1
|
Zhu X, Yao W, Sun N, Chen M, Xia H, Liu CC, Zhu Y, Cao H. Chemoenzymatic Synthesis of Phosphosaccharides from Haemophilus parasuis Strains ER-6P (Serovar 15) and Nagasaki (Serovar 5). Org Lett 2024. [PMID: 39450892 DOI: 10.1021/acs.orglett.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Herein, we describe a chemoenzymatic and diversity-oriented approach for the first syntheses of octasaccharide repeating units of the capsular polysaccharides of Haemophilus parasuis serovar 15 and serovar 5. The synthetic method features efficient enzymatic assembly of sialyl galactose or N-acetyl-galactosamine building blocks, highly stereoselective chemical construction of α-type H-phosphonate, and the β-stereospecific 1,3-glycosylation reaction of a rare sugar donor.
Collapse
Affiliation(s)
- Xinhao Zhu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Na Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Mei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Xia
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Yugen Zhu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Hongzhi Cao
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
3
|
Gadi MR, Han J, Shen T, Fan S, Xiao Z, Li L. Divergent synthesis of amino acid-linked O-GalNAc glycan core structures. Nat Protoc 2024:10.1038/s41596-024-01051-6. [PMID: 39327537 DOI: 10.1038/s41596-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 09/28/2024]
Abstract
O-GalNAc glycans, also known as mucin-type O-glycans, are primary constituents of mucins on various mucosal sites of the body and also ubiquitously expressed on cell surface and secreted proteins. They have crucial roles in a wide range of physiological and pathological processes, including tumor growth and progression. In addition, altered expression of O-GalNAc glycans is frequently observed during different disease states. Research dedicated to unraveling the structure-function relationships of O-GalNAc glycans has led to the discovery of disease biomarkers and diagnostic tools and the development of O-glycopeptide-based cancer vaccines. Many of these efforts require amino acid-linked O-GalNAc core structures as building blocks to assemble complex O-glycans and glycopeptides. There are eight core structures (cores one to eight), from which all mucin-type O-glycans are derived. In this protocol, we describe the first divergent synthesis of all eight cores from a versatile precursor in practical scales. The protocol involves (i) chemical synthesis of the orthogonally protected precursor (3 days) from commercially available materials, (ii) chemical synthesis of five unique glycosyl donors (1-2 days for each donor) and (iii) selective deprotection of the precursor and assembly of the eight cores (2-4 days for each core). The procedure can be adopted to prepare O-GalNAc cores linked to serine, threonine and tyrosine, which can then be utilized directly for solid-phase glycopeptide synthesis or chemoenzymatic synthesis of complex O-glycans. The procedure empowers researchers with fundamental organic chemistry skills to prepare gram scales of any desired O-GalNAc core(s) or all eight cores concurrently.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Shuquan Fan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Zhongying Xiao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Alvarado-Melendez EI, de Jong H, Hartman JEM, Ong JY, Wösten MMSM, Wennekes T. Glycoengineering with neuraminic acid analogs to label lipooligosaccharides and detect native sialyltransferase activity in gram-negative bacteria. Glycobiology 2024; 34:cwae071. [PMID: 39244665 DOI: 10.1093/glycob/cwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
Lipooligosaccharides are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their lipooligosaccharides with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their lipooligosaccharides. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the lipooligosaccharides of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering and Selective Exo-Enzymatic Labeling, and that together they provide tools to modify, label, detect and visualize sialylation of bacterial lipooligosaccharides.
Collapse
Affiliation(s)
- Erianna I Alvarado-Melendez
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jet E M Hartman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
5
|
Huang K, Bashian EE, Zong G, Nycholat CM, McBride R, Gomozkova M, Wang S, Huang C, Chapla DG, Schmidt EN, Macauley M, Moremen KW, Paulson JC, Wang LX. Chemoenzymatic Synthesis of Sulfated N-Glycans Recognized by Siglecs and Other Glycan-Binding Proteins. JACS AU 2024; 4:2966-2978. [PMID: 39211606 PMCID: PMC11350573 DOI: 10.1021/jacsau.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Sulfated N-glycans are present in many glycoproteins, which are implicated in playing important roles in biological recognition processes. Here, we report the systematic chemoenzymatic synthesis of a library of sulfated and sialylated biantennary N-glycans and assess their binding to Siglecs and glycan-specific antibodies that recognize them as glycan ligands. The combined use of three human sulfotransferases, GlcNAc-6-O-sulfotransferase (CHST2), Gal-3-O-sulfotransferase (Gal3ST1), and keratan sulfate Gal-6-O-sulfotransferase (CHST1), resulted in asymmetric and symmetric branch-selective sulfation of the GlcNAc and/or Gal moieties of N-glycans. The extension of the sugar chain using α-2,3- and α-2,6-sialyltransferases afforded the sulfated and sialylated N-glycans. These synthetic glycans with different patterns of sulfation and sialylation were evaluated for binding to selected Siglecs and sulfoglycan-specific antibodies using glycan microarrays. The results confirm previously documented glycan-recognizing properties and further reveal novel specificities for these glycan-binding proteins, demonstrating the utility of the library for assessing the specificity of glycan-binding proteins recognizing sulfated and sialylated glycans.
Collapse
Affiliation(s)
- Kun Huang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Eleanor E. Bashian
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Guanghui Zong
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Corwin M. Nycholat
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ryan McBride
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Margaryta Gomozkova
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Shengyang Wang
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar G. Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Edward N. Schmidt
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Matthew Macauley
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - James C. Paulson
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Kooner AS, Yu H, Leviatan Ben-Arye S, Padler-Karavani V, Chen X. Broad-Spectrum Legionaminic Acid-Specific Antibodies in Pooled Human IgGs Revealed by Glycan Microarrays with Chemoenzymatically Synthesized Nonulosonosides. Molecules 2024; 29:3980. [PMID: 39203058 PMCID: PMC11356810 DOI: 10.3390/molecules29163980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The presence and the level of antibodies in human sera against bacterial glycans are indications of prior encounters with similar antigens and/or the bacteria that express them by the immune system. An increasing number of pathogenic bacteria that cause human diseases have been shown to express polysaccharides containing a bacterial nonulosonic acid called 5,7-di-N-acetyllegionaminic acid (Leg5,7Ac2). To investigate the immune recognition of Leg5,7Ac2, which is critical for the fight against bacterial infections, a highly effective chemoenzymatic synthon strategy was applied to construct a library of α2-3/6-linked Leg5,7Ac2-glycans via their diazido-derivatives (Leg5,7diN3-glycans) formed by efficient one-pot three-enzyme (OP3E) synthetic systems from a diazido-derivative of a six-carbon monosaccharide precursor. Glycan microarray studies using this synthetic library of a Leg5,7Ac2-capped collection of diverse underlying glycan carriers and their matched sialoside counterparts revealed specific recognition of Leg5,7Ac2 by human IgG antibodies pooled from thousands of healthy donors (IVIG), suggesting prior human encounters with Leg5,7Ac2-expressing pathogenic bacteria at the population level. These biologically relevant Leg5,7Ac2-glycans and their immune recognition assays are important tools to begin elucidating their biological roles, particularly in the context of infection and host-pathogen interactions.
Collapse
Affiliation(s)
- Anoopjit Singh Kooner
- Department of Chemistry, University of California, Davis, CA 95616, USA; (A.S.K.); (H.Y.)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (A.S.K.); (H.Y.)
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA; (A.S.K.); (H.Y.)
| |
Collapse
|
7
|
Yang X, Mishra B, Yu H, Wei Y, Chen X. A bifunctional Pasteurella multocida β1-3-galactosyl/ N-acetylgalactosaminyltransferase (PmNatB) for the highly efficient chemoenzymatic synthesis of disaccharides. Org Biomol Chem 2024; 22:6004-6015. [PMID: 38993172 PMCID: PMC11290465 DOI: 10.1039/d4ob00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glycosyltransferases are nature's key biocatalysts for the formation of glycosidic bonds. Discovery and characterization of new synthetically useful glycosyltransferases are critical for the development of efficient enzymatic and chemoenzymatic strategies for producing complex carbohydrates and glycoconjugates. Herein we report the identification of Pasteurella multocida PmNatB as a bifunctional single-catalytic-domain glycosyltransferase with both β1-3-galactosyltransferase and β1-3-N-acetylgalactosaminyltransferase activities. It is a novel glycosyltransferase for constructing structurally diverse GalNAcβ3Galα/βOR and Galβ3GalNAcα/βOR disaccharides in one-pot multienzyme systems with in situ generation of UDP-sugars.
Collapse
Affiliation(s)
- Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Bijoyananda Mishra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Yijun Wei
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
- Department of Statistics, University of California, Davis, California 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| |
Collapse
|
8
|
Mishra B, Yuan Y, Yu H, Kang H, Gao J, Daniels R, Chen X. Synthetic Sialosides Terminated with 8-N-Substituted Sialic Acid as Selective Substrates for Sialidases from Bacteria and Influenza Viruses. Angew Chem Int Ed Engl 2024; 63:e202403133. [PMID: 38713874 DOI: 10.1002/anie.202403133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Sialosides containing C8-modified sialic acids are challenging synthetic targets but potentially useful probes for diagnostic substrate profiling of sialidases and elucidating the binding specificity of sialic acid-interacting proteins. Here, we demonstrate efficient chemoenzymatic methods for synthesizing para-nitrophenol-tagged α2-3- and α2-6-linked sialyl galactosides containing C8-acetamido, C8-azido, or C8-amino derivatized N-acetylneuraminic acid (Neu5Ac). High-throughput substrate specificity studies showed that the C8-modification of sialic acid significantly changes its recognition by sialidases from humans, various bacteria, and different influenza A and B viruses. Sialosides carrying Neu5Ac with a C8-azido modification were generally well tolerated by all the sialidases we tested, whereas sialosides containing C8-acetamido-modified Neu5Ac were only cleaved by selective bacterial sialidases. In contrast, sialosides with C8-amino-modified Neu5Ac were cleaved by a combination of selective bacterial and influenza A virus sialidases. These results indicate that sialosides terminated with a C8-amino or C8-acetamido-modified sialic acid can be used with other sialosides for diagnostic profiling of disease-causing sialidase-producing pathogens.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Yue Yuan
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| |
Collapse
|
9
|
Zhang W, Zhu Y, Wang H, Huang Z, Liu Y, Xu W, Mu W. Highly efficient biosynthesis of 3'-sialyllactose in engineered Escherichia coli. Int J Biol Macromol 2024; 269:132081. [PMID: 38705330 DOI: 10.1016/j.ijbiomac.2024.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
10
|
Nguyen TLL, Nguyen DV, Heo KS. Potential biological functions and future perspectives of sialylated milk oligosaccharides. Arch Pharm Res 2024; 47:325-340. [PMID: 38561494 DOI: 10.1007/s12272-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Sialyllactoses (SLs) primarily include sialylated human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). First, the safety assessment of 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) revealed low toxicity in various animal models and human participants. SLs constitute a unique milk component, highlighting the essential nutrients and bioactive components crucial for infant development, along with numerous associated health benefits for various diseases. This review explores the safety, biosynthesis, and potential biological effects of SLs, with a specific focus on their influence across various physiological systems, including the gastrointestinal system, immune disorders, rare genetic disorders (such as GNE myopathy), cancers, neurological disorders, cardiovascular diseases, diverse cancers, and viral infections, thus indicating their therapeutic potential.
Collapse
Affiliation(s)
| | - Dung Van Nguyen
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
11
|
Li C, Li M, Hu M, Miao M, Zhang T. Metabolic Engineering of Escherichia coli for High-Titer Biosynthesis of 3'-Sialyllactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5379-5390. [PMID: 38420706 DOI: 10.1021/acs.jafc.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
3'-Sialyllactose (3'-SL) is among the foremost and simplest sialylated breast milk oligosaccharides. In this study, an engineered Escherichia coli for high-titer 3'-SL biosynthesis was developed by introducing a multilevel metabolic engineering strategy, including (1) the introduction of precursor CMP-Neu5Ac synthesis pathway and high-performance α2,3-sialyltransferase (α2,3-SiaT) genes into strain BZ to achieve de novo synthesis of 3'-SL; (2) optimizing the expression of glmS-glmM-glmU involved in the UDP-GlcNAc and CMP-Neu5Ac synthesis pathways, and constructing a glutamine cycle system, balancing the precursor pools; (3) analysis of critical intermediates and inactivation of competitive pathway genes to redirect carbon flux to 3'-SL biosynthesis; and (4) enhanced catalytic performance of rate-limiting enzyme α2,3-SiaT by RBS screening, protein tag cloning. The final strain BZAPKA14 yielded 9.04 g/L 3'-SL in a shake flask. In a 3 L bioreactor, fed-batch fermentation generated 44.2 g/L 3'-SL, with an overall yield and lactose conversion of 0.53 g/(L h) and 0.55 mol 3'-SL/mol, respectively.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miaomiao Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Zhao Q, Huang X, Wu X. Development of NHAcGD2/NHAcGD3 conjugates of bacteriophage MX1 virus-like particles as anticancer vaccines. RSC Adv 2024; 14:6246-6252. [PMID: 38375005 PMCID: PMC10875654 DOI: 10.1039/d3ra08923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
The successful development of an anticancer vaccine will be a giant leap forward in cancer prevention and treatment. Herein, the bacteriophage MX1 coat protein virus-like particles (MX1 VLPs) have been conjugated with 9NHAc-GD2 (NHAcGD2) to obtain a MX1-NHAcGD2 conjugate. Intriguingly, vaccinating against this conjugate produced a robust anti-NHAcGD2 IgG response in mice, with an average IgG titer of over 3 million. More interestingly, antibodies induced by the MX1-NHAcGD2 conjugate bound well to IMR-32 neuroblastoma cells and had potent complement-dependent cytotoxic (CDC) effects on IMR-32 cells. Inspired by the superiority of the 9NHAc-GD2 antigen, we also designed another 9NHAc-modified ganglioside antigen, 9NHAc-GD3 (NHAcGD3), to overcome the hydrolytic instability of 9-O-acetylated-GD3. By coupling NHAcGD3 with MX1 VLP, the MX1-NHAcGD3 conjugate was constructed. Strikingly, vaccination of MX1-NHAcGD3 elicited high anti-NHAcGD3 IgG antibodies, which effectively recognized human malignant melanoma SK-MEL-28 cells and had a significant CDC effect against this cell line. This study provides novel MX1-NHAcGD2 and MX1-NHAcGD3 conjugates with broad clinical translational prospects as promising anticancer vaccines.
Collapse
Affiliation(s)
- Qingyu Zhao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University East Lansing Michigan 48824 USA
| | - Xuanjun Wu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
13
|
Tseng HK, Su YY, Lai PJ, Lo SL, Liu HC, Reddy SR, Chen L, Lin CC. Chemoenzymatic Synthesis of GAA-7 Glycan Analogues and Evaluation of Their Neuritogenic Activities. ACS Chem Neurosci 2024; 15:656-670. [PMID: 38206798 DOI: 10.1021/acschemneuro.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Ganglioside GAA-7 exhibits higher neurite outgrowth than ganglioside GM1a and most echinodermatous gangliosides (EGs) when tested on neuron-like rat adrenal pheochromocytoma (PC12) cells in the presence of nerve growth factor (NGF). The unique structure of GAA-7 glycan, containing an uncommon sialic acid (8-O-methyl-N-glycolylneuraminic acid) and sialic acid-α-2,3-GalNAc linkage, makes it challenging to synthesize. We recently developed a streamlined method to chemoenzymatically synthesize GAA-7 glycan and employed this modular strategy to efficiently prepare a library of GAA-7 glycan analogues incorporating N-modified or 8-methoxyl sialic acids. Most of these synthetic glycans exhibited moderate efficacy in promoting neuronal differentiation of PC12 cells. Among them, the analogue containing common sialic acid shows greater potential than the GAA-7 glycan itself. This result reveals that methoxy modification is not essential for neurite outgrowth. Consequently, the readily available analogue presents a promising model for further biological investigations.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Yung-Yu Su
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Po-Jen Lai
- Institute of Molecular Medicine, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Shao-Lun Lo
- Institute of Molecular Medicine, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Hsien-Chein Liu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | | | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan First Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Jin X, Cheng H, Chen X, Cao X, Xiao C, Ding F, Qu H, Wang PG, Feng Y, Yang GY. A modular chemoenzymatic cascade strategy for the structure-customized assembly of ganglioside analogs. Commun Chem 2024; 7:17. [PMID: 38238524 PMCID: PMC10796935 DOI: 10.1038/s42004-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Gangliosides play vital biological regulatory roles and are associated with neurological system diseases, malignancies, and immune deficiencies. They have received extensive attention in developing targeted drugs and diagnostic markers. However, it is difficult to obtain enough structurally defined gangliosides and analogs especially at an industrial-relevant scale, which prevent exploring structure-activity relationships and identifying drug ingredients. Here, we report a highly modular chemoenzymatic cascade assembly (MOCECA) strategy for customized and large-scale synthesis of ganglioside analogs with various glycan and ceramide epitopes. We typically accessed five gangliosides with therapeutic promising and systematically prepared ten GM1 analogs with diverse ceramides. Through further process amplification, we achieved industrial production of ganglioside GM1 in the form of modular assembly at hectogram scale. Using MOCECA-synthesized GM1 analogs, we found unique ceramide modifications on GM1 could enhance the ability to promote neurite outgrowth. By comparing the structures with synthetic analogs, we further resolved the problem of contradicting descriptions for GM1 components in different pharmaceutical documents by reinterpreting the exact two-component structures of commercialized GM1 drugs. Because of its applicability and stability, the MOCECA strategy can be extended to prepare other glycosphingolipid structures, which may pave the way for developing new glycolipid drugs.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hanchao Cheng
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
- Department of Pharmacology, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Xiaohui Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Cao
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Cong Xiao
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Fengling Ding
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Huirong Qu
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Peng George Wang
- Department of Pharmacology, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Chen X. Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates. Acc Chem Res 2024; 57:234-246. [PMID: 38127793 PMCID: PMC10795189 DOI: 10.1021/acs.accounts.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Sialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
17
|
Ali MY, Liaqat F, Khazi MI, Sethupathy S, Zhu D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides-A review. Int J Biol Macromol 2023; 249:125916. [PMID: 37527764 DOI: 10.1016/j.ijbiomac.2023.125916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Glycosyltransferases (GTs) catalyze the transfer of active monosaccharide donors to carbohydrates to create a wide range of oligosaccharide structures. GTs display strong regioselectivity and stereoselectivity in producing glycosidic bonds, making them extremely valuable in the in vitro synthesis of oligosaccharides. The synthesis of oligosaccharides by GTs often gives high yields; however, the enzyme activity may experience product inhibition. Additionally, the higher cost of nucleotide sugars limits the usage of GTs for oligosaccharide synthesis. In this review, we comprehensively discussed the structure and mechanism of GTs based on recent literature and the CAZY website data. To provide innovative ideas for the functional studies of GTs, we summarized several remarkable characteristics of GTs, including folding, substrate specificity, regioselectivity, donor sugar nucleotides, catalytic reversibility, and differences between GTs and GHs. In particular, we highlighted the recent advancements in multi-enzyme cascade reactions and co-immobilization of GTs, focusing on overcoming problems with product inhibition and cost issues. Finally, we presented various types of GT that have been successfully used for oligosaccharide synthesis. We concluded that there is still an opportunity for improvement in enzymatically produced oligosaccharide yield, and future research should focus on improving the yield and reducing the production cost.
Collapse
Affiliation(s)
- Mohamad Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
19
|
Yu H, Zheng Z, Zhang L, Yang X, Varki A, Chen X. Chemoenzymatic Synthesis of N-Acetyl Analogues of 9- O-Acetylated b-Series Gangliosides. Tetrahedron 2023; 142:133522. [PMID: 37981995 PMCID: PMC10653377 DOI: 10.1016/j.tet.2023.133522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The stable N-acetyl analogues of biologically important 9-O-acetylated b-series gangliosides including 9NAc-GD3, 9NAc-GD2, 9NAc-GD1b, and 9NAc-GT1b were chemoenzymatically synthesized from a GM3 sphingosine. Two chemoenzymatic methods using either 6-azido-6-deoxy-N-acetylmannosamine (ManNAc6N3) as a chemoenzymatic synthon or 6-acetamido-6-deoxy-N-acetylmannosamine (ManNAc6NAc) as an enzymatic precursor for 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) were developed and compared for the synthesis of 9NAc-GD3. The latter method was found to be more efficient and was used to produce the desired 9-N-acetylated glycosylsphingosines. Furthermore, glycosylsphingosine acylation reaction conditions were improved to obtain target 9-N-acetylated gangliosides in a faster reaction with an easier purification process compared to the previous acylation conditions.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Zimin Zheng
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Libo Zhang
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, 92093, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, 95616, USA
| |
Collapse
|
20
|
Bose P, Jaiswal MK, Singh SK, Singh RK, Tiwari VK. Growing impact of sialic acid-containing glycans in future drug discovery. Carbohydr Res 2023; 527:108804. [PMID: 37031650 DOI: 10.1016/j.carres.2023.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.
Collapse
|
21
|
Zhang L, Li Y, Li R, Yang X, Zheng Z, Fu J, Yu H, Chen X. Glycoprotein In Vitro N-Glycan Processing Using Enzymes Expressed in E. coli. Molecules 2023; 28:2753. [PMID: 36985724 PMCID: PMC10051842 DOI: 10.3390/molecules28062753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Protein N-glycosylation is a common post-translational modification that plays significant roles on the structure, property, and function of glycoproteins. Due to N-glycan heterogeneity of naturally occurring glycoproteins, the functions of specific N-glycans on a particular glycoprotein are not always clear. Glycoprotein in vitro N-glycan engineering using purified recombinant enzymes is an attractive strategy to produce glycoproteins with homogeneous N-glycoforms to elucidate the specific functions of N-glycans and develop better glycoprotein therapeutics. Toward this goal, we have successfully expressed in E. coli glycoside hydrolases and glycosyltransferases from bacterial and human origins and developed a robust enzymatic platform for in vitro processing glycoprotein N-glycans from high-mannose-type to α2-6- or α2-3-disialylated biantennary complex type. The recombinant enzymes are highly efficient in step-wise or one-pot reactions. The platform can find broad applications in N-glycan engineering of therapeutic glycoproteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
22
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
23
|
Zhu Y, Zhang J, Zhang W, Mu W. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3'-sialyllactose and 6'-sialyllactose. Biotechnol Adv 2023; 62:108058. [PMID: 36372185 DOI: 10.1016/j.biotechadv.2022.108058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs), the third major solid component in breast milk, are recognized as the first prebiotics for health benefits in infants. Sialylated HMOs are an important type of HMOs, accounting for approximately 13% of total HMOs. 3'-Sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) are two simplest sialylated HMOs. Both SLs display promising prebiotic effects, especially in promoting the proliferation of bifidobacteria and shaping the gut microbiota. SLs exhibit several health effects, including antiadhesive antimicrobial ability, antiviral activity, prevention of necrotizing enterocolitis, immunomodulatory activity, regulation of intestinal epithelial cell response, promotion of brain development, and cognition improvement. Both SLs have been approved as "Generally Recognized as Safe" by the American Food and Drug Administration and are commercially added to infant formula. The biosynthesis of SLs using enzymatic or microbial approaches has been widely studied. The enzymatic synthesis of SLs can be realized by two types of enzymes, sialidases with trans-sialidase activity and sialyltransferases. Microbial synthesis can be achieved by the multiple recombinant bacteria in one-pot reaction, which express the enzymes involved in SL synthesis pathways separately or in combination, or by metabolically engineered strains in a fermentation process. In this article, the physiological properties of 3'-SL and 6'-SL are summarized in detail and the biosynthesis of these SLs via enzymatic and microbial synthesis is comprehensively reviewed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiameng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Gao Y, Wang W, Yang Y, Zhao Q, Yang C, Jia X, Liu Y, Zhou M, Zeng W, Huang X, Chiu S, Jin T, Wu X. Developing Next-Generation Protein-Based Vaccines Using High-Affinity Glycan Ligand-Decorated Glyconanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204598. [PMID: 36398611 PMCID: PMC9839878 DOI: 10.1002/advs.202204598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Major diseases, such as cancer and COVID-19, are frightening global health problems, and sustained action is necessary to develop vaccines. Here, for the first time, ethoxy acetalated dextran nanoparticles (Ace-Dex-NPs) are functionalized with 9-N-(4H-thieno[3,2-c]chromene-2-carbamoyl)-Siaα2-3Galβ1-4GlcNAc (TCC Sia-LacNAc) targeting macrophages as a universal vaccine design platform. First, azide-containing oxidized Ace-Dex-NPs are synthesized. After the NPs are conjugated with ovalbumin (OVA) and resiquimod (Rd), they are coupled to TCC Sia-LacNAc-DBCO to produce TCC Sia-Ace-Dex-OVA-Rd, which induce a potent, long-lasting OVA-specific cytotoxic T-lymphocyte (CTL) response and high anti-OVA IgG, providing mice with superior protection against tumors. Next, this strategy is exploited to develop vaccines against infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target for neutralizing antibodies. The TCC Sia-Ace-Dex platform is preferentially used for designing an RBD-based vaccine. Strikingly, the synthetic TCC Sia-Ace-Dex-RBD-Rd elicited potent RBD-neutralizing antibodies against live SARS-CoV-2 infected Vero E6 cells. To develop a universal SARS-CoV-2 vaccine, the TCC Sia-Ace-Dex-N-Rd vaccine carrying SARS-CoV-2 nucleocapsid protein (N) is also prepared, which is highly conserved among SARS-CoV-2 and its variants of concern (VOCs), including Omicron (BA.1 to BA.5); this vaccine can trigger strong N-specific CTL responses against target cells infected with SARS-CoV-2 and its VOCs.
Collapse
Affiliation(s)
- Yanan Gao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
| | - Wei Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yunru Yang
- Department of Basic Medical SciencesDivision of Molecular MedicineDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Qingyu Zhao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
| | - Chendong Yang
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
| | - Xiaoying Jia
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yang Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
| | - Minmin Zhou
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Weihong Zeng
- Department of Basic Medical SciencesDivision of Molecular MedicineDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical EngineeringInstitute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan48824United States
| | - Sandra Chiu
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Tengchuan Jin
- Department of Basic Medical SciencesDivision of Molecular MedicineDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Xuanjun Wu
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
- Suzhou Research InstituteShandong UniversitySuzhouJiangsu215123China
| |
Collapse
|
25
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
26
|
Konietzny PB, Peters H, Hofer ML, Gerling-Driessen UIM, de Vries RP, Peters T, Hartmann L. Enzymatic Sialylation of Synthetic Multivalent Scaffolds: From 3'-Sialyllactose Glycomacromolecules to Novel Neoglycosides. Macromol Biosci 2022; 22:e2200358. [PMID: 36112275 DOI: 10.1002/mabi.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/1912] [Indexed: 01/15/2023]
Abstract
Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hannelore Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Marc L Hofer
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulla I M Gerling-Driessen
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
27
|
Zhu Y, Cao H, Wang H, Mu W. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges. Curr Opin Biotechnol 2022; 78:102841. [PMID: 36371892 DOI: 10.1016/j.copbio.2022.102841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid component in human milk. HMOs have drawn increasing attention because of their beneficial effects to infant health. Of the more than 200 HMOs, only less than 10 have been used in medical or food industries. Although HMO research has been becoming increasingly intensive and booming, the limited availability of HMOs still cannot meet the demand in health effect research and large-scale application. Therefore, efficient synthetic approaches and strategies for HMO production are urgently needed. The goal of this review is to highlight recent advances in microbial cell factory development for HMO biosynthesis. Key challenges in representative HMO production are also highlighted. The further perspectives in general HMO biosynthesis are discussed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
28
|
Kooner A, Yuan Y, Yu H, Kang H, Klenow L, Daniels R, Chen X. Sialosides Containing 7- N-Acetyl Sialic Acid Are Selective Substrates for Neuraminidases from Influenza A Viruses. ACS Infect Dis 2022; 9:33-41. [PMID: 36455156 PMCID: PMC9840695 DOI: 10.1021/acsinfecdis.2c00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sialidases or neuraminidases are sialic-acid-cleaving enzymes that are expressed by a broad spectrum of organisms, including pathogens. In nature, sialic acids are monosaccharides with diverse structural variations, but the lack of novel probes has made it difficult to determine how sialic acid modifications impact the recognition by sialidases. Here, we used a chemoenzymatic synthon strategy to generate a set of α2-3- and α2-6-linked sialoside probes that contain 7-N-acetyl or 7,9-di-N-acetyl sialic acid as structure mimics for those containing the less stable naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl modifications. These probes were used to compare the substrate specificity of several sialidases from different origins. Our results show that 7-N-acetyl sialic acid was readily cleaved by neuraminidases from H1N1 and H3N2 influenza A viruses, but not by sialidases of human or bacterial origin, thereby indicating that the influenza enzymes possess a distinctive and more promiscuous substrate binding pocket.
Collapse
Affiliation(s)
- Anoopjit
Singh Kooner
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Yue Yuan
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hai Yu
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hyeog Kang
- Division
of Viral Products, Center for Biologics
Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Laura Klenow
- Division
of Viral Products, Center for Biologics
Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Robert Daniels
- Division
of Viral Products, Center for Biologics
Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Xi Chen
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States,
| |
Collapse
|
29
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
30
|
Cho YT, Adak A, Su YY, Chang TW, Lin CC. Chemoenzymatic Total Synthesis of the Neuritogenic Echinoderm Ganglioside LLG‐5 and Related Analogues. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Shiratori K, Yokoi Y, Wakui H, Hirane N, Otaki M, Hinou H, Yoneyama T, Hatakeyama S, Kimura S, Ohyama C, Nishimura SI. Selective reaction monitoring approach using structure-defined synthetic glycopeptides for validating glycopeptide biomarkers pre-determined by bottom-up glycoproteomics. RSC Adv 2022; 12:21385-21393. [PMID: 35975084 PMCID: PMC9347767 DOI: 10.1039/d2ra02903k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Clusterin is a heavily glycosylated protein that is upregulated in various cancer and neurological diseases. The findings by the Hancock and Iliopoulos group that levels of the tryptic glycopeptide derived from plasma clusterin, 372Leu-Ala-Asn-Leu-Thr-Gln-Gly-Glu-Asp-Gln-Tyr-Tyr-Leu-Arg385 with a biantennary disialyl N-glycan (A2G2S2 or FA2G2S2) at Asn374 differed significantly prior to and after curative nephrectomy for clear cell renal cell carcinoma (RCC) patients motivated us to verify the feasibility of this glycopeptide as a novel biomarker of RCC. To determine the precise N-glycan structure attached to Asn374, whether A2G2S2 is composed of the Neu5Acα2,3Gal or/and the Neu5Acα2,6Gal moiety, we synthesized key glycopeptides having one of the two putative isomers. Selective reaction monitoring assay using synthetic glycopeptides as calibration standards allowed "top-down glycopeptidomics" for the absolute quantitation of targeted label-free glycopeptides in a range from 313.3 to 697.5 nM in the complex tryptic digests derived from serum samples of RCC patients and healthy controls. Our results provided evidence that the Asn374 residue of human clusterin is modified dominantly with the Neu5Acα2,6Gal structure and the levels of clusterin bearing an A2G2S2 with homo Neu5Acα2,6Gal terminals at Asn374 decrease significantly in RCC patients as compared with healthy controls. The present study elicits that a new strategy integrating the bottom-up glycoproteomics with top-down glycopeptidomics using structure-defined synthetic glycopeptides enables the confident identification and quantitation of the glycopeptide targets pre-determined by the existing methods for intact glycopeptide profiling.
Collapse
Affiliation(s)
- Kouta Shiratori
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yasuhiro Yokoi
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| | - Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Nozomi Hirane
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Michiru Otaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Tohru Yoneyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shingo Hatakeyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Satoshi Kimura
- Department of Laboratory Medicine and Central Clinical Laboratory, Showa University, Northern Yokohama Hospital Yokohama 224-8503 Japan
| | - Chikara Ohyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| |
Collapse
|
32
|
Zhang J, Zhu Y, Zhang W, Mu W. Efficient Production of a Functional Human Milk Oligosaccharide 3'-Sialyllactose in Genetically Engineered Escherichia coli. ACS Synth Biol 2022; 11:2837-2845. [PMID: 35802806 DOI: 10.1021/acssynbio.2c00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
3'-Sialyllactose (3'-SL) is one of the most important and simplest sialylated human milk oligosaccharides. In this study, a plasmid-based pathway optimization along with chromosomal integration strategies was applied for 3'-SL production. Specifically, the precursor CMP-Neu5Ac synthesis pathway genes and α2,3-sialyltransferase-encoding gene were introduced into Escherichia coli BL21(DE3)ΔlacZ to realize 3'-SL synthesis. Genes nanA and nanK involved in Neu5Ac catabolism were further deleted to reduce the metabolic flux of competitive pathway. Several α2,3-sialyltransferases from different species were selected to evaluate the sialylation effect. The precursor pools were balanced and improved by optimizing key enzyme expression involved in the UDP-GlcNAc and CMP-Neu5Ac synthesis pathway. Finally, an additional α2,3-sialyltransferase expression cassette was integrated into chromosome to maximize 3'-SL synthesis, and 4.5 g/L extracellular 3'-SL was produced at a shake-flask level. The extracellular 3'-SL concentration was raised to 23.1 g/L in a 5 L bioreactor fermentation, which represents the highest extracellular value ever reported.
Collapse
Affiliation(s)
- Jiameng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
33
|
Protein Engineering of Pasteurella multocida α2,3-Sialyltransferase with Reduced α2,3-Sialidase Activity and Application in Synthesis of 3′-Sialyllactose. Catalysts 2022. [DOI: 10.3390/catal12060579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sialyltransferases are key enzymes for the production of sialosides. The versatility of Pasteurella multocida α2,3-sialyltransferase 1 (PmST1) causes difficulties in the efficient synthesis of α2,3-linked sialylatetd compounds, especial its α2,3-sialidase activity. In the current study, the α2,3-sialidase activity of PmST1 was further reduced by rational design-based protein engineering. Three double mutants PMG1 (M144D/R313Y), PMG2 (M144D/R313H) and PMG3 (M144D/R313N) were designed and constructed using M144D as the template and kinetically investigated. In comparison with M144D, the α2,3-sialyltransferase activity of PMG2 was enhanced by 1.4-fold, while its α2,3-sialidase activity was reduced by 4-fold. Two PMG2-based triple mutants PMG2-1 (M144D/R313H/T265S) and PMG2-2 (M144D/R313H/E271F) were then designed, generated and characterized. Compared with PMG2, triple mutants showed slightly improved α2,3-sialyltransferase activity, but their α2,3-sialidase activities were increased by 2.1–2.9 fold. In summary, PMG2 was used for preparative-scale production of 3′-SL (3′-sialyllactose) with a yield of >95%. These new PmST1 mutants could be potentially utilized for efficient synthesis of α2,3-linked sialosides. This work provides a guide to designing and constructing efficient sialyltransferases.
Collapse
|
34
|
Engineering Bifidobacterium longum Endo-α-N-acetylgalactosaminidase for Neu5Acα2-3Galβ1-3GalNAc reactivity on Fetuin. Arch Biochem Biophys 2022; 725:109280. [DOI: 10.1016/j.abb.2022.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
35
|
Unione L, Moure MJ, Lenza MP, Oyenarte I, Ereño‐Orbea J, Ardá A, Jiménez‐Barbero J. The SARS-CoV-2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angew Chem Int Ed Engl 2022; 61:e202201432. [PMID: 35191576 PMCID: PMC9074024 DOI: 10.1002/anie.202201432] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/07/2023]
Abstract
The interaction of the SARS CoV2 spike glycoprotein with two sialic acid-containing trisaccharides (α2,3 and α2,6 sialyl N-acetyllactosamine) has been demonstrated by NMR. The NMR-based distinction between the signals of those sialic acids in the glycans covalently attached to the spike protein and those belonging to the exogenous α2,3 and α2,6 sialyl N-acetyllactosamine ligands has been achieved by synthesizing uniformly 13 C-labelled trisaccharides at the sialic acid and galactose moieties. STD-1 H,13 C-HSQC NMR experiments elegantly demonstrate the direct interaction of the sialic acid residues of both trisaccharides with additional participation of the galactose moieties, especially for the α2,3-linked analogue. Additional experiments with the spike protein in the presence of a specific antibody for the N-terminal domain and with the isolated receptor binding and N-terminal domains of the spike protein unambiguously show that the sialic acid binding site is located at the N-terminal domain.
Collapse
Affiliation(s)
- Luca Unione
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - María J. Moure
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - Maria Pia Lenza
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - Iker Oyenarte
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - June Ereño‐Orbea
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
| | - Ana Ardá
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
| | - Jesús Jiménez‐Barbero
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
- Department of Organic ChemistryII Faculty of Science and Technology University of the Basque Country, EHU-UPV48940LeioaSpain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES)28029MadridSpain
| |
Collapse
|
36
|
Yadav PK, Haruehanroengra P, Irani S, Wang T, Ansari A, Sheng J, Hussain MM. Novel efficacious microRNA-30c analogs reduce apolipoprotein B secretion in human hepatoma and primary hepatocyte cells. J Biol Chem 2022; 298:101813. [PMID: 35278429 PMCID: PMC8980335 DOI: 10.1016/j.jbc.2022.101813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
Abstract
High plasma lipid levels have been demonstrated to increase cardiovascular disease risk. Despite advances in treatments to decrease plasma lipids, additional therapeutics are still needed because many people are intolerant or nonresponsive to these therapies. We previously showed that increasing cellular levels of microRNA-30c (miR-30c) using viral vectors or liposomes reduces plasma lipids and atherosclerosis. In this study, we aimed to synthesize potent miR-30c analogs that can be delivered to hepatoma cells without the aid of viral vectors and lipid emulsions. We hypothesized that modification of the passenger strand of miR-30c would increase the stability of miR-30c and augment its delivery to liver cells. Here, we report the successful synthesis of a series of miR-30c analogs by using different chemically modified nucleosides. In these analogs, we left the active sense strand untouched so that its biological activity remained unaltered, and we modified the passenger strand of miR-30c to enhance the stability and uptake of miR-30c by hepatoma cells through phosphorothiorate linkages and the addition of GalNAc. We show that these analogs significantly reduced apolipoprotein B secretion in Huh-7 human hepatoma cells and human primary hepatocytes without affecting apolipoprotein A1 secretion and cellular lipid levels. Our results provide a proof of concept that the passenger strand of miR-30c can be modified to increase its stability and delivery to cells while retaining the potency of the sense strand. We anticipate these miR-30c analogs will be useful in the development of more efficacious analogs for the treatment of hyperlipidemias and cardiovascular diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadav
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | - Sarah Irani
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY USA
| | - Ting Wang
- Department of Chemistry, The RNA Institute, University at Albany, SUNY, Albany, NY 12222, USA
| | - Abulaish Ansari
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, SUNY, Albany, NY 12222, USA.
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY USA; VA New York Harbor Healthcare System, Brooklyn, NY 11209, USA.
| |
Collapse
|
37
|
Unione L, Moure MJ, Lenza MP, Oyenarte I, Ereño‐Orbea J, Ardá A, Jiménez‐Barbero J. The SARS‐CoV‐2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luca Unione
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - María J. Moure
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Maria Pia Lenza
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Iker Oyenarte
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - June Ereño‐Orbea
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
| | - Ana Ardá
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
| | - Jesús Jiménez‐Barbero
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
- Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES) 28029 Madrid Spain
| |
Collapse
|
38
|
Chao Q, Li T, Jia JX, Li Z, Peng P, Gao XD, Wang N. Spore-Encapsulating Glycosyltransferase Catalysis Tandem Reactions: Facile Chemoenzymatic Synthesis of Complex Human Glycans. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qiang Chao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Ji-Xiang Jia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
39
|
Wang J, Lu D, Sun R, Lei S, Luo S, Dang X, Zhang Y, Yuan C, Zhang Y, Wu J, Yang G, Fu L, Jiang F. One-Pot Enzymatic Synthesis and Biological Evaluation of Ganglioside GM3 Derivatives as Potential Cancer Immunotherapeutics. J Med Chem 2022; 65:1883-1897. [PMID: 35073068 DOI: 10.1021/acs.jmedchem.1c01301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Recent research studies have revealed that GM3 derivatives have considerable promise as potential therapeutic agents for cancer. To discover novel GM3 derivatives as potential antitumor agents, a one-pot enzymatic synthesis was established, yielding 14 GM3 derivatives in high total yields (22-41%). Subsequently, the inhibitory activities of GM3 derivatives were assessed by wound-healing assays and Transwell assays and tumor-bearing animal models. Among all the GM3 derivatives, N-12 showed excellent migration and invasion inhibitory effects in cells and marked antitumor activity in C57BL/6 mice. The subsequent analysis of cancer tissues and serum samples revealed that N-12 induces tumor inhibition, which was closely related to immune response. Taken together, N-12 can be further developed as an effective therapeutic for the treatment of cancer. An RNA-sequencing (RNA-seq) analysis was then performed and indicated that the antitumor mechanism of N-12 involved focal adhesion and ECM-receptor interaction signaling pathways.
Collapse
Affiliation(s)
- Juntao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Ran Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Shuhua Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Xin Dang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Chang Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Yong Zhang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Guangyu Yang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Faqin Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| |
Collapse
|
40
|
Dong H, Gao Y, Huang X, Wu X. Synthesis of sialic acid conjugates of the clinical near-infrared dye as next-generation theranostics for cancer phototherapy. J Mater Chem B 2022; 10:927-934. [PMID: 35060591 PMCID: PMC9112073 DOI: 10.1039/d1tb02693c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer is a multifaceted global health problem that requires continuous action to develop next-generation cancer theranostics. Inspired by the emerging use of indocyanine green (ICG), the only clinically approved near-infrared (NIR) dye for cancer phototherapy, here we synthesized two ICG conjugate theranostics by coupling ICG to sialic acid (Sia) through the C2 and C9 positions of Sia, respectively, referred to as Sia-C2-ICG and Sia-C9-ICG. Encouragingly, Sia-C2/C9-ICGs show superior in vitro properties, including enhanced stability, reduced non-specific binding to serum proteins, and improved blood compatibility, highlighting the benefits of Sia coupling. Notably, in vivo NIR imaging shows that Sia-C9-ICG significantly promotes tumor targeting and effectively prolongs the circulation time in the body, while Sia-C2-ICG is superior to ICG but inferior to Sia-C9-ICG in targeting tumors. Furthermore, Sia-C9-ICG combined with NIR laser irradiation can lead to excellent photothermal and photodynamic therapies for cancer cells, resulting in superior solid tumor ablation. To our knowledge, this is the first report of Sia-NIR conjugates achieving significant tumor reduction in vivo. Together, these advances render Sia-C9-ICG an attractive lead as next-generation cancer theranostics that can be translated clinically to treat human patients.
Collapse
Affiliation(s)
- Huiling Dong
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong 266237, China.
| | - Yanan Gao
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong 266237, China.
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong 266237, China.
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
41
|
Yang X, Yu H, Yang X, Kooner AS, Yuan Y, Luu B, Chen X. One-pot multienzyme (OPME) chemoenzymatic synthesis of brain ganglioside glycans with human ST3GAL II expressed in E. coli. ChemCatChem 2022; 14:e202101498. [PMID: 35784007 PMCID: PMC9249095 DOI: 10.1002/cctc.202101498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A human sialyltransferase ST3GAL II (hST3GAL II) was successfully expressed in Escherichia coli as an active soluble fusion protein with an N-terminal maltose-binding protein (MBP) and a C-terminal hexa-histidine tag. It was used as an efficient catalyst in a one-pot multienzyme (OPME) sialylation system for high-yield production of the glycans of ganglioside GM1b and highly sialylated brain gangliosides GD1a and GT1b. Further sialylation of GM1b and GD1a glycans using a bacterial α2-8-sialyltransferase in another OPME sialylation reaction led to the formation of the glycans of GD1c and brain ganglioside GT1a, respectively. The lower reverse glycosylation activity of the recombinant hST3GAL II compared to its bacterial sialyltransferase counterpart simplifies the handling of enzymatic synthetic reactions and has an advantage for future use in automated chemoenzymatic synthetic processes.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Anoopjit Singh Kooner
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Yue Yuan
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Bryant Luu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States,, homepage URL: https://chemistry.ucdavis.edu/people/xi-chen
| |
Collapse
|
42
|
Cui T, Man Y, Wang F, Bi S, Lin L, Xie R. Glycoenzyme Tool Development: Principles, Screening Methods, and Recent Advances
†. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| | - Yi Man
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| | - Feifei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| | - Shuyang Bi
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 China
| | - Liang Lin
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| |
Collapse
|
43
|
Koide R, Hirane N, Kambe D, Yokoi Y, Otaki M, Nishimura SI. Antiadhesive nanosome elicits role of glycocalyx of tumor cell-derived exosomes in the organotropic cancer metastasis. Biomaterials 2021; 280:121314. [PMID: 34906850 DOI: 10.1016/j.biomaterials.2021.121314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Despite emerging importance of tumor cells-derived exosomes in cancer metastasis, the heterogeneity of exosome populations has largely hampered systemic characterization of their molecular composition, biogenesis, and functions. This study communicates a novel method for predicting and targeting pre-metastatic sites based on an exosome model "fluorescent cancer glyconanosomes" displaying N-glycans of cultured tumor cells. Glycoblotting by antiadhesive quantum dots provides a nice tool to shed light on the pivotal functions of the glycocalyx reconstructed from four cancer cell types without bias due to other compositions of exosomes. In vivo imaging revealed that circulation, clearance, and organotropic biodistribution of cancer glyconanosomes in mice depend strongly on cancer cell-type-specific N-glycosylation patterns, the compositions of key glycotypes, particularly dominant abundances of high mannose-type N-glycans and the position-specific sialylation. Notably, organ biodistribution of cancer glyconanosomes is reproducible artificially by mimicking cancer cell-type-specific N-glycosylation patterns, demonstrating that nanosomal glycoblotting method serves as promising tools for predicting and targeting pre-metastatic sites determined by the glycocalyx of extracellular vesicles disseminated from the primary cancer site.
Collapse
Affiliation(s)
- Ryosuke Koide
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Nozomi Hirane
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Daiki Kambe
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasuhiro Yokoi
- ENU Pharma, Co., Ltd., N7 W6, Kita-ku, Sapporo, 060-0807, Japan
| | - Michiru Otaki
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan; ENU Pharma, Co., Ltd., N7 W6, Kita-ku, Sapporo, 060-0807, Japan.
| |
Collapse
|
44
|
Yuge S, Tateishi A, Numata K, Ohmae M. Chemoenzymatic Synthesis of Sialyl Sulfo-Oligosaccharides as Potent Siglec-8 Ligands via Transglycosylation Catalyzed by Keratanase II. Biomacromolecules 2021; 23:316-325. [PMID: 34914356 DOI: 10.1021/acs.biomac.1c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sialyl type-II sulfo-oligosaccharides are gaining much attention as bioactive ligands for Siglecs. In this study, we have achieved the first synthesis of sialyl type-II sulfo-oligosaccharides chemoenzymatically by utilizing the transglycosylation activity of keratanase II. The oxazoline derivative of α(2→3)-sialylated 6,6'-di-sulfo-LacNAc (3) was newly designed as the glycosyl donor for enzymatic transglycosylation. Keratanase II efficiently catalyzed the transglycosylation of 3 with two kinds of glycosyl acceptors, 6-sulfo-Lewis X and 6,6'-di-sulfo-LacNAc derivatives, providing sialyl sulfo-hexasaccharide (1) and sialyl sulfo-pentasaccharide (2) with 86 and 95% yields, respectively. The products 1 and 2 showed higher affinity to Siglec-8 with KD 70 and 25 μmol·L-1, respectively, compared to the known ligand of the α(2→3)-sialylated 6,6'-di-sulfo-Lewis X with KD 185 μmol·L-1. Thus, this study will advance not only the study of Siglec-8 biology but also the exploration of functions of sialyl sulfo-oligosaccharides having various microstructures.
Collapse
Affiliation(s)
- Shiori Yuge
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ayaka Tateishi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
45
|
Li Z, Kitov PI, Kitova EN, Bui DT, Moremen KW, Wakarchuk WW, Mahal LK, Macauley MS, Klassen JS. Quantifying Carbohydrate-Active Enzyme Activity with Glycoprotein Substrates Using Electrospray Ionization Mass Spectrometry and Center-of-Mass Monitoring. Anal Chem 2021; 93:15262-15270. [PMID: 34752696 DOI: 10.1021/acs.analchem.1c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrate-active enzymes (CAZymes) play critical roles in diverse physiological and pathophysiological processes and are important for a wide range of biotechnology applications. Kinetic measurements offer insight into the activity and substrate specificity of CAZymes, information that is of fundamental interest and supports diverse applications. However, robust and versatile kinetic assays for monitoring the kinetics of intact glycoprotein and glycolipid substrates are lacking. Here, we introduce a simple but quantitative electrospray ionization mass spectrometry (ESI-MS) method for measuring the kinetics of CAZyme reactions involving glycoprotein substrates. The assay, referred to as center-of-mass (CoM) monitoring (CoMMon), relies on continuous (real-time) monitoring of the CoM of an ensemble of glycoprotein substrates and their corresponding CAZyme products. Notably, there is no requirement for calibration curves, internal standards, labeling, or mass spectrum deconvolution. To demonstrate the reliability of CoMMon, we applied the method to the neuraminidase-catalyzed cleavage of N-acetylneuraminic acid (Neu5Ac) residues from a series of glycoproteins of varying molecular weights and degrees of glycosylation. Reaction progress curves and initial rates determined with CoMMon are in good agreement (initial rates within ≤5%) with results obtained, simultaneously, using an isotopically labeled Neu5Ac internal standard, which enabled the time-dependent concentration of released Neu5Ac to be precisely measured. To illustrate the applicability of CoMMon to glycosyltransferase reactions, the assay was used to measure the kinetics of sialylation of a series of asialo-glycoproteins by a human sialyltransferase. Finally, we show how combining CoMMon and the competitive universal proxy receptor assay enables the relative reactivity of glycoprotein substrates to be quantitatively established.
Collapse
Affiliation(s)
- Zhixiong Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
46
|
Chinoy ZS, Montembault E, Moremen KW, Royou A, Friscourt F. Impacting Bacterial Sialidase Activity by Incorporating Bioorthogonal Chemical Reporters onto Mammalian Cell-Surface Sialosides. ACS Chem Biol 2021; 16:2307-2314. [PMID: 34590826 DOI: 10.1021/acschembio.1c00469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioorthogonal chemical reporters, in synergy with click chemistry, have emerged as a key technology for tagging complex glycans in living cells. This strategy relies on the fact that bioorthogonal chemical reporters are highly reactive species while being biologically noninvasive. Here, we report that chemical reporters and especially sydnones may have, on the contrary, enormous impact on biomolecule processing enzymes. More specifically, we show that editing cell-surface sialic acid-containing glycans (sialosides) with bioorthogonal chemical reporters can significantly affect the activity of bacterial sialidases, enzymes expressed by bacteria during pathogenesis for cleaving sialic acid sugars from mammalian cell-surface glycans. Upon screening various chemical reporters, as well as their position on the sialic acid residue, we identified that pathogenic bacterial sialidases were unable to cleave sialosides displaying a sydnone at the 5-position of sialic acids in vitro as well as in living cells. This study highlights the importance of investigating more systematically the metabolic fate of glycoconjugates modified with bioorthogonal reporters.
Collapse
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut des Sciences Moléculaires, CNRS UMR5255, 33405 Talence, France
| | - Emilie Montembault
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 33077 Bordeaux, France
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Anne Royou
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 33077 Bordeaux, France
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut des Sciences Moléculaires, CNRS UMR5255, 33405 Talence, France
| |
Collapse
|
47
|
Kooner AS, Diaz S, Yu H, Santra A, Varki A, Chen X. Chemoenzymatic Synthesis of Sialosides Containing 7- N- or 7,9-Di- N-acetyl Sialic Acid as Stable O-Acetyl Analogues for Probing Sialic Acid-Binding Proteins. J Org Chem 2021; 86:14381-14397. [PMID: 34636559 DOI: 10.1021/acs.joc.1c01091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel chemoenzymatic synthon strategy has been developed to construct a comprehensive library of α2-3- and α2-6-linked sialosides containing 7-N- or 7,9-di-N-acetyl sialic acid, the stable analogue of naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl-sialic acid. Diazido and triazido-mannose derivatives that were readily synthesized chemically from inexpensive galactose were shown to be effective chemoenzymatic synthons. Together with bacterial sialoside biosynthetic enzymes with remarkable substrate promiscuity, they were successfully used in one-pot multienzyme (OPME) sialylation systems for highly efficient synthesis of sialosides containing multiple azido groups. Conversion of the azido groups to N-acetyl groups generated the desired sialosides. The hydrophobic and UV-detectable benzyloxycarbonyl (Cbz) group introduced in the synthetic acceptors of sialyltransferases was used as a removable protecting group for the propylamine aglycon of the target sialosides. The resulting N-acetyl sialosides were novel stable probes for sialic acid-binding proteins such as plant lectin MAL II, which bond strongly to sialyl T antigens with or without an N-acetyl at C7 or at both C7 and C9 in the sialic acid.
Collapse
Affiliation(s)
- Anoopjit Singh Kooner
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Sandra Diaz
- Department of Medicine, University of California, San Diego, California 92093, United States.,Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California 92093, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California 92093, United States.,Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
48
|
Wu X, Ye J, DeLaitsch AT, Rashidijahanabad Z, Lang S, Kakeshpour T, Zhao Y, Ramadan S, Saavedra PV, Yuzbasiyan-Gurkan V, Kavunja H, Cao H, Gildersleeve JC, Huang X. Chemoenzymatic Synthesis of 9NHAc-GD2 Antigen to Overcome the Hydrolytic Instability of O-Acetylated-GD2 for Anticancer Conjugate Vaccine Development. Angew Chem Int Ed Engl 2021; 60:24179-24188. [PMID: 34469031 PMCID: PMC8545922 DOI: 10.1002/anie.202108610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Indexed: 11/08/2022]
Abstract
Ganglioside GD2 is an attractive tumor-associated carbohydrate antigen for anti-cancer vaccine development. However, its low immunogenicity and the significant side effects observed with anti-GD2 antibodies present significant obstacles for vaccines. To overcome these, a new GD2 derivative bearing an N-acetamide (NHAc) at its non-reducing end neuraminic acid (9NHAc-GD2) has been designed to mimic the 9-O-acetylated-GD2 (9OAc-GD2), a GD2 based antigen with a restricted expression on tumor cells. 9NHAc-GD2 was synthesized efficiently via a chemoenzymatic method and subsequently conjugated with a powerful carrier bacteriophage Qβ. Mouse immunization with the Qβ-9NHAc-GD2 conjugate elicited strong and long-lasting IgG antibodies, which were highly selective toward 9NHAc-GD2 with little cross-recognition of GD2. Immunization of canines with Qβ-9NHAc-GD2 showed the construct was immunogenic in canines with little adverse effects, paving the way for future clinical translation to humans.
Collapse
Affiliation(s)
- Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 266237, China
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jinfeng Ye
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 266237, China
| | - Andrew T DeLaitsch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tayeb Kakeshpour
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuetao Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya, 13518, Egypt
| | - Paulo Vilar Saavedra
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Herbert Kavunja
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Iaso Therapeutics, 4942 Dawn Avenue, East Lansing, MI, 48823, USA
| | - Hongzhi Cao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
49
|
Wu X, Ye J, DeLaitsch AT, Rashidijahanabad Z, Lang S, Kakeshpour T, Zhao Y, Ramadan S, Saavedra PV, Yuzbasiyan‐Gurkan V, Kavunja H, Cao H, Gildersleeve JC, Huang X. Chemoenzymatic Synthesis of 9NHAc‐GD2 Antigen to Overcome the Hydrolytic Instability of
O
‐Acetylated‐GD2 for Anticancer Conjugate Vaccine Development. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuanjun Wu
- National Glycoengineering Research Center Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI 48824 USA
| | - Jinfeng Ye
- National Glycoengineering Research Center Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Andrew T. DeLaitsch
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Frederick MD USA
| | - Zahra Rashidijahanabad
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI 48824 USA
| | - Shuyao Lang
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI 48824 USA
| | - Tayeb Kakeshpour
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Yuetao Zhao
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI 48824 USA
- School of Life Sciences Central South University Changsha Hunan 410013 China
| | - Sherif Ramadan
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI 48824 USA
- Chemistry Department Faculty of Science Benha University Benha Qaliobiya 13518 Egypt
| | - Paulo Vilar Saavedra
- Department of Small Animal Clinical Sciences Michigan State University East Lansing MI 48824 USA
| | - Vilma Yuzbasiyan‐Gurkan
- Department of Microbiology and Molecular Genetics Michigan State University East Lansing MI 48824 USA
| | - Herbert Kavunja
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
- Iaso Therapeutics 4942 Dawn Avenue East Lansing MI 48823 USA
| | - Hongzhi Cao
- National Glycoengineering Research Center Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Frederick MD USA
| | - Xuefei Huang
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
- Institute for Quantitative Health Science and Engineering Michigan State University East Lansing MI 48824 USA
- Department of Biomedical Engineering Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
50
|
Li T, Wang X, Dong P, Yu P, Zhang Y, Meng X. Chemoenzymatic synthesis and biological evaluation of ganglioside GM3 and lyso-GM3 as potential agents for cancer therapy. Carbohydr Res 2021; 509:108431. [PMID: 34492428 DOI: 10.1016/j.carres.2021.108431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
A highly efficient chemoenzymatic method for synthesizing ganglioside GM3 and lyso-GM3 was reported here. Enzymatic extension of the chemically synthesized lactosyl sphingosine using efficient one-pot multienzyme (OPME) reaction allowed glycosylation to be carried out in aqueous solutions realizing the greening of reactions. Ganglioside GM3 was synthesized through 10 steps with a total yield of 22%. Lyso-GM3 was very useful for kinds of derivatization. The anti-proliferation activity studies demonstrated that these compounds 14-16 with sphingosine exhibited more potency than the corresponding lyso-GM3 with ceramide. All ganglioside GM3 and lyso-GM3 can effectively inhibit the migration of melanoma B16-F10 cells. These chemoenzymaticlly synthesized GM3 and lyso-GM3 exhibited antitumor activities, which can provide valuable sights to search new antitumor agents for cancer therapy.
Collapse
Affiliation(s)
- Tingshen Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China
| | - Xiaodan Wang
- School of Pharmaceutical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, PR China
| | - Peijie Dong
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China
| | - Yongmin Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 Place Jussieu, 75005, Paris, France
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China.
| |
Collapse
|