1
|
Postal K, Santana FS, Hughes DL, Rüdiger AL, Ribeiro RR, Sá EL, de Souza EM, Soares JF, Nunes GG. Stability in solution and chemoprotection by octadecavanadates(IV/V) in E. coli cultures. J Inorg Biochem 2021; 219:111438. [PMID: 33823363 DOI: 10.1016/j.jinorgbio.2021.111438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 11/25/2022]
Abstract
Two mixed-valence octadecavanadates, (NH4)2(Me4N)5[VIV12VV6O42I]·Me4NI·5H2O (V18I) and [{K6(OH2)12VIV11VV7O41(PO4)·4H2O}n] (V18P), were synthesized and characterized by single-crystal X-ray diffraction analysis and FTIR, Raman, 51V NMR, EPR and UV/Vis/NIR spectroscopies. The chemoprotective activity of V18I and V18P towards the alkylating agent diethyl sulfate was assessed in E. coli cultures. The complex V18I was nontoxic in concentrations up to 5.0 mmol L-1, while V18P presented moderate toxicity in the concentration range 0.10 - 10 mmol L-1. Conversely, a ca. 35% enhancement in culture growth as compared to cells treated only with diethyl sulfate was observed upon addition of V18I (0.10 to 2.5 mmol L-1), while the combination of diethyl sulfate with V18P increased the cytotoxicity presented by diethyl sulfate alone. 51V NMR and EPR speciation studies showed that V18I is stable in solution, while V18P suffers partial breakage to give low nuclearity oxidometalates of vanadium(V) and (IV). According to the results, the chemoprotective effect depends strongly on the direct reactivity of the polyoxidovanadates (POV) towards the alkylating agent. The reaction of diethyl sulfate with V18I apparently produces a new, rearranged POV instead of poorly-reactive breakage products, while V18P shows the formation and subsequent consumption of low-nuclearity species. The correlation of this chemistry with that of other mixed-valence polyoxidovanadates, [H6VIV2VV12O38PO4]5- (V14) and [VIV8VV7O36Cl]6- (V15), suggests a relationship between stability in solution and chemoprotective performance.
Collapse
Affiliation(s)
- Kahoana Postal
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - André L Rüdiger
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ronny R Ribeiro
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo L Sá
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jaísa F Soares
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Giovana G Nunes
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Postal K, Maluf DF, Valdameri G, Rüdiger A, Hughes DL, de Sá EL, Ribeiro RR, de Souza EM, Soares JF, Nunes GG. Chemoprotective activity of mixed valence polyoxovanadates against diethylsulphate in E. coli cultures: insights from solution speciation studies. RSC Adv 2016. [DOI: 10.1039/c6ra15826a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell survival after treatment with dimethylsulphate in the presence of polyoxovanadates.
Collapse
Affiliation(s)
- K. Postal
- Departamento de Química
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - D. F. Maluf
- Departamento de Química
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - G. Valdameri
- Departamento de Bioquímica e Biologia Molecular
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - A. L. Rüdiger
- Departamento de Química
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - D. L. Hughes
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| | - E. L. de Sá
- Departamento de Química
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - R. R. Ribeiro
- Departamento de Química
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - E. M. de Souza
- Departamento de Bioquímica e Biologia Molecular
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - J. F. Soares
- Departamento de Química
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| | - G. G. Nunes
- Departamento de Química
- Universidade Federal do Paraná
- 81530-900 – Curitiba-PR
- Brazil
| |
Collapse
|
3
|
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 2015; 35 Suppl:S5-S24. [PMID: 25869442 PMCID: PMC4600419 DOI: 10.1016/j.semcancer.2015.03.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Collapse
Affiliation(s)
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Giovanna Damia
- Department of Oncology, Instituti di Ricovero e Cura a Carattere Scientifico-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, United States
| | | | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Asfar S Azmi
- Department of Biology, University of Rochester, Rochester, United States
| | - Dipita Bhakta
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Department of Research & Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | | | - Hiromasa Fujii
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Gunjan Guha
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | - Satya Prakash
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada.
| |
Collapse
|
4
|
Richtera L, Jancik V, Martínez-Otero D, Pokluda A, Zak Z, Taraba J, Touzin J. Taming the oxidative power of SeO(3) in 1,4-dioxane, isolation of two new isomers of mixed-valence selenium oxides, and two unprecedented cyclic esters of selenic acid. Inorg Chem 2014; 53:6569-77. [PMID: 24940821 DOI: 10.1021/ic500137z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reaction of (SeO3)4 with 1,4-dioxane (diox, dioxane) with or without diluting solvent led to the isolation of the unprecedented esters of selenic acid-1,2-ethyl selenate (CH2O)2SeO2 and the glyoxal diselenate O2Se[(OCHO)2]SeO2. It was possible to isolate an unknown dimeric form of Se2O5 (Se4O10·(diox)2) and a geometrical isomer of the mixed-valence oxide trans-Se3O7, both stabilized by dioxane. The dioxane adduct of monomeric selenium trioxide SeO3·diox was obtained from the reaction of (SeO3)4 with dioxane in liquid SO2. The reaction mechanism for the formation of these compounds was elucidated, and the molecular structure of the unstable form of the selenium trioxide was determined, consisting in a trimeric arrangement (SeO3)3.
Collapse
Affiliation(s)
- Lukas Richtera
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology , Purkynova 118, 612 00 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
5
|
Kundu S, Maity S, Maity AN, Ke SC, Ghosh P. Stabilization of oxidovanadium(iv) by organic radicals. Dalton Trans 2013; 42:4586-601. [DOI: 10.1039/c2dt32693k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Water extracts of tree Hypericum sps. protect DNA from oxidative and alkylating damage and enhance DNA repair in colon cells. Food Chem Toxicol 2013; 51:80-6. [DOI: 10.1016/j.fct.2012.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 02/07/2023]
|
7
|
Nunes GG, Bonatto AC, de Albuquerque CG, Barison A, Ribeiro RR, Back DF, Andrade AVC, de Sá EL, Pedrosa FDO, Soares JF, de Souza EM. Synthesis, characterization and chemoprotective activity of polyoxovanadates against DNA alkylation. J Inorg Biochem 2012; 108:36-46. [DOI: 10.1016/j.jinorgbio.2011.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/31/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
8
|
|
9
|
Roy AS, Saha P, Adhikary ND, Ghosh P. o-Iminobenzosemiquinonate and o-imino-p-methylbenzosemiquinonate anion radicals coupled VO2+ stabilization. Inorg Chem 2011; 50:2488-500. [PMID: 21348449 DOI: 10.1021/ic102296p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diamagnetic VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-), R = H, Me) complexes, (L(-))(VO(2+))(L(R)(IS)(•-)): (L(1)(-))(VO(2+))(L(H)(IS)(•-))•3/2MeOH (1•3/2MeOH), (L(2)(-))(VO(2+))(L(H)(IS)(•-)) (2), and (L(2)(-))(VO(2+))(L(Me)(IS)(•-))•1/2 L(Me)(AP) (3•1/2 L(Me)(AP)), incorporating tridentate monoanionic NNO-donor ligands {L = L(1)(-) or L(2)(-), L(1)H = (2-[(phenylpyridin-2-yl-methylene)amino]phenol; L(2)H = 1-(2-pyridylazo)-2-naphthol; L(H)(IS)(•-) = o-iminobenzosemiquinonate anion radical; L(Me)(IS)(•-) = o-imino-p-methylbenzosemiquinonate anion radical; and L(Me)(AP) = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass, NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 L(Me)(AP). Complexes 1•3/2MeOH, 2, and 3•1/2 L(Me)(AP) absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λ(ext), 333 nm; λ(em), 522, 553 nm) in frozen dichloromethane-toluene glass at 77 K due to π(diimine→)π(diimine)* transition. The V-O(phenolato) (cis to the V═O) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP) are consistent with the VO(2+) description. The V-O(iminosemiquinonate) (trans to the V═O) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 L(Me)(AP), are expectedly ∼0.20 Å longer due to the trans influence of the V═O bond. Because of the stronger affinity of the paramagnetic VO(2+) ion to the L(H)(IS)(•-) or L(Me)(IS)(•-), the V-N(iminosemiquinonate) lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP), are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination) of these complexes are unstable with respect to triplet perturbations. But BS (1,1) M(s) = 0 (VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-)) coordination) solutions of these species are stable and reproduce the experimental bond parameters well. Spin density distributions of one electron oxidized cations are consistent with the [(L(-))(VO(2+))(L(R)(IQ))](+) descriptions [VO(2+)-o-iminobenzoquinone (L(R)(IQ)) coordination], and one electron reduced anions are consistent with the [(L(•2-))(VO(3+))(L(R)(AP)(2-))](-) descriptions [VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination], incorporating the diimine anion radical (L(1)(•2-)) or azo anion radical (L(2)(3-)). Although, cations and anions are not isolable, but electro-and spectro-electrochemical experiments have shown that 3(+) and 3(-) ions are more stable than 1(+), 2(+) and 1(-), 2(-) ions. In all cases, the reductions occur with simultaneous two electron transfer, may be due to formation of coupled diimine/azo anion radical-VO(2+) species as in [(L(•2-))(VO(2+))(L(R)(AP)(2-))](2-).
Collapse
Affiliation(s)
- Amit Saha Roy
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | | | | | | |
Collapse
|
10
|
Werncke CG, Limberg C, Knispel C, Metzinger R, Braun B. Haloperoxidase Activity of Oxovanadium(V) Thiobisphenolates. Chemistry 2011; 17:2931-8. [DOI: 10.1002/chem.201002890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 11/06/2022]
|
11
|
Fautch JM, Wilker JJ. Solution Speciation, Kinetics, and Observing Reaction Intermediates in the Alkylation of Oxidovanadium Compounds. Inorg Chem 2010; 49:4791-801. [PMID: 20420457 DOI: 10.1021/ic901922m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jessica M. Fautch
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| |
Collapse
|
12
|
Fautch JM, Fanwick PE, Wilker JJ. Oxidovanadium Complexes for the Consumption of Alkylating Toxins. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200800949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Samanta S, Chatterjee M, Ghosh B, Rajkumar M, Rana A, Chatterjee M. Vanadium and 1, 25 (OH)2 vitamin D3 combination in inhibitions of 1,2, dimethylhydrazine-induced rat colon carcinogenesis. Biochim Biophys Acta Gen Subj 2008; 1780:1106-14. [DOI: 10.1016/j.bbagen.2008.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
|
14
|
Chakraborty T, Chatterjee A, Rana A, Rana B, Palanisamy A, Madhappan R, Chatterjee M. Suppression of early stages of neoplastic transformation in a two-stage chemical hepatocarcinogenesis model: supplementation of vanadium, a dietary micronutrient, limits cell proliferation and inhibits the formations of 8-hydroxy-2'-deoxyguanosines and DNA strand-breaks in the liver of sprague-dawley rats. Nutr Cancer 2008; 59:228-47. [PMID: 18001218 DOI: 10.1080/01635580701615405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies from our laboratory have demonstrated the potential anticarcinogenicity of vanadium, a dietary micronutrient in rat liver, colon, and mammary carcinogenesis models in vivo. In this paper, we have investigated further the antihepatocarcinogenic role of this essential trace element by studying several biomarkers of chemical carcinogenesis with special reference to cell proliferation and oxidative DNA damage. Hepatocarcinogenesis was induced in male Sprague-Dawley rats by chronic feeding of 2-acetylaminofluorene (2-AAF) at a dose of 0.05% in basal diet daily for 5 days a week. Vanadium in the form of ammonium metavanadate (0.5 ppm equivalent to 4.27 micromol/l) was supplemented ad lib to the rats. Continuous vanadium administration reduced relative liver weight, nodular incidence (79.99%), total number and multiplicity (P < 0.001; 68.17%) along with improvement in hepatocellular architecture when compared to carcinogen control. Vanadium treatment further restored hepatic uridine diphosphate (UDP)-glucuronosyl transferase and UDP-glucose dehydrogenase activities, inhibited lipid peroxidation, and prevented the development of glycogen-storage preneoplastic foci (P < 0.01; 63.29%) in an initiation-promotion model. Long-term vanadium treatment also reduced BrdU-labelling index (P < 0.02) and inhibited cell proliferation during hepatocellular preneoplasia. Finally, short-term vanadium exposure abated the formations of 8-hydroxy-2'-deoxyguanosines (P < 0.001; 56.27%), length:width of DNA mass (P < 0.01), and the mean frequency of tailed DNA (P < 0.001) in preneoplastic rat liver. The study indicates the potential role of vanadium in suppressing cell proliferation and in preventing early DNA damage in vivo. Vanadium is chemopreventive against the early stages of 2-AAF-induced hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Calcutta 700032, West-Bengal, India
| | | | | | | | | | | | | |
Collapse
|
15
|
Samanta S, Swamy V, Suresh D, Rajkumar M, Rana B, Rana A, Chatterjee M. Protective effects of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon: Removal of O6-methylguanine DNA adducts, p53 expression, inducible nitric oxide synthase downregulation and apoptotic induction. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 650:123-31. [DOI: 10.1016/j.mrgentox.2007.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/12/2007] [Accepted: 11/04/2007] [Indexed: 12/18/2022]
|
16
|
Chakraborty T, Swamy AHMV, Chatterjee A, Rana B, Shyamsundar A, Chatterjee M. Molecular basis of vanadium-mediated inhibition of hepatocellular preneoplasia during experimental hepatocarcinogenesis in rats. J Cell Biochem 2007; 101:244-58. [PMID: 17243116 DOI: 10.1002/jcb.21169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carcinogen-induced early DNA lesions and metallothionein (MT) over-expression have been implicated in cell proliferation and thereby subsequent expression of premalignant phenotype of the cell. We have therefore investigated the chemopreventive potential of vanadium in a multi-biomarker approach, viz. 8-hydroxy-2'-deoxyguanosines (8-OHdGs), DNA single-strand breaks (SSBs), DNA-protein crosslinks (DPCs), chromosomal aberrations (CAs), in situ MT expression, and cell proliferation in rat liver preneoplasia. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal (i.p.) injection of diethylnitrosamine (DEN) (200 mg/Kg body weight) at week 4 of the experimental protocol followed by promotion with phenobarbital (PB) (0.05% in basal diet), on and from week 8 and continued till 32 weeks in a long-term regimen. There was a significant and steady elevation of modified DNA bases 8-OHdGs (P < 0.0001; 90.69%) along with substantial increments of the extent of SSBs (P < 0.001) and CAs (P < 0.001) following DEN exposure. Supplementation of vanadium at a dose of 0.5 ppm abated the formations of 8-OHdGs (80.63%; P < 0.0001), SS-DNAs (P < 0.001) and SSBs/DNA unit (P < 0.01; 56.39%), DPCs (59.26%; P < 0.0001) and CAs (71.52%; P < 0.001) in preneoplastic rat liver studied at various time points. Low dose of vanadium treatment further reduced liver-MT immunoreactivity (P < 0.05) and BrdU-labeling index (P < 0.02) and a significant positive correlation (r = 0.92; r2 = 0.85; P = 0.0001) was noted between them. Continuous vanadium administration also decreased nodular incidence (66.67%) and nodule multiplicity (62.12%; P < 0.001) along with substantial improvement in the altered hepatocellular phenotype when compared to DEN + PB treatment alone. The study indicates that vanadium-mediated suppression of cell proliferation and resulting premalignant expression might be due to the observed reductions in hepatic 8-OHdGs, SSBs, DPCs, CAs, and MT immunoreactivity. Vanadium is chemopreventive for DEN-induced hepatocellular preneoplasia in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta-700032, West-Bengal, India
| | | | | | | | | | | |
Collapse
|
17
|
Chakraborty T, Chatterjee A, Rana A, Dhachinamoorthi D, Kumar P A, Chatterjee M. Carcinogen-induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: Chemopreventive role of vanadium on this process. Biochim Biophys Acta Mol Basis Dis 2007; 1772:48-59. [PMID: 17174075 DOI: 10.1016/j.bbadis.2006.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/19/2006] [Accepted: 10/16/2006] [Indexed: 11/24/2022]
Abstract
Carcinogen-induced formation of DNA adducts and other types of DNA lesions are the critical molecular events in the initiation of chemical carcinogenesis and modulation of such events by chemopreventive agents could be an important step in limiting neoplastic transformation in vivo. Vanadium, a dietary micronutrient has been found to be effective in several types of cancers both in vivo and in vitro and also possesses profound anticarcinogenicity against rat models of mammary, colon and hepatocarcinogenesis. Presently, we report the chemopreventive potential of vanadium on diethylnitrosamine (DEN)-induced early DNA damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal (i.p.) injection of DEN (200 mg/kg body weight) at week 4. There was a significant induction of tissue-specific ethylguanines, steady elevation of modified DNA bases 8-hydroxy-2'-deoxyguanosines (8-OHdGs) (P<0.0001; 89.93%) along with substantial increment of the extent of single-strand breaks (SSBs) (P<0.0001) following DEN exposure. Supplementation of 0.5 ppm of vanadium throughout the experiment abated the formations of O(6)-ethylguanines and 7-ethylguanines (P<0.0001; 48.71% and 67.54% respectively), 8-OHdGs (P<0.0001; 81.37%), length:width (L:W) of DNA mass (P<0.01; 62.12%) and the mean frequency of tailed DNA (P<0.001; 53.58%), and hepatic nodulogenesis in preneoplastic rat liver. The study indicates that 0.5 ppm vanadium is potentially and optimally effective, as derived from dose-response studies, in limiting early molecular events and preneoplastic lesions, thereby modulating the initiation stage of hepatocarcinogenesis. Vanadium is chemopreventive against DEN-induced genotoxicity and resulting hepatocellular transformation in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta-700032, India
| | | | | | | | | | | |
Collapse
|