covalent allyl phosphate intermediate was found in these reactions, further studies indicated that a SN2-type mechanism with the ketone nucleophiles is not very possible. Instead, a more plausible mechanism involving the elimination of the allyl phosphate to give the α,β-unsaturated iminium intermediate, which underwent the asymmetric conjugate addition with the enol form of ketone nucleophiles under chiral anion catalysis, was proposed. In virtue of the fruitful functional groups bearing in the chiral products, the diverse derivatizations of the chiral products provided access to a wide array of chiral scaffolds with quaternary stereocenters.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
14
|
Shi Y, Xu X, Chen X, Gao W, Zhang X. Synthesis of Cyclopentenes and Cyclohexenes Via Cobalt(II)-Catalyzed Oxidative Cyclization. J Org Chem 2021; 86:15335-15344. [PMID: 34708650 DOI: 10.1021/acs.joc.1c01900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique method for the synthesis of cyclopentenes and cyclohexenes has been achieved by the coupling of diketones and alkenes under cobalt(II) catalysis and dimethyl sulfoxide involvement. Under optimal conditions, the formation of five- and six-membered rings can be readily controlled by the α-position substitution of styrenes. This process is proposed to proceed through a reaction sequence of oxidative coupling (mediated by K2S2O8), regioselective alkene insertion (promoted by cobalt), and intramolecular attack of the resulting allylcobalt species on the carbonyl group or methyl group in the reactive methylene process.
Collapse
Affiliation(s)
- Yue Shi
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xuefeng Xu
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinfeng Chen
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenchao Gao
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
15
|
Bera S, Kabadwal LM, Banerjee D. Recent advances in transition metal-catalyzed (1, n) annulation using (de)-hydrogenative coupling with alcohols. Chem Commun (Camb) 2021; 57:9807-9819. [PMID: 34486592 DOI: 10.1039/d1cc03404a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(1,n) annulation reactions using (de)-hydrogenative coupling with alcohols or diols represent a straightforward technique for the synthesis of cyclic moieties. Utilization of such renewable resources for chemical transformations in a one-pot manner is the main focus, which avoids generation of stoichiometric waste. Application of such (1,n) annulation approaches drives the catalysis research in a more sustainable way and generates dihydrogen and water as by-products. This feature article highlights the recent (from 2015 to March 2021) progress in the synthesis of stereo-selective cycloalkanes and cycloalkenes, saturated and unsaturated N-heterocycles (cyclic amine, imide, lactam, tetrahydro β-carboline, quinazoline, quinazolinone, 1,3,5-triazines etc.) and other N-heterocycles with the formation of multiple bonds in a one pot operation. Mechanistic studies, new catalytic approaches, and synthetic applications including drug synthesis and post-drug derivatization, scope, and limitations are discussed.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
16
|
Zou C, Yang L, Zhang L, Liu C, Ma Y, Song G, Liu Z, Cheng R, Ye J. Enantioselective Vinylogous Conia-Ene Reaction Catalyzed by a Disilver(I)/Bisdiamine Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chuncheng Zou
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemistry and Biology. East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Ruihua Cheng
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
17
|
Hu X, Tang X, Zhang X, Lin L, Feng X. Catalytic asymmetric Nakamura reaction by gold(I)/chiral N,N'-dioxide-indium(III) or nickel(II) synergistic catalysis. Nat Commun 2021; 12:3012. [PMID: 34021138 PMCID: PMC8140141 DOI: 10.1038/s41467-021-23105-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/19/2021] [Indexed: 11/09/2022] Open
Abstract
Intermolecular addition of enols and enolates to unactivated alkynes was proved to be a simple and powerful method for carbon-carbon bond formation. Up to date, a catalytic asymmetric version of alkyne with 1,3-dicarbonyl compound has not been realized. Herein, we achieve the catalytic asymmetric intermolecular addition of 1,3-dicarbonyl compounds to unactivated 1-alkynes attributing to the synergistic activation of chiral N,N′-dioxide-indium(III) or nickel(II) Lewis acid and achiral gold(I) π-acid. A range of β-ketoamides, β-ketoesters and 1,3-diketones transform to the corresponding products with a tetra-substituted chiral center in good yields with good e.r. values. Besides, a possible catalytic cycle and a transition state model are proposed to illustrate the reaction process and the origin of chiral induction based on the experimental investigations. Although enols and enolates addition to unactivated alkynes is used for carbon-carbon bond modification a catalytic asymmetric alkyne with 1,3-dicarbonyl compound has been elusive. Here, the authors achieve this using the synergistic activation of chiral N,N′-dioxide-indium(III) or nickel(II) Lewis acid and achiral gold(I) π-acid.”
Collapse
Affiliation(s)
- Xinyue Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoxue Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiying Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Wang H, Zeng T, Chang W, Liu L, Li J. Au(I)/( R)-BINOL-Ti(IV) Concerted Catalyzed Asymmetric Cascade Cycloaddition Reaction of Arylalkynols. Org Lett 2021; 23:3573-3577. [PMID: 33885315 DOI: 10.1021/acs.orglett.1c00976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient catalytic asymmetric cascade cycloaddition reaction of arylalkynols with dioxopyrrolidines was developed. This reaction was achieved using Au(I) and (R)-BINOL-Ti(IV) bimetallic catalysts and exclusively delivered a series of chiral oxo-bridged bicyclic benzooxacine compounds in up to 86% yield with 96% ee as well as >33:1 dr. Meanwhile, three new σ bonds and three new stereogenic centers were formed in a one-pot process.
Collapse
Affiliation(s)
- Hongkai Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Tianlong Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Weixing Chang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lingyan Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
|
20
|
Ma Y, Lou SJ, Hou Z. Electron-deficient boron-based catalysts for C-H bond functionalisation. Chem Soc Rev 2021; 50:1945-1967. [PMID: 33325932 DOI: 10.1039/d0cs00380h] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In contrast to transition metal-catalysed C-H functionalisation, highly efficient construction of C-C and C-X (X = N, O, S, B, Si, etc.) bonds through metal-free catalytic C-H functionalisation remains one of the most challenging tasks for synthetic chemists. In recent years, electron-deficient boron-based catalyst systems have exhibited great potential for C-H bond transformations. Such emerging systems may greatly enrich the chemistry of C-H functionalisation and main-group element catalysis, and will also provide enormous opportunities in synthetic chemistry, materials chemistry, and chemical biology. This article aims to give a timely comprehensive overview to recognise the current status of electron-deficient boron-based catalysis in C-H functionalisation and stimulate the development of more efficient catalytic systems.
Collapse
Affiliation(s)
- Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Trost BM, Zuo Z, Wang Y. Pd(0)-Catalyzed Diastereo- and Enantioselective Intermolecular Cycloaddition for Rapid Assembly of 2-Acyl-methylenecyclopentanes. Org Lett 2021; 23:979-983. [PMID: 33443429 DOI: 10.1021/acs.orglett.0c04169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regio-, diastereo-, and enantioselective trimethylenemethane (TMM) cycloaddition reaction for the rapid assembly of 2-acyl-methylenecyclopentane in an atom-economic fashion is described. This intermolecular protocol allows for facile and divergent access to an array of structurally attractive cyclic adducts. The choice of a robust chiral diamidophosphite ligand, developed by our group, proved to be crucial for the success of this transformation.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Zhijun Zuo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Youliang Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
22
|
Zhou W, Li Z, Tian YP, Han XX, Liu XL. Chromone–indanedione reactant: a bifunctional 3C synthon for diastereoselective construction of skeleton-diversified bispiro-[chromanocyclopentane-oxindole-indanedione]. NEW J CHEM 2021. [DOI: 10.1039/d1nj02257a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new type of bifunctional 3C synthon, a chromone–indanedione precursor, was employed for diastereoselective Michael/Michael cycloaddition with methyleneindolinones to generate a series of potentially bioactive bispiro-[chromanocyclopentane-oxindole-indanedione] frameworks with skeletal diversity in a single operation.
Collapse
Affiliation(s)
- Wei Zhou
- College of Pharmaceutical Sciences
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- P. R. China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
| | - Zheng Li
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
- Guizhou University
- Guiyang
- P. R. China
| | - You-Ping Tian
- College of Pharmaceutical Sciences
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- P. R. China
| | - Xiao-Xue Han
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
- Guizhou University
- Guiyang
- P. R. China
| | - Xiong-Li Liu
- College of Pharmaceutical Sciences
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- P. R. China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
| |
Collapse
|
23
|
Luo J, Chen GS, Chen SJ, Yu JS, Li ZD, Liu YL. Exploiting Remarkable Reactivities of Ynamides: Opportunities in Designing Catalytic Enantioselective Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04180] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhao-Dong Li
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University Wushan Street five road No. 483, Guangzhou 510642, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
24
|
Clerc A, Marelli E, Adet N, Monot J, Martín-Vaca B, Bourissou D. Metal-ligand-Lewis acid multi-cooperative catalysis: a step forward in the Conia-ene reaction. Chem Sci 2020; 12:435-441. [PMID: 34163606 PMCID: PMC8178805 DOI: 10.1039/d0sc05036a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation. The [(SCS)Pd]2 complex featuring a non-innocent indenediide-based ligand was found to be a very efficient and versatile catalyst for the Conia-ene reaction, when associated with Mg(OTf)2. The reaction operates at low catalytic loadings under mild conditions with HFIP as a co-solvent. It works with a variety of substrates, including those bearing internal alkynes. It displays complete 5-exo vs. 6-endo regio-selectivity. In addition, except for the highly congested tBu-substituent, the reaction occurs with high Z vs. E stereo-selectivity, making it synthetically useful and complementary to known catalysts. An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation.![]()
Collapse
Affiliation(s)
- Arnaud Clerc
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Enrico Marelli
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nicolas Adet
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Julien Monot
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Blanca Martín-Vaca
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
25
|
Yao Z, Liu X, Li Z, Xu S, Xu L, Liu X. Dienolate‐Mediated, Regioselective C2‐Polarity Reversal of Chromone‐Based Reactants and Their Application in Nucleophilic Strategies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Xiong‐Wei Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine Guizhou University Guiyang 550025 People's Republic of China
| | - Zheng Li
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine Guizhou University Guiyang 550025 People's Republic of China
| | - Sheng‐Wen Xu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine Guizhou University Guiyang 550025 People's Republic of China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Xiong‐Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine Guizhou University Guiyang 550025 People's Republic of China
| |
Collapse
|
26
|
Cao M, Yesilcimen A, Prasad S, Genova J, Myers T, Wasa M. Sequential Conia-ene-type cyclization and Negishi coupling by cooperative functions of B(C 6F 5) 3, ZnI 2, Pd(PPh 3) 4 and an amine. Org Biomol Chem 2020; 18:7090-7093. [PMID: 32915183 PMCID: PMC8009530 DOI: 10.1039/d0ob01678k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We disclose a method for sequential Conia-ene-type cyclization/Negishi coupling for the union of alkynyl ketones and aryl iodides. This process is promoted through cooperative actions of Lewis acidic B(C6F5)3, ZnI2, Pd-based complex, and a Brønsted basic amine. The three Lewis acid catalysts with potential overlapping functions play their independent roles as activators of carbonyl group, alkyne moiety, and alkenyl zinc intermediate, respectively. A variety of 1,2,3-substituted cyclopentenes can be synthesized with high efficiency.
Collapse
Affiliation(s)
- Min Cao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | - Ahmet Yesilcimen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | - Soumil Prasad
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | - Jason Genova
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | - Tanner Myers
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| |
Collapse
|
27
|
Horibe T, Sakakibara M, Hiramatsu R, Takeda K, Ishihara K. One-Pot Tandem Michael Addition/Enantioselective Conia-Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angew Chem Int Ed Engl 2020; 59:16470-16474. [PMID: 32500562 DOI: 10.1002/anie.202007180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/07/2022]
Abstract
The first one-pot tandem Michael addition/enantioselective Conia-ene cyclization of N-protected prop-2-yn-1-amines with 2-methylene-3-oxoalkanoates promoted by chiral iron(III)/silver(I) cooperative catalysts has been developed. Alkyl 4-methylenepyrrolidine-3-acyl-3-carboxylates, which can be transformed into β-proline derivatives, are obtained in high yield with high enantioselectivity.
Collapse
Affiliation(s)
- Takahiro Horibe
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Masato Sakakibara
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Rin Hiramatsu
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuki Takeda
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| |
Collapse
|
28
|
Horibe T, Sakakibara M, Hiramatsu R, Takeda K, Ishihara K. One‐Pot Tandem Michael Addition/Enantioselective Conia‐Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takahiro Horibe
- Graduate School of EngineeringNagoya University, B2-3(611) Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Masato Sakakibara
- Graduate School of EngineeringNagoya University, B2-3(611) Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Rin Hiramatsu
- Graduate School of EngineeringNagoya University, B2-3(611) Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Kazuki Takeda
- Graduate School of EngineeringNagoya University, B2-3(611) Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of EngineeringNagoya University, B2-3(611) Furo-cho Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
29
|
Reeves RD, Kinkema CN, Landwehr EM, Vine LE, Schomaker JM. Stereodivergent Metal-Catalyzed Allene Cycloisomerizations. Synlett 2020; 11:627-631. [PMID: 34219977 DOI: 10.1055/s-0037-1610746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Metal-catalyzed allene cycloisomerizations provide rapid entry into five-membered carbocyclic frameworks, a common motif in natural products and pharmaceuticals. While both Au(I) and Pd(0)-catalyzed allene cycloisomerizations give 5-endo-dig cyclization, Pd prefers the syn diastereomer in contrast to the anti isomer observed with Au. The change in stereoselectivity is proposed to arise from buildup of A1,3 strain during the key carbopalladation step to furnish the cycloisomerized products in moderate to good dr with yields comparable to Au(I) catalysts.
Collapse
Affiliation(s)
- Ryan D Reeves
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA
| | | | - Eleanor M Landwehr
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA
| | - Logan E Vine
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
30
|
Jana A, Das K, Kundu A, Thorve PR, Adhikari D, Maji B. A Phosphine-Free Manganese Catalyst Enables Stereoselective Synthesis of (1 + n)-Membered Cycloalkanes from Methyl Ketones and 1,n-Diols. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05567] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Pradip Ramdas Thorve
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
31
|
Hu B, Zhang X, Mo Y, Li J, Lin L, Liu X, Feng X. Catalytic Asymmetric Tandem Cycloisomerization/[5+2] Cycloaddition Reaction of N-Aryl Nitrone Alkynes with Methyleneindolinones. Org Lett 2020; 22:1034-1039. [DOI: 10.1021/acs.orglett.9b04572] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bowen Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiying Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - LiLi Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
32
|
Tan S, Li F, Park S, Kim S. Carbocyclization of Heterosubstituted Alkynes via the Memory of Chirality: Access to Cα-Substituted Proline Derivatives. J Org Chem 2019; 84:14436-14450. [PMID: 31631658 DOI: 10.1021/acs.joc.9b01800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient strategy for the asymmetric synthesis of Cα-substituted proline derivatives from acyclic α-amino acids has been established. The 5-exo-dig asymmetric cyclization of α-amino ester enolates onto heterosubstituted alkynes provided a product with excellent enantioselectivity via the memory of chirality concept. Density functional theory calculations indicated that a heteroatom is crucial for the success of the asymmetric cyclization because a more stabilized vinyl carbanion is produced. This new method has the potential to enable the rapid asymmetric construction of bioactive molecules containing the pyrrolidine skeleton.
Collapse
Affiliation(s)
- Shenpeng Tan
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Feng Li
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Soojun Park
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Sanghee Kim
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| |
Collapse
|
33
|
Xu C, Wang K, Li D, Lin L, Feng X. Asymmetric Synthesis of Oxa‐Bridged Oxazocines through a Catalytic Rh
II
/Zn
II
Relay [4+3] Cycloaddition Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chaoran Xu
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Kaixuan Wang
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Dawei Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
34
|
Xu C, Wang K, Li D, Lin L, Feng X. Asymmetric Synthesis of Oxa‐Bridged Oxazocines through a Catalytic Rh
II
/Zn
II
Relay [4+3] Cycloaddition Reaction. Angew Chem Int Ed Engl 2019; 58:18438-18442. [DOI: 10.1002/anie.201910898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoran Xu
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Kaixuan Wang
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Dawei Li
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
35
|
Xu S, Liu X, Zuo X, Zhou G, Gong Y, Liu X, Zhou Y. Oxindole‐chromones C3 Synthons Directed Stereocontrolled Construction of Five Contiguous Stereocenters on Spiro[tetrahydrocyclopenta[b]chromanone‐oxindole]s. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sheng‐Wen Xu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic MedicineGuizhou University Guiyang 550025 People's Republic of China
| | - Xiong‐Wei Liu
- College of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guiyang 550025 People's Republic of China
| | - Xiong Zuo
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic MedicineGuizhou University Guiyang 550025 People's Republic of China
| | - Gen Zhou
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic MedicineGuizhou University Guiyang 550025 People's Republic of China
| | - Yi Gong
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic MedicineGuizhou University Guiyang 550025 People's Republic of China
- College of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guiyang 550025 People's Republic of China
| | - Xiong‐Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic MedicineGuizhou University Guiyang 550025 People's Republic of China
| | - Ying Zhou
- College of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guiyang 550025 People's Republic of China
| |
Collapse
|
36
|
Xu Y, Sun Q, Tan T, Yang M, Yuan P, Wu S, Lu X, Hong X, Ye L. Organocatalytic Enantioselective Conia‐Ene‐Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908495] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Tong‐De Tan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Ming‐Yang Yang
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
37
|
Xu Y, Sun Q, Tan TD, Yang MY, Yuan P, Wu SQ, Lu X, Hong X, Ye LW. Organocatalytic Enantioselective Conia-Ene-Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019; 58:16252-16259. [PMID: 31444882 DOI: 10.1002/anie.201908495] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Described herein is an organocatalytic enantioselective desymmetrizing cycloisomerization of arylsulfonyl-protected ynamide cyclohexanones, representing the first metal-free asymmetric Conia-ene-type carbocyclization. This method allows the highly efficient and atom-economical construction of a range of valuable morphans with wide substrate scope and excellent enantioselectivity (up to 97 % ee). In addition, such a cycloisomerization of alkylsulfonyl-protected ynamide cyclohexanones can lead to the divergent synthesis of normorphans as the main products with high enantioselectivity (up to 90 % ee). Moreover, theoretical calculations are employed to elucidate the origins of regioselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong-De Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ming-Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shao-Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
38
|
Verma GK, Rawat M, Rawat DS. Cobalt-Catalysed C-C Bond Formation and [2+2+2] Annulation of 1,3-Dicarbonyls to Terminal Alkynes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Manish Rawat
- Department of Chemistry; University of Delhi; Delhi - 110 007 India
| | - Diwan S. Rawat
- Department of Chemistry; University of Delhi; Delhi - 110 007 India
| |
Collapse
|
39
|
Kayal S, Kikuchi J, Shimizu M, Terada M. Chiral Brønsted Acid-Catalyzed Formal α-Vinylation of Cyclopentanones for the Enantioselective Construction of Quaternary Carbon Centers. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01780] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Satavisha Kayal
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Shimizu
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
40
|
Abstract
Chiral salen-metal complexes are among the most versatile asymmetric catalysts and have found utility in fields ranging from materials chemistry to organic synthesis. These complexes are capable of inducing chirality in products formed from a wide variety of chemical processes, often with close to perfect stereoinduction. Salen ligands are tunable for steric as well as electronic properties, and their ability to coordinate a large number of metals gives the derived chiral salen-metal complex very broad utility in asymmetric catalysis. This review primarily summarizes developments in chiral salen-metal catalysis over the last two decades with particular emphasis on those applications of importance in asymmetric synthesis.
Collapse
Affiliation(s)
- Subrata Shaw
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - James D White
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
41
|
Fang G, Zheng C, Cao D, Pan L, Hong H, Wang H, Zhao G. Asymmetric cyclizations via a sequential Michael addition/Conia-ene reaction by combining multifunctional quaternary phosphonium salt and silver catalysis. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Xia X, Lu C, Zhao B, Yao Y. Lanthanide complexes combined with chiral salen ligands: application in the enantioselective epoxidation reaction of α,β-unsaturated ketones. RSC Adv 2019; 9:13749-13756. [PMID: 35519594 PMCID: PMC9063913 DOI: 10.1039/c9ra01529a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
Readily available lanthanide amides Ln[N(SiMe3)2]3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4), La (5)), combined with chiral salen ligands H2La ((S,S)-N,N'-di-(3,5-disubstituted-salicylidene)-1,2-cyclohexanediamine) and H2Lb ((S,S)-N,N'-di-(3,5-disubstituted-salicylidene)-1,2-diphenyl-1,2-ethanediamine) were employed in the enantioselective epoxidation of α,β-unsaturated ketones. It was found that the salen-La complex shows the highest efficiency and enantioselectivity. A relatively broad scope of α,β-unsaturated ketones was investigated, and excellent yields (up to 99%) and moderate to good enantioselectivities (37-87%) of the target molecules were achieved.
Collapse
Affiliation(s)
- Xuexiu Xia
- College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University Suzhou 215123 People's Republic of China
| | - Chengrong Lu
- College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University Suzhou 215123 People's Republic of China
| | - Bei Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University Suzhou 215123 People's Republic of China
- Key Laboratory of Organic Synthesis of Jiangsu Province People's Republic of China +86 51265880305 +86 512 65880305
| | - Yingming Yao
- College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University Suzhou 215123 People's Republic of China
- Key Laboratory of Organic Synthesis of Jiangsu Province People's Republic of China +86 51265880305 +86 512 65880305
| |
Collapse
|
43
|
Hunter AC, Chinthapally K, Bain AI, Stevens JC, Sharma I. Rhodium/Gold Dual Catalysis in Carbene
sp
2
C−H Functionalization/Conia‐ene Cascade for the Stereoselective Synthesis of Diverse Spirocarbocycles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arianne C. Hunter
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies University of Oklahoma 101 Stephenson Parkway Norman OK-73019 USA
| | - Kiran Chinthapally
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies University of Oklahoma 101 Stephenson Parkway Norman OK-73019 USA
| | - Anae I. Bain
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies University of Oklahoma 101 Stephenson Parkway Norman OK-73019 USA
| | - Joseph C. Stevens
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies University of Oklahoma 101 Stephenson Parkway Norman OK-73019 USA
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies University of Oklahoma 101 Stephenson Parkway Norman OK-73019 USA
| |
Collapse
|
44
|
Zheng H, Wang Y, Xu C, Xiong Q, Lin L, Feng X. Diversified Cycloisomerization/Diels-Alder Reactions of 1,6-Enynes through Bimetallic Relay Asymmetric Catalysis. Angew Chem Int Ed Engl 2019; 58:5327-5331. [PMID: 30758902 DOI: 10.1002/anie.201900421] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 01/24/2023]
Abstract
We report the combination of transition-metal-catalyzed diversified cycloisomerization of 1,6-enynes with chiral Lewis acid promoted asymmetric Diels-Alder reaction to realize asymmetric cycloisomerization/Diels-Alder relay reactions of 1,6-enynes with electron-deficient alkenes. A broad spectrum of chiral [5,6]-bicyclic products could be acquired in high yields (up to 99 %) with excellent diastereoselectivy (>19:1 dr) and enantioselectivity (up to 99 % ee).
Collapse
Affiliation(s)
- Haifeng Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
45
|
Zheng H, Wang Y, Xu C, Xiong Q, Lin L, Feng X. Diversified Cycloisomerization/Diels–Alder Reactions of 1,6‐Enynes through Bimetallic Relay Asymmetric Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haifeng Zheng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Yan Wang
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Chaoran Xu
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Qian Xiong
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
46
|
Cao M, Yesilcimen A, Wasa M. Enantioselective Conia-Ene-Type Cyclizations of Alkynyl Ketones through Cooperative Action of B(C 6F 5) 3, N-Alkylamine and a Zn-Based Catalyst. J Am Chem Soc 2019; 141:4199-4203. [PMID: 30786707 DOI: 10.1021/jacs.8b13757] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and highly enantioselective Conia-ene-type process has been developed. Reactions are catalyzed by a combination of B(C6F5)3, an N-alkylamine and a BOX-ZnI2 complex. Specifically, through cooperative action of B(C6F5)3 and amine, ketones with poorly acidic α-C-H bonds can be converted in situ to the corresponding enolates. Subsequent enantioselective cyclization involving a BOX-ZnI2-activated alkyne leads to the formation of various cyclopentenes in up to 99% yield and 99:1 er.
Collapse
Affiliation(s)
- Min Cao
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Ahmet Yesilcimen
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
47
|
Yildirim M, Suleiman G. A practical access to new pyrrolizine carboxylates via KHMDS-catalyzed carbocyclizations. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1563796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Muhammet Yildirim
- Department of Chemistry, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Garba Suleiman
- Department of Chemistry, Yobe State University, Damaturu, Yobe State, Nigeria
| |
Collapse
|
48
|
Zheng Y, Guo L, Zi W. Enantioselective and Regioselective Hydroetherification of Alkynes by Gold-Catalyzed Desymmetrization of Prochiral Phenols with P-Stereogenic Centers. Org Lett 2018; 20:7039-7043. [DOI: 10.1021/acs.orglett.8b02982] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yin Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linna Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Alyabyev SB, Beletskaya IP. Gold as a catalyst. Part II. Alkynes in the reactions of carbon–carbon bond formation. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4815] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Honda K, Ohkura S, Hayashi Y, Kawauchi S, Mikami K. Cationic Chiral Pd-Catalyzed “Acetylenic” Diels-Alder Reaction: Computational Analysis of Reversal in Enantioselectivity. Chem Asian J 2018; 13:2842-2846. [DOI: 10.1002/asia.201801035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/19/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuya Honda
- Department of Applied Chemistry; Tokyo Institute of Technology; Tokyo 152-8552 Japan
| | - Shun Ohkura
- Department of Applied Chemistry; Tokyo Institute of Technology; Tokyo 152-8552 Japan
| | - Yoshihiro Hayashi
- Department of Applied Chemistry; Tokyo Institute of Technology; Tokyo 152-8552 Japan
| | - Susumu Kawauchi
- Department of Applied Chemistry; Tokyo Institute of Technology; Tokyo 152-8552 Japan
| | - Koichi Mikami
- Department of Applied Chemistry; Tokyo Institute of Technology; Tokyo 152-8552 Japan
| |
Collapse
|