1
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Yang W, Zhuang J, Li C, Bai C, Cheng G. Insights into the Inhibitory Mechanisms of the Covalent Drugs for DNMT3A. Int J Mol Sci 2023; 24:12652. [PMID: 37628829 PMCID: PMC10454219 DOI: 10.3390/ijms241612652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The perturbations of DNA methyltransferase 3 alpha (DNMT3A) may cause uncontrolled gene expression, resulting in cancers and tumors. The DNMT inhibitors Azacytidine (AZA) and Zebularine (ZEB) inhibit the DNMT family with no specificities, and consequently would bring side effects during the treatment. Therefore, it is vital to understand the inhibitory mechanisms in DNMT3A to inform the new inhibitor design for DNMTs. Herein, we carried out molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations to investigate the inhibitory mechanisms of the AZA and ZEB. The results were compared to the methyl transfer of cytosine. We showed how the AZA might stop the methyl transfer process, whereas the ZEB might be stuck in a methyl-transferred intermediate (IM3). The IM3 state then fails the elimination due to the unique protein dynamics that result in missing the catalytic water chain. Our results brought atomic-level insights into the mechanisms of the two drugs in DNMT3A, which could benefit the new generation of drug design for the DNMTs.
Collapse
Affiliation(s)
- Wei Yang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chen Li
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guijuan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Futian Biomedical Innovation R&D Center, The Chinese University of Hong Kong, Shenzhen 518017, China
| |
Collapse
|
3
|
Unraveling the Role of the Tyrosine Tetrad from the Binding Site of the Epigenetic Writer MLL3 in the Catalytic Mechanism and Methylation Multiplicity. Int J Mol Sci 2022; 23:ijms231810339. [PMID: 36142254 PMCID: PMC9499395 DOI: 10.3390/ijms231810339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
MLL3, also known as KMT2C, is a lysine mono-methyltransferase in charge of the writing of an epigenetic mark on lysine 4 from histone 3. The catalytic site of MLL3 is composed of four tyrosines, namely, Y44, Y69, Y128, and Y130. Tyrosine residues are highly conserved among lysine methyltransferases’ catalytic sites, although their complete function is still unclear. The exploration of how modifications on these residues from the enzymatic machinery impact the enzymatic activity of MLL3 could shed light transversally into the inner functioning of enzymes with similar characteristics. Through the use of QMMM calculations, we focus on the effect of the mutation of each tyrosine from the catalytic site on the enzymatic activity and the product specificity in the current study. While we found that the mutations of Y44 and Y128 by phenylalanine inactivated the enzyme, the mutation of Y128 by alanine reactivated the enzymatic activity of MLL3. Moreover, according to our models, the Y128A mutant was even found to be capable of di- and tri-methylate lysine 4 from histone 3, what would represent a gain of function mutation, and could be responsible for the development of diseases. Finally, we were able to establish the inactivation mechanism, which involved the use of Y130 as a water occlusion structure, whose conformation, once perturbed by its mutation or Y128 mutant, allows the access of water molecules that sequester the electron pair from lysine 4 avoiding its methylation process and, thus, increasing the barrier height.
Collapse
|
4
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
5
|
Pan X, Van R, Epifanovsky E, Liu J, Pu J, Nam K, Shao Y. Accelerating Ab Initio Quantum Mechanical and Molecular Mechanical (QM/MM) Molecular Dynamics Simulations with Multiple Time Step Integration and a Recalibrated Semiempirical QM/MM Hamiltonian. J Phys Chem B 2022; 126:10.1021/acs.jpcb.2c02262. [PMID: 35653199 PMCID: PMC9715852 DOI: 10.1021/acs.jpcb.2c02262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics (MD) simulations employing ab initio quantum mechanical and molecular mechanical (ai-QM/MM) potentials are considered to be the state of the art, but the high computational cost associated with the ai-QM calculations remains a theoretical challenge for their routine application. Here, we present a modified protocol of the multiple time step (MTS) method for accelerating ai-QM/MM MD simulations of condensed-phase reactions. Within a previous MTS protocol [Nam J. Chem. Theory Comput. 2014, 10, 4175], reference forces are evaluated using a low-level (semiempirical QM/MM) Hamiltonian and employed at inner time steps to propagate the nuclear motions. Correction forces, which arise from the force differences between high-level (ai-QM/MM) and low-level Hamiltonians, are applied at outer time steps, where the MTS algorithm allows the time-reversible integration of the correction forces. To increase the outer step size, which is bound by the highest-frequency component in the correction forces, the semiempirical QM Hamiltonian is recalibrated in this work to minimize the magnitude of the correction forces. The remaining high-frequency modes, which are mainly bond stretches involving hydrogen atoms, are then removed from the correction forces. When combined with a Langevin or SIN(R) thermostat, the modified MTS-QM/MM scheme remains robust with an up to 8 (with Langevin) or 10 fs (with SIN(R)) outer time step (with 1 fs inner time steps) for the chorismate mutase system. This leads to an over 5-fold speedup over standard ai-QM/MM simulations, without sacrificing the accuracy in the predicted free energy profile of the reaction.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., LD326, Indianapolis, Indiana 46202, United States
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
6
|
Fan Y, Fan H, Li P, Liu Q, Huang L, Zhou Y. Mitogen-activating protein kinase kinase kinase kinase-3, inhibited by Astragaloside IV through H3 lysine 4 monomethylation, promotes the progression of diabetic nephropathy by inducing apoptosis. Bioengineered 2022; 13:11517-11529. [PMID: 35510516 PMCID: PMC9275872 DOI: 10.1080/21655979.2022.2068822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Astragaloside IV (AS-IV) is a bioactive saponin extracted from the Astragalus root and has been reported to exert a protective effect on diabetic nephropathy (DN). However, the underlying mechanism remains unclear. Herein, we found that AS-IV treatment alleviated DN symptoms in DN mice accompanied by reduced metabolic parameters (body weight, urine microalbumin and creatinine, creatinine clearance, and serum urea nitrogen and creatinine), pathological changes, and apoptosis. Epigenetic histone modifications are closely related to diabetes and its complications, including H3 lysine 4 monomethylation (H3K4me1, a promoter of gene transcription). A ChIP-seq assay was conducted to identify the genes regulated by H3K4me1 in DN mice after AS-IV treatment and followed by a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results showed that there were 16 common genes targeted by H3K4me1 in normal and AS-IV-treated DN mice, 1148 genes were targeted by H3K4me1 only in DN mice. From the 1148 genes, we screened mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3) for the verification of gene expression and functional study. The results showed that MAP4K3 was significantly increased in DN mice and high glucose (HG)-treated NRK-52E cells, which was reversed by AS-IV. MAP4K3 silencing reduced the apoptosis of NRK-52E cells under HG condition, as evidenced by decreased cleaved caspase 3 and Bax (pro-apoptotic factors), and increased Bcl-2 and Bcl-xl (anti-apoptotic factors). Collectively, AS-IV may downregulate MAP4K3 expression by regulating H3K4me1 binding and further reducing apoptosis, which may be one of the potential mechanisms that AS-IV plays a protective effect on DN.
Collapse
Affiliation(s)
- Yuyan Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongyu Fan
- Remote Consultation Center, Liaoyang Central Hospital, Liaoyang, Liaoning, People’s Republic of China
| | - Ping Li
- Department of Pharmacy and Pharmacology, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Qingshan Liu
- IKey Laboratory of Ethnic Medicine of Ministry of Education, Minzu University of China, Beijing, People’s Republic of China
| | - Lixia Huang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yilun Zhou
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Kamerzell TJ, Mikell B, Chen L, Elias H, Dawn B, MacRae C, Middaugh CR. The structural basis of histone modifying enzyme specificity and promiscuity: Implications for metabolic regulation and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:189-243. [PMID: 35534108 DOI: 10.1016/bs.apcsb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Histone modifying enzymes regulate chromatin architecture through covalent modifications and ultimately control multiple aspects of cellular function. Disruption of histone modification leads to changes in gene expression profiles and may lead to disease. Both small molecule inhibitors and intermediary metabolites have been shown to modulate histone modifying enzyme activity although our ability to identify successful drug candidates or novel metabolic regulators of these enzymes has been limited. Using a combination of large scale in silico screens and in vivo phenotypic analysis, we identified several small molecules and intermediary metabolites with distinctive HME activity. Our approach using unsupervised learning identifies the chemical fingerprints of both small molecules and metabolites that facilitate recognition by the enzymes active sites which can be used as a blueprint to design novel inhibitors. Furthermore, this work supports the idea that histone modifying enzymes sense intermediary metabolites integrating genes, environment and cellular physiology.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States; Division of Internal Medicine, HCA MidWest Health, Overland Park, KS, United States; Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States; Applied AI Technologies, LLC, Overland Park, KS, United States.
| | - Brittney Mikell
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lei Chen
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Harold Elias
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Wang Y, Li X, Wei J, Zhang X, Liu Y. Mechanism of Sugar Ring Contraction and Closure Catalyzed by UDP-d-apiose/UDP-d-xylose Synthase (UAXS). J Chem Inf Model 2022; 62:632-646. [PMID: 35043627 DOI: 10.1021/acs.jcim.1c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uridine diphosphate (UDP)-apiose/UDP-xylose synthase (UAXS) is a member of the short-chain dehydrogenase/reductase superfamily (SDR), which catalyzes the ring contraction and closure of UDP-d-glucuronic acid (UDP-GlcA), affording UDP-apiose and UDP-xylose. UAXS is a special enzyme that integrates ring-opening, decarboxylation, rearrangement, and ring closure/contraction in a single active site. Recently, the ternary complex structure of UAXS was crystallized from Arabidopsis thaliana. In this work, to gain insights into the detailed formation mechanism of UDP-apiose and UDP-xylose, an enzyme-substrate reactant model has been constructed and quantum mechanical/molecular mechanical (QM/MM) calculations have been performed. Our calculation results reveal that the reaction starts from the C4-OH oxidation, which is accompanied by the conformational transformation of the sugar ring from chair type to boat type. The sugar ring-opening is prior to decarboxylation, and the deprotonation of the C2-OH group is the prerequisite for sugar ring-opening. Moreover, the keto-enol tautomerization of the decarboxylated intermediate is a necessary step for ring closure/contraction. Based on our calculation results, more UDP-apiose product was expected, which is in line with the experimental observation. Three titratable residues, Tyr185, Cys100, and Cys140, steer the reaction by proton transfer from or to UDP-GlcA, and Arg182, Glu141, and D337 constitute a proton conduit for sugar C2-OH deprotonation. Although Thr139 and Tyr105 are not directly involved in the enzymatic reaction, they are responsible for promoting the catalysis by forming hydrogen-bonding interactions with GlcA. Our calculations may provide useful information for understanding the catalysis of the SDR family.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
9
|
Deng WH, Lu Y, Liao RZ. Revealing the Mechanism of Isethionate Sulfite-Lyase by QM/MM Calculations. J Chem Inf Model 2021; 61:5871-5882. [PMID: 34806370 DOI: 10.1021/acs.jcim.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Isethionate sulfite-lyase (IseG) is a recently characterized glycyl radical enzyme (GRE) that catalyzes radical-mediated C-S bond cleavage of isethionate to produce acetaldehyde and sulfite. Herein, we use quantum mechanical/molecular mechanical (QM/MM) calculations to investigate the detailed catalytic reaction mechanism of IseG. Our calculations indicate that a previously proposed direct 1,2-elimination mechanism is disfavored. Instead, we suggest a new 1,2-migration mechanism for this enzymatic reaction: a key stepwise 1,2-SO3- radical migration occurs after the catalytically active cysteinyl radical grabs a hydrogen atom from isethionate, followed by hydrogen atom transfer from cysteine to a 1-hydroxylethane-1-sulfonate radical intermediate. Finally, the elimination of sulfite from 1-hydroxylethane-1-sulfonate to result in the final product is likely to occur outside the enzyme. Glu468 in the active site is found to help orient the substrate rather than grabbing a proton from the hydroxyl group of the substrate. Our findings help reveal the mechanisms of radical-mediated C-S bond cleavage of organosulfonates catalyzed by GREs and expand the understanding of radical-based enzymatic catalysis.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - You Lu
- Scientific Computing Department, UKRI STFC Daresbury Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
Pinto AV, Ferreira P, Neves RPP, Fernandes PA, Ramos MJ, Magalhães AL. Reaction Mechanism of MHETase, a PET Degrading Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandre V. Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Rui P. P. Neves
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Alexandre L. Magalhães
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Romero-Téllez S, Cruz A, Masgrau L, González-Lafont À, Lluch JM. Accounting for the instantaneous disorder in the enzyme-substrate Michaelis complex to calculate the Gibbs free energy barrier of an enzyme reaction. Phys Chem Chem Phys 2021; 23:13042-13054. [PMID: 34100037 DOI: 10.1039/d1cp01338f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many enzyme reactions present instantaneous disorder. These dynamic fluctuations in the enzyme-substrate Michaelis complexes generate a wide range of energy barriers that cannot be experimentally observed, but that determine the measured kinetics of the reaction. These individual energy barriers can be calculated using QM/MM methods, but then the problem is how to deal with this dispersion of energy barriers to provide kinetic information. So far, the most usual procedure has implied the so-called exponential average of the energy barriers. In this paper, we discuss the foundations of this method, and we use the free energy perturbation theory to derive an alternative equation to get the Gibbs free energy barrier of the enzyme reaction. In addition, we propose a practical way to implement it. We have chosen four enzyme reactions as examples. In particular, we have studied the hydrolysis of a glycosidic bond catalyzed by the enzyme Thermus thermophilus β-glycosidase, and the mutant Y284P Ttb-gly, and the hydrogen abstraction reactions from C13 and C7 of arachidonic acid catalyzed by the enzyme rabbit 15-lipoxygenase-1.
Collapse
Affiliation(s)
- Sonia Romero-Téllez
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain and Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Alejandro Cruz
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Laura Masgrau
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain and Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain and Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain.
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain and Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain and Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Exploration of the Activation Mechanism of the Epigenetic Regulator MLL3: A QM/MM Study. Biomolecules 2021; 11:biom11071051. [PMID: 34356675 PMCID: PMC8301819 DOI: 10.3390/biom11071051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
The mixed lineage leukemia 3 or MLL3 is the enzyme in charge of the writing of an epigenetic mark through the methylation of lysine 4 from the N-terminal domain of histone 3 and its deregulation has been related to several cancer lines. An interesting feature of this enzyme comes from its regulation mechanism, which involves its binding to an activating dimer before it can be catalytically functional. Once the trimer is formed, the reaction mechanism proceeds through the deprotonation of the lysine followed by the methyl-transfer reaction. Here we present a detailed exploration of the activation mechanism through a QM/MM approach focusing on both steps of the reaction, aiming to provide new insights into the deprotonation process and the role of the catalytic machinery in the methyl-transfer reaction. Our finding suggests that the source of the activation mechanism comes from conformational restriction mediated by the formation of a network of salt-bridges between MLL3 and one of the activating subunits, which restricts and stabilizes the positioning of several residues relevant for the catalysis. New insights into the deprotonation mechanism of lysine are provided, identifying a valine residue as crucial in the positioning of the water molecule in charge of the process. Finally, a tyrosine residue was found to assist the methyl transfer from SAM to the target lysine.
Collapse
|
13
|
Sheng X, Himo F. Mechanisms of metal-dependent non-redox decarboxylases from quantum chemical calculations. Comput Struct Biotechnol J 2021; 19:3176-3186. [PMID: 34141138 PMCID: PMC8187880 DOI: 10.1016/j.csbj.2021.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Quantum chemical calculations are today an extremely valuable tool for studying enzymatic reaction mechanisms. In this mini-review, we summarize our recent work on several metal-dependent decarboxylases, where we used the so-called cluster approach to decipher the details of the reaction mechanisms, including elucidation of the identity of the metal cofactors and the origins of substrate specificity. Decarboxylases are of growing potential for biocatalytic applications, as they can be used in the synthesis of novel compounds of, e.g., pharmaceutical interest. They can also be employed in the reverse direction, providing a strategy to synthesize value‐added chemicals by CO2 fixation. A number of non-redox metal-dependent decarboxylases from the amidohydrolase superfamily have been demonstrated to have promiscuous carboxylation activities and have attracted great attention in the recent years. The computational mechanistic studies provide insights that are important for the further modification and utilization of these enzymes in industrial processes. The discussed enzymes are: 5‐carboxyvanillate decarboxylase, γ‐resorcylate decarboxylase, 2,3‐dihydroxybenzoic acid decarboxylase, and iso-orotate decarboxylase.
Collapse
Key Words
- 2,3-DHBD, 2,3‐dihydroxybenzoic acid decarboxylase
- 2,6-DHBD, 2,6‐dihydroxybenzoic acid decarboxylase
- 2-NR, 2-nitroresorcinol
- 5-CV, 5-carboxyvanillate
- 5-NV, 5-nitrovanillate
- 5caU, 5-carboxyuracil
- AHS, amidohydrolase superfamily
- Biocatalysis
- Decarboxylase
- Density functional theory
- IDCase, iso-orotate decarboxylase
- LigW, 5‐carboxyvanillate decarboxylase
- MIMS, membrane inlet mass spectrometry
- QM/MM, quantum mechanics/molecular mechanics
- Reaction mechanism
- Transition state
- γ-RS, γ-resorcylate
- γ-RSD, γ‐resorcylate decarboxylase
Collapse
Affiliation(s)
- Xiang Sheng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, and National Technology Innovation Center for Synthetic Biology, Tianjin 300308, PR China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
14
|
Solé-Daura A, Rodríguez-Fortea A, Poblet JM, Robinson D, Hirst JD, Carbó JJ. Origin of Selectivity in Protein Hydrolysis by Zr(IV)-Containing Metal Oxides as Artificial Proteases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Albert Solé-Daura
- Department de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Antonio Rodríguez-Fortea
- Department de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M. Poblet
- Department de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - David Robinson
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Jorge J. Carbó
- Department de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
15
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
16
|
Dasgupta S, Herbert JM. Using Atomic Confining Potentials for Geometry Optimization and Vibrational Frequency Calculations in Quantum-Chemical Models of Enzyme Active Sites. J Phys Chem B 2020; 124:1137-1147. [PMID: 31986049 DOI: 10.1021/acs.jpcb.9b11060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantum-chemical studies of enzymatic reaction mechanisms sometimes use truncated active-site models as simplified alternatives to mixed quantum mechanics molecular mechanics (QM/MM) procedures. Eliminating the MM degrees of freedom reduces the complexity of the sampling problem, but the trade-off is the need to introduce geometric constraints in order to prevent structural collapse of the model system during geometry optimizations that do not contain a full protein backbone. These constraints may impair the efficiency of the optimization, and care must be taken to avoid artifacts such as imaginary vibrational frequencies. We introduce a simple alternative in which terminal atoms of the model system are placed in soft harmonic confining potentials rather than being rigidly constrained. This modification is simple to implement and straightforward to use in vibrational frequency calculations, unlike iterative constraint-satisfaction algorithms, and allows the optimization to proceed without constraint even though the practical result is to fix the anchor atoms in space. The new approach is more efficient for optimizing minima and transition states, as compared to the use of fixed-atom constraints, and also more robust against unwanted imaginary frequencies. We illustrate the method by application to several enzymatic reaction pathways where entropy makes a significant contribution to the relevant reaction barriers. The use of confining potentials correctly describes reaction paths and facilitates calculation of both vibrational zero-point and finite-temperature entropic corrections to barrier heights.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
17
|
Soler J, González-Lafont À, Lluch JM. A protocol to obtain multidimensional quantum tunneling corrections derived from QM(DFT)/MM calculations for an enzyme reaction. Phys Chem Chem Phys 2020; 22:27385-27393. [DOI: 10.1039/d0cp05265e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The multidimensional small-curvature tunneling (SCT) method with Electrostatic Embedding calculations is a compromise between an accessible computational cost and the attainment of an accurate enough estimation of tunneling for an enzyme reaction.
Collapse
Affiliation(s)
- Jordi Soler
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
| | - Àngels González-Lafont
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autònoma de Barcelona
| | - José M. Lluch
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autònoma de Barcelona
| |
Collapse
|
18
|
Pan X, Li P, Ho J, Pu J, Mei Y, Shao Y. Accelerated computation of free energy profile at ab initio quantum mechanical/molecular mechanical accuracy via a semi-empirical reference potential. II. Recalibrating semi-empirical parameters with force matching. Phys Chem Chem Phys 2019; 21:20595-20605. [PMID: 31508625 PMCID: PMC6761017 DOI: 10.1039/c9cp02593f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient and accurate reference potential simulation protocol is proposed for producing ab initio quantum mechanical/molecular mechanical (AI-QM/MM) quality free energy profiles for chemical reactions in a solvent or macromolecular environment. This protocol involves three stages: (a) using force matching to recalibrate a semi-empirical quantum mechanical (SE-QM) Hamiltonian for the specific reaction under study; (b) employing the recalibrated SE-QM Hamiltonian (in combination with molecular mechanical force fields) as the reference potential to drive umbrella samplings along the reaction pathway; and (c) computing AI-QM/MM energy values for collected configurations from the sampling and performing weighted thermodynamic perturbation to acquire an AI-QM/MM corrected reaction free energy profile. For three model reactions (identity SN2 reaction, Menshutkin reaction, and glycine proton transfer reaction) in aqueous solution and one enzyme reaction (Claisen arrangement in chorismate mutase), our simulations using recalibrated PM3 SE-QM Hamiltonians well reproduced QM/MM free energy profiles at the B3LYP/6-31G* level of theory all within 1 kcal mol-1 with a 20 to 45 fold reduction in the computer time.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA.
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China.
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, LD326, Indianapolis, IN 46202, USA.
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA.
| |
Collapse
|
19
|
Calixto AR, Ramos MJ, Fernandes PA. Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway. Chem Sci 2019; 10:7212-7221. [PMID: 31588289 PMCID: PMC6677113 DOI: 10.1039/c9sc01464k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 02/04/2023] Open
Abstract
The role of conformational diversity in enzyme catalysis has been a matter of analysis in recent studies. Pre-organization of the active site has been pointed out as the major source for enzymes' catalytic power. Following this line of thought, it is becoming clear that specific, instantaneous, non-rare enzyme conformations that make the active site perfectly pre-organized for the reaction lead to the lowest activation barriers that mostly contribute to the macroscopically observed reaction rate. The present work is focused on exploring the relationship between structure and catalysis in HIV-1 protease (PR) with an adiabatic mapping method, starting from different initial structures, collected from a classical MD simulation. The first, rate-limiting step of the HIV-1 PR catalytic mechanism was studied with the ONIOM QM/MM methodology (B3LYP/6-31G(d):ff99SB), with activation and reaction energies calculated at the M06-2X/6-311++G(2d,2p):ff99SB level of theory, in 19 different enzyme:substrate conformations. The results showed that the instantaneous enzyme conformations have two independent consequences on the enzyme's chemistry: they influence the barrier height, something also observed in the past in other enzymes, and they also influence the specific reaction pathway, which is something unusual and unexpected, challenging the "one enzyme-one substrate-one reaction mechanism" paradigm. Two different reaction mechanisms, with similar reactant probabilities and barrier heights, lead to the same gem-diol intermediate. Subtle nanosecond-timescale rearrangements in the active site hydrogen bonding network were shown to determine which reaction the enzyme follows. We named this phenomenon chemical disorder. The results make us realize the unexpected mechanistic consequences of conformational diversity in enzymatic reactivity.
Collapse
Affiliation(s)
- Ana Rita Calixto
- UCIBIO@REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências Universidade do Porto , Rua do Campo Alegre s/n , 4169-007 Porto , Portugal .
| | - Maria João Ramos
- UCIBIO@REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências Universidade do Porto , Rua do Campo Alegre s/n , 4169-007 Porto , Portugal .
| | - Pedro Alexandrino Fernandes
- UCIBIO@REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências Universidade do Porto , Rua do Campo Alegre s/n , 4169-007 Porto , Portugal .
| |
Collapse
|
20
|
Planas F, Sheng X, McLeish MJ, Himo F. A Theoretical Study of the Benzoylformate Decarboxylase Reaction Mechanism. Front Chem 2018; 6:205. [PMID: 29998094 PMCID: PMC6028569 DOI: 10.3389/fchem.2018.00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Density functional theory calculations are used to investigate the detailed reaction mechanism of benzoylformate decarboxylase, a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate yielding benzaldehyde and carbon dioxide. A large model of the active site is constructed on the basis of the X-ray structure, and it is used to characterize the involved intermediates and transition states and evaluate their energies. There is generally good agreement between the calculations and available experimental data. The roles of the various active site residues are discussed and the results are compared to mutagenesis experiments. Importantly, the calculations identify off-cycle intermediate species of the ThDP cofactor that can have implications on the kinetics of the reaction.
Collapse
Affiliation(s)
- Ferran Planas
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Xiang Sheng
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Abstract
Protein lysine methylation is a distinct posttranslational modification that causes minimal changes in the size and electrostatic status of lysine residues. Lysine methylation plays essential roles in regulating fates and functions of target proteins in an epigenetic manner. As a result, substrates and degrees (free versus mono/di/tri) of protein lysine methylation are orchestrated within cells by balanced activities of protein lysine methyltransferases (PKMTs) and demethylases (KDMs). Their dysregulation is often associated with neurological disorders, developmental abnormalities, or cancer. Methyllysine-containing proteins can be recognized by downstream effector proteins, which contain methyllysine reader domains, to relay their biological functions. While numerous efforts have been made to annotate biological roles of protein lysine methylation, limited work has been done to uncover mechanisms associated with this modification at a molecular or atomic level. Given distinct biophysical and biochemical properties of methyllysine, this review will focus on chemical and biochemical aspects in addition, recognition, and removal of this posttranslational mark. Chemical and biophysical methods to profile PKMT substrates will be discussed along with classification of PKMT inhibitors for accurate perturbation of methyltransferase activities. Semisynthesis of methyllysine-containing proteins will also be covered given the critical need for these reagents to unambiguously define functional roles of protein lysine methylation.
Collapse
Affiliation(s)
- Minkui Luo
- Chemical Biology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| |
Collapse
|
22
|
Computational exploration of reactive fragment for mechanism-based inhibition of xanthine oxidase. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Santos-Martins D, Calixto AR, Fernandes PA, Ramos MJ. A Buried Water Molecule Influences Reactivity in α-Amylase on a Subnanosecond Time Scale. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Diogo Santos-Martins
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ana R. Calixto
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
24
|
Tian G, Liu Y. Mechanistic insights into the catalytic reaction of ferulic acid decarboxylase from Aspergillus niger: a QM/MM study. Phys Chem Chem Phys 2018; 19:7733-7742. [PMID: 28262890 DOI: 10.1039/c6cp08811b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ubiquinone plays a pivotal role in the aerobic cellular respiratory electron transport chain, whereas ferulic acid decarboxylase (FDC) is involved in the biosynthesis of ubiquinone precursor. Recently, the complete crystal structure of FDC (based on the co-expression of the A. niger fdc1 gene in E. coli with the associated ubix gene from E. coli) at high resolution was reported. Herein, the detailed catalytic non-oxidative decarboxylation mechanism of FDC has been investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Calculation results indicate that, after the 1,3-dipolar cycloaddition of the substrate and cofactor, the carboxylic group can readily split off from the adduct, and the overall energy barrier of the whole catalytic reaction is 23.5 kcal mol-1. According to the energy barrier analysis, the protonation step is rate-limiting. The conserved protonated Glu282 is suggested to be the proton donor through a "water bridge". Besides, two cases, that is, the generated CO2 escapes from the active site or remains in the active site, were considered. It was found that the prolonged leaving of CO2 can facilitate the protonation of the intermediate. In particular, our calculations shed light on the detailed function of both cofactors prFMNiminium and prFMNketamine in the decarboxylation step. The cofactor prFMNiminium is the catalytically relevant species compared with prFMNketamine.
Collapse
Affiliation(s)
- Ge Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
25
|
Li H, Wang X, Tian G, Liu Y. Insights into the dioxygen activation and catalytic mechanism of the nickel-containing quercetinase. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00187a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic mechanism of Ni-QueDFLA was elucidated by QM/MM calculations, and the different reactivities of nickel and iron were illuminated.
Collapse
Affiliation(s)
- Hong Li
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Xiya Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Ge Tian
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
26
|
Ryde U. How Many Conformations Need To Be Sampled To Obtain Converged QM/MM Energies? The Curse of Exponential Averaging. J Chem Theory Comput 2017; 13:5745-5752. [DOI: 10.1021/acs.jctc.7b00826] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
27
|
Wei D, Huang X, Qiao Y, Rao J, Wang L, Liao F, Zhan CG. Catalytic Mechanisms for Cofactor-Free Oxidase-Catalyzed Reactions: Reaction Pathways of Uricase-Catalyzed Oxidation and Hydration of Uric Acid. ACS Catal 2017; 7:4623-4636. [PMID: 28890842 DOI: 10.1021/acscatal.7b00901] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
First-principles quantum mechanical/molecular mechanical (QM/MM)-free energy calculations have been performed to uncover how uricase catalyzes metabolic reactions of uric acid (UA), demonstrating that the entire reaction process of UA in uricase consists of two stages-oxidation followed by hydration. The oxidation consists of four steps: (1) chemical transformation from 8-hydroxyxythine to an anionic radical via a proton transfer along with an electron transfer, which is different from the previously proposed electron-transfer mechanism that involves a dianion intermediate (UA2-) during the catalytic reaction process; (2) proton transfer to the O2- anion (radical); (3) diradical recombination to form a peroxo intermediate; (4) dissociation of H2O2 to generate the dehydrourate. Hydration, for the most favorable pathway, is initiated by the nucleophilic attack of a water molecule on dehydrourate, along with a concerted proton transfer through residue Thr69 in the catalytic site. According to the calculated free energy profile, the hydration is the rate-determining step, and the corresponding free energy barrier of 16.2 kcal/mol is consistent with that derived from experimental kinetic data, suggesting that the computational insights into the catalytic mechanisms are reasonable. The mechanistic insights not only provide a mechanistic base for future rational design of uricase mutants with improved catalytic activity against uric acid as an improved enzyme therapy, but also are valuable for understanding a variety of other cofactor-free oxidase-catalyzed reactions involving an oxygen molecule.
Collapse
Affiliation(s)
- Donghui Wei
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
| | - Xiaoqin Huang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
- Center
for Theoretical Biological Physics, and Center for Research Computing, Rice University, Houston, Texas 77030, United States,
| | - Yan Qiao
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
| | - Jingjing Rao
- Key
Laboratory of Medical Laboratory Diagnostics of the Education Ministry,
College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Lu Wang
- Key
Laboratory of Medical Laboratory Diagnostics of the Education Ministry,
College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Fei Liao
- Key
Laboratory of Medical Laboratory Diagnostics of the Education Ministry,
College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Chang-Guo Zhan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
- Molecular
Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
28
|
Qian P, Guo H, Wang L, Guo H. QM/MM Investigation of Substrate and Product Specificities of Suv4-20h2: How Does This Enzyme Generate Dimethylated H4K20 from Monomethylated Substrate? J Chem Theory Comput 2017; 13:2977-2986. [PMID: 28489369 DOI: 10.1021/acs.jctc.7b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on histone proteins in the regulation of chromatin structure and gene expression. In contrast to many other PKMTs for which unmodified lysine is the methylation target, the enzymes in the Suv4-20 family are able to generate dimethylated product (H4K20me2) based exclusively on the monomethylated H4K20 substrate (H4K20me1). The origin of such substrate/product specificity is still not clear. Here, molecular dynamics (MD) and free energy (potential of mean force) simulations are undertaken using quantum mechanical/molecular mechanical (QM/MM) potentials to understand the substrate/product specificities of Suv4-20h2, a member of the Suv4-20 family. The free energy barriers for mono-, di-, and trimethylation in Suv4-20h2 obtained from the simulations are found to be well correlated with the specificities observed experimentally with the allowed dimethylation based on the H4K20me1 substrate and prohibited monomethylation and trimethylation based on H4K20 and H4K20me2, respectively. It is demonstrated that the reason for the relatively efficient dimethylation is an effective transition state (TS) stabilization through strengthening the CH···O interactions as well as the presence of a cation-π interaction at the transition state. The simulations also show that the failures of Suv4-20h2 to catalyze monomethylation and trimethylation are due, respectively, to a less effective TS stabilization and inability of the reactant complex containing H4K20me2 to adopt a reactive (near attack) configuration for methyl transfer. The results suggest that care must be exercised in the prediction of the substrate specificity based only on the existence of near attack configurations in substrate complexes.
Collapse
Affiliation(s)
- Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University , Tai'an 271018, Shandong, Peoples Republic of China
| | - Haobo Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Liang Wang
- Chemistry and Material Science Faculty, Shandong Agricultural University , Tai'an 271018, Shandong, Peoples Republic of China
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
29
|
Abstract
The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.
Collapse
Affiliation(s)
- Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
30
|
Zhang J, Liu Y. Theoretical study of the catalytic mechanism of glyoxylate carboligase and its mutant V51E. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Linscott JA, Kapilashrami K, Wang Z, Senevirathne C, Bothwell IR, Blum G, Luo M. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Proc Natl Acad Sci U S A 2016; 113:E8369-E8378. [PMID: 27940912 PMCID: PMC5206543 DOI: 10.1073/pnas.1609032114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein lysine methyltransferases (PKMTs) catalyze the methylation of protein substrates, and their dysregulation has been linked to many diseases, including cancer. Accumulated evidence suggests that the reaction path of PKMT-catalyzed methylation consists of the formation of a cofactor(cosubstrate)-PKMT-substrate complex, lysine deprotonation through dynamic water channels, and a nucleophilic substitution (SN2) transition state for transmethylation. However, the molecular characters of the proposed process remain to be elucidated experimentally. Here we developed a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method and corresponding mathematic matrix to determine precisely the ratios of isotopically methylated peptides. This approach may be generally applicable for examining the kinetic isotope effects (KIEs) of posttranslational modifying enzymes. Protein lysine methyltransferase SET8 is the sole PKMT to monomethylate histone 4 lysine 20 (H4K20) and its function has been implicated in normal cell cycle progression and cancer metastasis. We therefore implemented the MS-based method to measure KIEs and binding isotope effects (BIEs) of the cofactor S-adenosyl-l-methionine (SAM) for SET8-catalyzed H4K20 monomethylation. A primary intrinsic 13C KIE of 1.04, an inverse intrinsic α-secondary CD3 KIE of 0.90, and a small but statistically significant inverse CD3 BIE of 0.96, in combination with computational modeling, revealed that SET8-catalyzed methylation proceeds through an early, asymmetrical SN2 transition state with the C-N and C-S distances of 2.35-2.40 Å and 2.00-2.05 Å, respectively. This transition state is further supported by the KIEs, BIEs, and steady-state kinetics with the SAM analog Se-adenosyl-l-selenomethionine (SeAM) as a cofactor surrogate. The distinct transition states between protein methyltransferases present the opportunity to design selective transition-state analog inhibitors.
Collapse
Affiliation(s)
- Joshua A Linscott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| | - Kanishk Kapilashrami
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ian R Bothwell
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gil Blum
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| |
Collapse
|
32
|
Steric Clash in the SET Domain of Histone Methyltransferase NSD1 as a Cause of Sotos Syndrome and Its Genetic Heterogeneity in a Brazilian Cohort. Genes (Basel) 2016; 7:genes7110096. [PMID: 27834868 PMCID: PMC5126782 DOI: 10.3390/genes7110096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/08/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022] Open
Abstract
Most histone methyltransferases (HMTase) harbor a predicted Su(var)3–9, Enhancer-of-zeste, Trithorax (SET) domain, which transfers a methyl group to a lysine residue in their substrates. Mutations of the SET domains were reported to cause intellectual disability syndromes such as Sotos, Weaver, or Kabuki syndromes. Sotos syndrome is an overgrowth syndrome with intellectual disability caused by haploinsufficiency of the nuclear receptor binding SET domain protein 1 (NSD1) gene, an HMTase at 5q35.2–35.3. Here, we analyzed NSD1 in 34 Brazilian Sotos patients and identified three novel and eight known mutations. Using protein modeling and bioinformatic approaches, we evaluated the effects of one novel (I2007F) and 21 previously reported missense mutations in the SET domain. For the I2007F mutation, we observed conformational change and loss of structural stability in Molecular Dynamics (MD) simulations which may lead to loss-of-function of the SET domain. For six mutations near the ligand-binding site we observed in simulations steric clashes with neighboring side chains near the substrate S-Adenosyl methionine (SAM) binding site, which may disrupt the enzymatic activity of NSD1. These results point to a structural mechanism underlying the pathology of the NSD1 missense mutations in the SET domain in Sotos syndrome. NSD1 mutations were identified in only 32% of the Brazilian Sotos patients in our study cohort suggesting other genes (including unknown disease genes) underlie the molecular etiology for the majority of these patients. Our studies also found NSD1 expression to be profound in human fetal brain and cerebellum, accounting for prenatal onset and hypoplasia of cerebellar vermis seen in Sotos syndrome.
Collapse
|
33
|
Lind MES, Himo F. Quantum Chemical Modeling of Enantioconvergency in Soluble Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria E. S. Lind
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
34
|
Dohm S, Spohr E, Korth M. Developing adaptive QM/MM computer simulations for electrochemistry. J Comput Chem 2016; 38:51-58. [DOI: 10.1002/jcc.24513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Sebastian Dohm
- Institute for Theoretical Chemistry, Ulm University; Albert-Einstein-Allee 11 Ulm 89069 Germany
| | - Eckhard Spohr
- Institute for Theoretical Chemistry, University Duisburg-Essen; Universitätsstr. 5 Essen 45117 German
| | - Martin Korth
- Institute for Theoretical Chemistry, Ulm University; Albert-Einstein-Allee 11 Ulm 89069 Germany
| |
Collapse
|
35
|
de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics 2016; 8:105. [PMID: 27752293 PMCID: PMC5062873 DOI: 10.1186/s13148-016-0271-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.
Collapse
Affiliation(s)
- Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IIS Galicia Sur, 36310 Vigo, Spain
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
36
|
Mechanisms of histone lysine-modifying enzymes: A computational perspective on the role of the protein environment. J Mol Graph Model 2016; 67:69-84. [DOI: 10.1016/j.jmgm.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
|
37
|
Histone Lysine Methylation in TGF-β1 Mediated p21 Gene Expression in Rat Mesangial Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6927234. [PMID: 27247942 PMCID: PMC4876202 DOI: 10.1155/2016/6927234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Transforming growth factor beta1- (TGF-β1-) induced p21-dependent mesangial cell (MC) hypertrophy plays a key role in the pathogenesis of chronic renal diseases including diabetic nephropathy (DN). Increasing evidence demonstrated the role of posttranscriptional modifications (PTMs) in the event; however, the precise regulatory mechanism of histone lysine methylation remains largely unknown. Here, we examined the roles of both histone H3 lysine 4 and lysine 9 methylations (H3K4me/H3K9me) in TGF-β1 induced p21 gene expression in rat mesangial cells (RMCs). Our results indicated that TGF-β1 upregulated the expression of p21 gene in RMCs, which was positively correlated with the increased chromatin marks associated with active genes (H3K4me1/H3K4me2/H3K4me3) and negatively correlated with the decreased levels of repressive marks (H3K9me2/H3K9me3) at p21 gene promoter. TGF-β1 also elevated the recruitment of the H3K4 methyltransferase (HMT) SET7/9 to the p21 gene promoter. SET7/9 gene silencing with small interfering RNAs (siRNAs) significantly abolished the TGF-β1 induced p21 gene expression. Taken together, these results reveal the key role of histone H3Kme in TGF-β1 mediated p21 gene expression in RMC, partly through HMT SET7/9 occupancy, suggesting H3Kme and SET7/9 may be potential renoprotective agents in managing chronic renal diseases.
Collapse
|
38
|
What roles do the residue Asp229 and the coordination variation of calcium play of the reaction mechanism of the diisopropyl-fluorophosphatase? A DFT investigation. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1896-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
An Y, Zhu Y, Yao Y, Liu J. Is it possible to reverse aged acetylcholinesterase inhibited by organophosphorus compounds? Insight from the theoretical study. Phys Chem Chem Phys 2016; 18:9838-46. [PMID: 27000635 DOI: 10.1039/c5cp07991h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The main treatment for organophosphorus (OP) compound poisoning in clinics is to restore the activity of acetylcholinesterase (AChE) through oxime-induced reactivation of the phosphorylated OP-AChE adduct. It suffers from a competitive and irreversible aging reaction of the phosphorylated OP-AChE adduct, resulting in permanent inactivity of AChE. However, it was recently reported that N-methyl-2-methoxypyridinium species can act as methylating agents to methylate the methyl methane-phosphonate monoanion, in which the reaction mimics the reverse of the aging reaction of the phosphorylated OP-AChE adduct. If the aging reaction could be really reversed, the efficiency for the OP detoxification should be significantly improved, bringing up the possibility to develop an agent to reverse the aging process of the phosphorylated OP-AChE adduct. However, such a reaction with the N-methyl-2-methoxypyridinium species in the enzyme is still not reported so far. It is of great interest to know whether or not this reaction is observable in the enzyme, and more importantly, if it turns out to be not observable in the enzyme, why such a reaction proceeds quickly in aqueous solution but not in the enzyme. In the present study, we performed DFT calculations and quantum mechanical/molecular mechanical (QM/MM) calculations to reveal the fundamental mechanism for the methylation of both the methyl methane-phosphonate monoanion and the aged sarin-AChE adduct by N-methyl-2-methoxypyridinium species, respectively. The obtained results support the SN2 reaction mechanism, not the stepwise mechanism, for the methylation of the methyl methane-phosphonate monoanion by 9 reported N-methyl-2-methoxypyridinium compounds. The calculated free energy barriers are in good agreement with the experimental data. The methylation of the aged sarin-AChE adduct by one N-methyl-2-methoxypyridinium compound (labeled as compound 2) also employs the SN2 reaction mechanism with an extremely high free energy barrier of 30.4 ± 3.5 (or 26.6) kcal mol(-1), implying that this reaction in the enzyme hardly occurs. Our results clearly show that compound 2 forms a strong π-π stacking interaction with the aromatic ring of the W86 residue of AChE, making itself unable to approach sarin for the reverse of the aging process. On the basis of the structure and mechanism, several possible strategies have been suggested for designing methylating agents with higher activity against the aged sarin-AChE adduct.
Collapse
Affiliation(s)
- Yun An
- Institute of Theoretical and Simulational Chemistry, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, P. R. China.
| | | | | | | |
Collapse
|
40
|
Poulin MB, Schneck JL, Matico RE, McDevitt PJ, Huddleston MJ, Hou W, Johnson NW, Thrall SH, Meek TD, Schramm VL. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36. Proc Natl Acad Sci U S A 2016; 113:1197-201. [PMID: 26787850 PMCID: PMC4747696 DOI: 10.1073/pnas.1521036113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-(14)C and (36)S and secondary Me-(3)H3, Me-(2)H3, 5'-(14)C, and 5'-(3)H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.
Collapse
Affiliation(s)
- Myles B Poulin
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Jessica L Schneck
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Rosalie E Matico
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Patrick J McDevitt
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Michael J Huddleston
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Wangfang Hou
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Neil W Johnson
- Cancer Epigenetics Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19426
| | - Sara H Thrall
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Thomas D Meek
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461;
| |
Collapse
|
41
|
Su H, Sheng X, Liu Y. Insights into the catalytic mechanism of N-acetylglucosaminidase glycoside hydrolase from Bacillus subtilis: a QM/MM study. Org Biomol Chem 2016; 14:3432-42. [DOI: 10.1039/c6ob00320f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
QM/MM calculations on NagZs fromBacillus subtilisfurther confirm NagZs to be glycoside phosphorylases rather than glycoside hydrolases.
Collapse
Affiliation(s)
- Hao Su
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Xiang Sheng
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Yongjun Liu
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| |
Collapse
|
42
|
Yao Y, Liu J, Zheng F, Zhan CG. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine. Theor Chem Acc 2016; 135. [PMID: 28250715 DOI: 10.1007/s00214-015-1788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recently designed and discovered cocaine hydrolase (CocH), engineered from human butyrylcholinesterase (BChE), has been proven promising as a novel enzyme therapy for treatment of cocaine overdose and addiction because it is highly efficient in catalyzing hydrolysis of naturally occurring (-)-cocaine. It has been known that the CocH also has a high catalytic efficiency against (+)-cocaine, a synthetic enantiomer of cocaine. Reaction pathway and the corresponding free energy profile for the CocH-catalyzed hydrolysis of (+)-cocaine have been determined, in the present study, by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Acordingt to the QM/MM-FE results, the catalytic hydrolysis process is initiated by the nucleophilic attack on carbonyl carbon of (-)-cocaine benzoyl ester via hydroxyl oxygen of S198 side chain, and the second reaction step (i.e. dissociation of benzoyl ester) is rate-determining. This finding for CocH-catalyzed hydrolysis of (+)-cocaine is remarkably different from that for the (+)-cocaine hydrolysis catalyzed by bacterial cocaine esterase in which the first reaction step of the deacylation is associated with the highest free energy barrier (~17.9 kcal/mol). The overall free energy barrier (~16.0 kcal/mol) calculated for the acylation stage of CocH-catalyzed hydrolysis of (+)-cocaine is in good agreement with the experimental free energy barrier of ~14.5 kcal/mol derivated from the experimental kinetic data.
Collapse
Affiliation(s)
- Yuan Yao
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; The Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, P.R. China
| | - Junjun Liu
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| |
Collapse
|
43
|
Ribeiro AJM, Santos-Martins D, Russo N, Ramos MJ, Fernandes PA. Enzymatic Flexibility and Reaction Rate: A QM/MM Study of HIV-1 Protease. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00759] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- António J. M. Ribeiro
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende, Italia
| | - Diogo Santos-Martins
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Nino Russo
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende, Italia
| | - Maria J. Ramos
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
44
|
Cassimjee KE, Manta B, Himo F. A quantum chemical study of the ω-transaminase reaction mechanism. Org Biomol Chem 2015; 13:8453-64. [DOI: 10.1039/c5ob00690b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The detailed half-transamination mechanism of Chromobacterium violaceum ω-transaminase is investigated by means of density functional theory calculations.
Collapse
Affiliation(s)
| | - Bianca Manta
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Fahmi Himo
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
45
|
Lind MES, Himo F. Theoretical Study of Reaction Mechanism and Stereoselectivity of Arylmalonate Decarboxylase. ACS Catal 2014. [DOI: 10.1021/cs5009738] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria E. S. Lind
- Department
of Organic Chemistry
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department
of Organic Chemistry
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
46
|
Saen-Oon S, Lee SG, Jez JM, Guallar V. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase. J Biol Chem 2014; 289:33815-25. [PMID: 25288796 DOI: 10.1074/jbc.m114.611319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19-His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.
Collapse
Affiliation(s)
- Suwipa Saen-Oon
- From the Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program, Carrer de Jordi Girona 29, 08034 Barcelona, Spain
| | - Soon Goo Lee
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Joseph M Jez
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Victor Guallar
- From the Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program, Carrer de Jordi Girona 29, 08034 Barcelona, Spain, the Catalan Institution for Research and Advanced Studies, Barcelona 08010, Spain
| |
Collapse
|
47
|
Cooper AM, Kästner J. Averaging Techniques for Reaction Barriers in QM/MM Simulations. Chemphyschem 2014; 15:3264-9. [DOI: 10.1002/cphc.201402382] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/29/2014] [Indexed: 12/28/2022]
|
48
|
Riahi S, Rowley CN. The CHARMM-TURBOMOLE interface for efficient and accurate QM/MM molecular dynamics, free energies, and excited state properties. J Comput Chem 2014; 35:2076-86. [PMID: 25178266 DOI: 10.1002/jcc.23716] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/05/2023]
Abstract
The quantum mechanical (QM)/molecular mechanical (MM) interface between Chemistry at HARvard Molecular Mechanics (CHARMM) and TURBOMOLE is described. CHARMM provides an extensive set of simulation algorithms, like molecular dynamics (MD) and free energy perturbation, and support for mature nonpolarizable and Drude polarizable force fields. TURBOMOLE provides fast QM calculations using density functional theory or wave function methods and excited state properties. CHARMM-TURBOMOLE is well-suited for extended QM/MM MD simulations using first principles methods with large (triple-ζ) basis sets. We demonstrate these capabilities with a QM/MM simulation of Mg(2+) (aq), where the MM outer sphere water molecules are represented using the SWM4-NDP Drude polarizable force field and the ion and inner coordination sphere are represented using QM PBE, PBE0, and MP2 methods. The relative solvation free energies of Mg(2+) and Zn(2+) were calculated using thermodynamic integration. We also demonstrate the features for excited state properties. We calculate the time-averaged solution absorption spectrum of indole, the emission spectrum of the indole 1La excited state, and the electronic circular dichroism spectrum of an oxacepham.
Collapse
Affiliation(s)
- Saleh Riahi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada
| | | |
Collapse
|
49
|
Ma G, Dong L, Liu Y. Insights into the catalytic mechanism of dTDP-glucose 4,6-dehydratase from quantum mechanics/molecular mechanics simulations. RSC Adv 2014. [DOI: 10.1039/c4ra04406a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Sheng X, Liu Y. QM/MM Study of the Reaction Mechanism of the Carboxyl Transferase Domain of Pyruvate Carboxylase from Staphylococcus aureus. Biochemistry 2014; 53:4455-66. [DOI: 10.1021/bi500020r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang Sheng
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Northwest
Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| |
Collapse
|