1
|
Yamada T, Suzuki H. Microfluidics-based stable production of monodisperse giant unilamellar vesicles by oil-phase removal from double emulsion. J Liposome Res 2024:1-7. [PMID: 39470184 DOI: 10.1080/08982104.2024.2420337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Giant liposomes, or giant unilamellar vesicles (GUVs), have been utilized as cell-size bioreactors to replicate the physical and chemical properties of biological cells. However, conventional methods for preparing GUVs typically lack precise control over their size. Several research groups have recently developed microfluidic techniques to create monodisperse GUVs by generating water-in-oil-in-water (W/O/W) droplets with a thin oil layer that subsequently transform into GUVs. However, the formation of a thin oil shell requires the intricate control of the flow rate, which can be both challenging and unstable. In this study, we investigated the design of a two-step flow-focusing microfluidic channel to produce stable W/O/W droplets. These droplets underwent substantial oil layer reduction through spontaneous removal by fluidic shear forces. Consequently, the majority of the oil layer in the W/O/W droplets was reduced, improving uniformity of GUVs.
Collapse
Affiliation(s)
- Tomoki Yamada
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
2
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Ushiyama R, Nanjo S, Tsugane M, Sato R, Matsuura T, Suzuki H. Identifying Conditions for Protein Synthesis Inside Giant Vesicles Using Microfluidics toward Standardized Artificial Cell Production. ACS Synth Biol 2024; 13:68-76. [PMID: 38032418 DOI: 10.1021/acssynbio.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
To expand the range of practical applications of artificial cells, it is important to standardize the production process of giant (cell-sized) vesicles that encapsulate reconstituted biochemical reaction systems. For this purpose, a rapidly developing microfluidics-based giant vesicle generation system is a promising approach, similar to the droplet assay systems that are already widespread in the market. In this study, we examined the composition of the solutions used to generate vesicles encapsulating the in vitro transcription-translation (IVTT) system. We show that tuning of the lipid composition and adding poly(vinyl alcohol) to the outer solution improved the stability of the transition process into the lipid membrane so that protein synthesis proceeded in vesicles. The direct integration of α-hemolysin nanopores synthesized in situ was also demonstrated. These protein-synthesizing monodisperse giant vesicles can be prepared by using a simple microfluidic fabrication/operation with a commercial IVTT system.
Collapse
Affiliation(s)
- Ryota Ushiyama
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Satoshi Nanjo
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Reiko Sato
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-i7E Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
4
|
Naghib SM, Mohammad-Jafari K. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies. Curr Top Med Chem 2024; 24:1185-1211. [PMID: 38424436 DOI: 10.2174/0115680266286460240220073334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Liposomes, spherical particles with phospholipid double layers, have been extensively studied over the years as a means of drug administration. Conventional manufacturing techniques like thin-film hydration and extrusion have limitations in controlling liposome size and distribution. Microfluidics enables superior tuning of parameters during the self-assembly of liposomes, producing uniform populations. This review summarizes microfluidic methods for engineering liposomes, including hydrodynamic flow focusing, jetting, micro mixing, and double emulsions. The precise control over size and lamellarity afforded by microfluidics has advantages for cancer therapy. Liposomes created through microfluidics and designed to encapsulate chemotherapy drugs have exhibited several advantageous properties in cancer treatment. They showcase enhanced permeability and retention effects, allowing them to accumulate specifically in tumor tissues passively. This passive targeting of tumors results in improved drug delivery and efficacy while reducing systemic toxicity. Promising results have been observed in pancreatic, lung, breast, and ovarian cancer models, making them a potential breakthrough in cancer therapy. Surface-modified liposomes, like antibodies or carbohydrates, also achieve active targeting. Overall, microfluidic fabrication improves reproducibility and scalability compared to traditional methods while maintaining drug loading and biological efficacy. Microfluidics-engineered liposomal formulations hold significant potential to overcome challenges in nanomedicine-based cancer treatment.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Kave Mohammad-Jafari
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
5
|
Sauter D, Schröter M, Frey C, Weber C, Mersdorf U, Janiesch JW, Platzman I, Spatz JP. Artificial Cytoskeleton Assembly for Synthetic Cell Motility. Macromol Biosci 2023; 23:e2200437. [PMID: 36459417 DOI: 10.1002/mabi.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Imitation of cellular processes in cell-like compartments is a current research focus in synthetic biology. Here, a method is introduced for assembling an artificial cytoskeleton in a synthetic cell model system based on a poly(N-isopropyl acrylamide) (PNIPAM) composite material. Toward this end, a PNIPAM-based composite material inside water-in-oil droplets that are stabilized with PNIPAM-functionalized and commercial fluorosurfactants is introduced. The temperature-mediated contraction/release behavior of the PNIPAM-based cytoskeleton is investigated. The reversibility of the PNIPAM transition is further examined in bulk and in droplets and it could be shown that hydrogel induced deformation could be used to controllably manipulate droplet-based synthetic cell motility upon temperature changes. It is envisioned that a combination of the presented artificial cytoskeleton with naturally occurring components might expand the bandwidth of the bottom-up synthetic biology.
Collapse
Affiliation(s)
- Désirée Sauter
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Martin Schröter
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christoph Frey
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Cornelia Weber
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Ulrike Mersdorf
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jan-Willi Janiesch
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| |
Collapse
|
6
|
Ogata Y, Kuroiwa T, Ichikawa S. Facilitated encapsulation of a nonionic contrast agent for X-ray computed tomography into lipid vesicles by the multiple emulsification-solvent evaporation method. Colloids Surf B Biointerfaces 2023; 227:113360. [PMID: 37230050 DOI: 10.1016/j.colsurfb.2023.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
We studied the encapsulation of iohexol (Ihex), a nonionic contrast agent used for X-ray computational tomography, into lipid vesicles using the multiple emulsification-solvent evaporation method to formulate a nanosized contrast agent. This lipid vesicle preparation method consists of three steps: (1) primary emulsification for producing water-in-oil (W/O) emulsions containing fine water droplets that will be converted to the internal water phase of the lipid vesicles, (2) secondary emulsification for formulating multiple water-in-oil-in-water (W/O/W) emulsions encapsulating the fine water droplets containing Ihex, and (3) solvent evaporation to remove the oil phase solvent (n-hexane) and to form lipid bilayers surrounding the fine inner droplets, resulting in the formation of lipid vesicles encapsulating Ihex. As the diameter and Ihex concentration of the primary W/O emulsion droplets decreased, a higher Ihex encapsulation yield was obtained for the final lipid vesicles. The entrapment yield of Ihex in the final lipid vesicles varied significantly with the emulsifier (Pluronic® F-68) concentration in the external water phase of W/O/W emulsion, and the highest yield (65%) was obtained when the emulsifier concentration was 0.1 wt%. We also investigated the powderization of lipid vesicles encapsulating Ihex via lyophilization. The powderized vesicles were dispersed in water after rehydration and maintained their controlled diameters. The entrapment yield of Ihex in powderized lipid vesicles was maintained for over 1 month at 25 ˚C, while significant leakage of Ihex was observed in the lipid vesicles suspended in the aqueous phase.
Collapse
Affiliation(s)
- Yumeto Ogata
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Takashi Kuroiwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan.
| | - Sosaku Ichikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
7
|
Tosaka T, Kamiya K. Function Investigations and Applications of Membrane Proteins on Artificial Lipid Membranes. Int J Mol Sci 2023; 24:ijms24087231. [PMID: 37108393 PMCID: PMC10138308 DOI: 10.3390/ijms24087231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Membrane proteins play an important role in key cellular functions, such as signal transduction, apoptosis, and metabolism. Therefore, structural and functional studies of these proteins are essential in fields such as fundamental biology, medical science, pharmacology, biotechnology, and bioengineering. However, observing the precise elemental reactions and structures of membrane proteins is difficult, despite their functioning through interactions with various biomolecules in living cells. To investigate these properties, methodologies have been developed to study the functions of membrane proteins that have been purified from biological cells. In this paper, we introduce various methods for creating liposomes or lipid vesicles, from conventional to recent approaches, as well as techniques for reconstituting membrane proteins into artificial membranes. We also cover the different types of artificial membranes that can be used to observe the functions of reconstituted membrane proteins, including their structure, number of transmembrane domains, and functional type. Finally, we discuss the reconstitution of membrane proteins using a cell-free synthesis system and the reconstitution and function of multiple membrane proteins.
Collapse
Affiliation(s)
- Toshiyuki Tosaka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
8
|
Zong W, Shao X, Li J, Chai Y, Hu X, Zhang X. Synthetic Intracellular Environments: From Basic Science to Applications. Anal Chem 2023; 95:535-549. [PMID: 36625127 DOI: 10.1021/acs.analchem.2c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xiaotong Shao
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China.,Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar161006, China
| | - Yunhe Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou325035, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| |
Collapse
|
9
|
Thio SK, Park SY. A review of optoelectrowetting (OEW): from fundamentals to lab-on-a-smartphone (LOS) applications to environmental sensors. LAB ON A CHIP 2022; 22:3987-4006. [PMID: 35916120 DOI: 10.1039/d2lc00372d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrowetting-on-dielectric (EWOD) has been extensively explored as an active-type technology for small-scale liquid handling due to its several unique advantages, including no requirement of mechanical components, low power consumption, and rapid response time. However, conventional EWOD devices are often accompanied with complex fabrication processes for patterning and wiring of 2D arrayed electrodes. Furthermore, their sandwich device configuration makes integration with other microfluidic components difficult. More recently, optoelectrowetting (OEW), a light-driven mechanism for effective droplet manipulation, has been proposed as an alternative approach to overcome these issues. By utilizing optical addressing on a photoconductive surface, OEW can dynamically control an electrowetting phenomenon without the need for complex control circuitry on a chip, while providing higher functionality and flexibility. Using commercially available spatial light modulators such as LCD displays and smartphones, millions of optical pixels are readily generated to modulate virtual electrodes for large-scale droplet manipulations in parallel on low-cost OEW devices. The benefits of the OEW mechanism have seen it being variously explored in its potential biological and biochemical applications. This review article presents the fundamentals of OEW, discusses its research progress and limitations, highlights various technological advances and innovations, and finally introduces the emergence of the OEW technology as portable smartphone-integrated environmental sensors.
Collapse
Affiliation(s)
- Si Kuan Thio
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Sung-Yong Park
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
10
|
Osouli-Bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022; 14:pharmaceutics14091940. [PMID: 36145688 PMCID: PMC9506151 DOI: 10.3390/pharmaceutics14091940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticulate technologies have revolutionized drug delivery allowing for passive and active targeting, altered biodistribution, controlled drug release (temporospatial or triggered), enhanced stability, improved solubilization capacity, and a reduction in dose and adverse effects. However, their manufacture remains immature, and challenges exist on an industrial scale due to high batch-to-batch variability hindering their clinical translation. Lipid-based nanomedicines remain the most widely approved nanomedicines, and their current manufacturing methods remain discontinuous and face several problems such as high batch-to-batch variability affecting the critical quality attributes (CQAs) of the product, laborious multistep processes, need for an expert workforce, and not being easily amenable to industrial scale-up involving typically a complex process control. Several techniques have emerged in recent years for nanomedicine manufacture, but a paradigm shift occurred when microfluidic strategies able to mix fluids in channels with dimensions of tens of micrometers and small volumes of liquid reagents in a highly controlled manner to form nanoparticles with tunable and reproducible structure were employed. In this review, we summarize the recent advancements in the manufacturing of lipid-based nanomedicines using microfluidics with particular emphasis on the parameters that govern the control of CQAs of final nanomedicines. The impact of microfluidic environments on formation dynamics of nanomaterials, and the application of microdevices as platforms for nanomaterial screening are also discussed.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Sara Puliga
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| | - Andrea Bucchi
- School of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Gavin Halbert
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| | - Aikaterini Lalatsa
- Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| |
Collapse
|
11
|
Carvalho BG, Ceccato BT, Michelon M, Han SW, de la Torre LG. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics 2022; 14:141. [PMID: 35057037 PMCID: PMC8781930 DOI: 10.3390/pharmaceutics14010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.
Collapse
Affiliation(s)
- Bruna G. Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Bruno T. Ceccato
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Mariano Michelon
- School of Chemical and Food Engineering, Federal University of Rio Grande (FURG), Rio Grande 96203-900, Brazil;
| | - Sang W. Han
- Center for Cell Therapy and Molecular, Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil;
| | - Lucimara G. de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| |
Collapse
|
12
|
Zhang G, Sun J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. Int J Nanomedicine 2021; 16:7391-7416. [PMID: 34764647 PMCID: PMC8575451 DOI: 10.2147/ijn.s331639] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are ubiquitous tools in biomedical applications, such as drug delivery, membrane science and artificial cell. Micro- and nanofabrication techniques have revolutionized the preparation of liposomes on the microscale. State-of-the-art liposomal formation on microfluidic chips and its associated applications are introduced in this review. We attempt to provide a reference for liposomal researchers by comparing various microfluidic techniques for liposomes formation.
Collapse
Affiliation(s)
- Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
13
|
Yu W, Li B, Liu X, Chen Y. Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Sizing of giant unilamellar vesicles using a metal mesh with a high opening ratio. Chem Phys Lipids 2021; 241:105148. [PMID: 34600914 DOI: 10.1016/j.chemphyslip.2021.105148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 01/28/2023]
Abstract
Size control of giant unilamellar vesicles (GUVs) has been challenged extensively for realizing quantitative assays within these biomimetic reactors. Although microfluidics-based monodisperse GUV generation methods have shown tremendous progress, they are often difficult and still not available for general users. Meanwhile, the conventional bulk methods, which are more flexible in compositions, only generate polydisperse GUVs with a linear dimension ranging more than two orders of magnitude. Here, we characterized the sizing protocol of GUVs using the metal mesh with a large opening area ratio (>35%). Unlike the conventional track-etched membrane filters with a small opening area ratio (<10%), the present method enabled fast filtration (<10 min) to remove GUVs smaller than the mesh size without delicate flow control. We demonstrated that the combination of extrusion and filtration with selected filters produced GUV populations with fairly narrow size distributions (<30% C.V. in diameter).
Collapse
|
15
|
Toprakcioglu Z, Knowles TPJ. Sequential storage and release of microdroplets. MICROSYSTEMS & NANOENGINEERING 2021; 7:76. [PMID: 34631144 PMCID: PMC8481565 DOI: 10.1038/s41378-021-00303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/25/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Droplet microfluidic methods have opened up the possibility of studying a plethora of phenomena ranging from biological to physical or chemical processes at ultra low volumes and high throughput. A key component of such approaches is the ability to trap droplets for observation, and many device architectures for achieving this objective have been developed. A challenge with such approaches is, however, recovering the droplets following their confinement for applications involving further analysis. Here, we present a device capable of generating, confining and releasing microdroplets in a sequential manner. Through a combination of experimental and computational simulations, we shed light on the key features required for successful droplet storage and retrieval. Moreover, we explore the effect of the flow rate of the continuous phase on droplet release, determining that a critical rate is needed to ensure complete droplet deformation through constrictions holding the droplets in place prior to release. Finally, we find that once released, droplets can be retrieved and collected off chip. The ability to generate, store and sequentially release droplets renders such a device particularly promising for future applications where reactions may not only be monitored on-chip, but droplets can also be retrieved for further analysis, facilitating new exploratory avenues in the fields of analytical chemistry and biology.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE UK
| |
Collapse
|
16
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
17
|
MORITA M, OTA Y, NODA N. Microbial Culture and Detection Technology in a Confined Cell-sized Small Compartment. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masamune MORITA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuri OTA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Naohiro NODA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
18
|
Giant Vesicles Produced with Phosphatidylcholines (PCs) and Phosphatidylethanolamines (PEs) by Water-in-Oil Inverted Emulsions. Life (Basel) 2021; 11:life11030223. [PMID: 33801936 PMCID: PMC7998898 DOI: 10.3390/life11030223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: giant vesicles (GVs) are widely employed as models for studying physicochemical properties of bio-membranes and artificial cell construction due to their similarities to natural cell membranes. Considering the critical roles of GVs, various methods have been developed to prepare them. Notably, the water-in-oil (w/o) inverted emulsion-transfer method is reported to be the most promising, owning to the relatively higher productivity and better encapsulation efficiency of biomolecules. Previously, we successfully established an improved approach to acquire detailed information of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-derived GVs with imaging flow cytometry (IFC); (2) Methods: we prepared GVs with different lipid compositions, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and PC/PE mixtures by w/o inverted emulsion methods. We comprehensively compared the yield, purity, size, and encapsulation efficiency of the resulting vesicles; (3) Results: the relatively higher productivities of GVs could be obtained from POPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE), DOPC: DLPE (7:3), and POPC: DLPE (6:4) pools. Furthermore, we also demonstrate that these GVs are stable during long term preservation in 4 °C. (4) Conclusions: our results will be useful for the analytical study of GVs and GV-based applications.
Collapse
|
19
|
Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids Surf B Biointerfaces 2021; 201:111633. [PMID: 33639513 DOI: 10.1016/j.colsurfb.2021.111633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Microfluidic platforms have become highly attractive tools for synthesis of nanoparticles, including lipid nano-self-assemblies, owing to unique features and at least three important aspects inherent to miniaturized micro-devices. Firstly, the fluids flow under controlled conditions in the microchannels, providing well-defined flow profiles and shorter diffusion lengths that play important roles in enhancing the continuous production of lipid and polymer nanoparticles with relatively narrow size distributions. Secondly, various geometries adapted to microfluidic device designs can be utilized for enhancing the colloidal stability of nanoparticles and improving their drug loading. Thirdly, microfluidic devices are usually compatible with in situ characterization methods for real-time monitoring of processes occurring inside the microchannels. This is unlike conventional nanoparticle synthesis methods, where a final solution or withdrawn aliquots are separately analysed. These features inherent to microfluidic devices provide a tool-set allowing not only precise nanoparticle size control, but also real-time analyses for process optimization. In this review, we focus on recent advances and developments in the use of microfluidic devices for synthesis of lipid nanoparticles. We present different designs based on hydrodynamic flow focusing, droplet-based methods and controlled microvortices, and discuss integration of microfluidic platforms with synchrotron small-angle X ray scattering (SAXS) for in situ structural characterization of lipid nano-self-assemblies under continuous flow conditions, along with major challenges and future directions in this research area.
Collapse
|
20
|
Sharma B, Ma Y, Ferguson AL, Liu AP. In search of a novel chassis material for synthetic cells: emergence of synthetic peptide compartment. SOFT MATTER 2020; 16:10769-10780. [PMID: 33179713 DOI: 10.1039/d0sm01644f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Giant lipid vesicles have been used extensively as a synthetic cell model to recapitulate various life-like processes, including in vitro protein synthesis, DNA replication, and cytoskeleton organization. Cell-sized lipid vesicles are mechanically fragile in nature and prone to rupture due to osmotic stress, which limits their usability. Recently, peptide vesicles have been introduced as a synthetic cell model that would potentially overcome the aforementioned limitations. Peptide vesicles are robust, reasonably more stable than lipid vesicles and can withstand harsh conditions including pH, thermal, and osmotic variations. This mini-review summarizes the current state-of-the-art in the design, engineering, and realization of peptide-based chassis materials, including both experimental and computational work. We present an outlook for simulation-aided and data-driven design and experimental realization of engineered and multifunctional synthetic cells.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
21
|
Ling SD, Geng Y, Chen A, Du Y, Xu J. Enhanced single-cell encapsulation in microfluidic devices: From droplet generation to single-cell analysis. BIOMICROFLUIDICS 2020; 14:061508. [PMID: 33381250 PMCID: PMC7758092 DOI: 10.1063/5.0018785] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
Single-cell analysis to investigate cellular heterogeneity and cell-to-cell interactions is a crucial compartment to answer key questions in important biological mechanisms. Droplet-based microfluidics appears to be the ideal platform for such a purpose because the compartmentalization of single cells into microdroplets offers unique advantages of enhancing assay sensitivity, protecting cells against external stresses, allowing versatile and precise manipulations over tested samples, and providing a stable microenvironment for long-term cell proliferation and observation. The present Review aims to give a preliminary guidance for researchers from different backgrounds to explore the field of single-cell encapsulation and analysis. A comprehensive and introductory overview of the droplet formation mechanism, fabrication methods of microchips, and a myriad of passive and active encapsulation techniques to enhance single-cell encapsulation efficiency were presented. Meanwhile, common methods for single-cell analysis, especially for long-term cell proliferation, differentiation, and observation inside microcapsules, are briefly introduced. Finally, the major challenges faced in the field are illustrated, and potential prospects for future work are discussed.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuhao Geng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Frey C, Pfeil J, Neckernuss T, Geiger D, Weishaupt K, Platzman I, Marti O, Spatz JP. Label‐free monitoring and manipulation of microfluidic water‐in‐oil droplets. VIEW 2020. [DOI: 10.1002/viw.20200101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Christoph Frey
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
| | - Jonas Pfeil
- Institute of Experimental Physics University of Ulm Ulm Germany
| | | | - Daniel Geiger
- Institute of Experimental Physics University of Ulm Ulm Germany
| | - Klaus Weishaupt
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
| | - Ilia Platzman
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
| | - Othmar Marti
- Institute of Experimental Physics University of Ulm Ulm Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Heidelberg Germany
- Institute for Molecular Systems Engineering University of Heidelberg Heidelberg Germany
- Max Planck School Matter to Life Heidelberg Germany
| |
Collapse
|
23
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
24
|
Zhang J, Yu X, Zheng B, Shen J, Bhatia SR, Sampson NS. Cationic Amphiphilic Alternating Copolymers with Tunable Morphology. Polym Chem 2020; 11:5424-5430. [PMID: 33281956 PMCID: PMC7709945 DOI: 10.1039/d0py00782j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A series of ionic amphiphilic alternating copolymers were characterized via SAXS, TEM and DLS to help understand factors that could potentially affect self-assembly, including the degree of polymerization, the length of hydrophobic spacers between ionic units, the distance between charged groups and polymer backbone, solvent envrioment and counterions.
Collapse
Affiliation(s)
- Jingling Zhang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Xiaoxi Yu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Bingqian Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Jiachun Shen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
25
|
Lussier F, Staufer O, Platzman I, Spatz JP. Can Bottom-Up Synthetic Biology Generate Advanced Drug-Delivery Systems? Trends Biotechnol 2020; 39:445-459. [PMID: 32912650 DOI: 10.1016/j.tibtech.2020.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Creating a magic bullet that can selectively kill cancer cells while sparing nearby healthy cells remains one of the most ambitious objectives in pharmacology. Nanomedicine, which relies on the use of nanotechnologies to fight disease, was envisaged to fulfill this coveted goal. Despite substantial progress, the structural complexity of therapeutic vehicles impedes their broad clinical application. Novel modular manufacturing approaches for engineering programmable drug carriers may be able to overcome some fundamental limitations of nanomedicine. We discuss how bottom-up synthetic biology principles, empowered by microfluidics, can palliate current drug carrier assembly limitations, and we demonstrate how such a magic bullet could be engineered from the bottom up to ultimately improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Felix Lussier
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany.
| | - Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Yaghoobi M, Saidi MS, Ghadami S, Kashaninejad N. An Interface-Particle Interaction Approach for Evaluation of the Co-Encapsulation Efficiency of Cells in a Flow-Focusing Droplet Generator. SENSORS 2020; 20:s20133774. [PMID: 32635674 PMCID: PMC7374427 DOI: 10.3390/s20133774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Droplet-based microfluidics offers significant advantages, such as high throughput and scalability, making platforms based on this technology ideal candidates for point-of-care (POC) testing and clinical diagnosis. However, the efficiency of co-encapsulation in droplets is suboptimal, limiting the applicability of such platforms for the biosensing applications. The homogeneity of the bioanalytes in the droplets is an unsolved problem. While there is extensive literature on the experimental setups and active methods used to increase the efficiency of such platforms, passive techniques have received less attention, and their fundamentals have not been fully explored. Here, we develop a novel passive technique for investigating cell encapsulation using the finite element method (FEM). The level set method was used to track the interfaces of forming droplets. The effects of walls and the droplet interfaces on relatively large cells were calculated to track them more accurately during encapsulation. The static surface tension force was used to account for the effects of the interfaces on cells. The results revealed that the pairing efficiency is highly sensitive to the standard deviation (SD) of the distance between the cells in the entrance channel. The pairing efficiency prediction error of our model differed by less than 5% from previous experiments. The proposed model can be used to evaluate the performance of droplet-based microfluidic devices to ensure higher precision for co-encapsulation of cells.
Collapse
Affiliation(s)
- Mohammad Yaghoobi
- Department of Mechanical Engineering, Sharif University of Technology, Azadi St., Tehran 11155, Iran;
| | - Mohammad Said Saidi
- Department of Mechanical Engineering, Sharif University of Technology, Azadi St., Tehran 11155, Iran;
- Correspondence: (M.S.S.); (N.K.)
| | - Sepehr Ghadami
- Department of Mechanical Engineering, University of Waterloo, 200 University Avenue West, N2L 3G, Waterloo, ON N2L 3G1, Canada;
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia
- Correspondence: (M.S.S.); (N.K.)
| |
Collapse
|
27
|
Wang L, Song S, van Hest J, Abdelmohsen LKEA, Huang X, Sánchez S. Biomimicry of Cellular Motility and Communication Based on Synthetic Soft-Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907680. [PMID: 32250035 DOI: 10.1002/smll.201907680] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Cells, sophisticated membrane-bound units that contain the fundamental molecules of life, provide a precious library for inspiration and motivation for both society and academia. Scientists from various disciplines have made great endeavors toward the understanding of the cellular evolution by engineering artificial counterparts (protocells) that mimic or initiate structural or functional cellular aspects. In this regard, several works have discussed possible building blocks, designs, functions, or dynamics that can be applied to achieve this goal. Although great progress has been made, fundamental-yet complex-behaviors such as cellular communication, responsiveness to environmental cues, and motility remain a challenge, yet to be resolved. Herein, recent efforts toward utilizing soft systems for cellular mimicry are summarized-following the main outline of cellular evolution, from basic compartmentalization, and biological reactions for energy production, to motility and communicative behaviors between artificial cell communities or between artificial and natural cell communities. Finally, the current challenges and future perspectives in the field are discussed, hoping to inspire more future research and to help the further advancement of this field.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Shidong Song
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Jan van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
28
|
Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev 2020; 156:4-22. [PMID: 32593642 DOI: 10.1016/j.addr.2020.06.022] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022]
Abstract
The liposomes have continued to be well-recognized as an important nano-sized drug delivery system with attractive properties, such a characteristic bilayer structure assembling the cellular membrane, easy-to-prepare and high bio-compatibility. Extensive effort has been devoted to the development of liposome-based drug delivery systems during the past few decades. Many drug candidates have been encapsulated in liposomes and investigated for reduced toxicity and extended duration of therapeutic effect. The liposomal encapsulation of hydrophilic and hydrophobic small molecule therapeutics as well as other large molecule biologics have been established among different academic and industrial research groups. To date, there has been an increasing number of FDA-approved liposomal-based therapeutics together with more and more undergoing clinical trials, which involve a wide range of applications in anticancer, antibacterial, and antiviral therapies. In order to meet the continuing demand for new drugs in clinics, more recent advancements have been investigated for optimizing liposomal-based drug delivery system with more reproducible preparation technique and a broadened application to novel modalities, including nucleic acid therapies, CRISPR/Cas9 therapies and immunotherapies. This review focuses on the recent liposome' preparation techniques, the excipients of liposomal formulations used in various novel studies and the routes of administration used to deliver liposomes to targeted areas of disease. It aims to update the research in liposomal delivery and highlights future nanotechnological approaches.
Collapse
|
29
|
Kamiya K. Development of Artificial Cell Models Using Microfluidic Technology and Synthetic Biology. MICROMACHINES 2020; 11:E559. [PMID: 32486297 PMCID: PMC7345299 DOI: 10.3390/mi11060559] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Giant lipid vesicles or liposomes are primarily composed of phospholipids and form a lipid bilayer structurally similar to that of the cell membrane. These vesicles, like living cells, are 5-100 μm in diameter and can be easily observed using an optical microscope. As their biophysical and biochemical properties are similar to those of the cell membrane, they serve as model cell membranes for the investigation of the biophysical or biochemical properties of the lipid bilayer, as well as its dynamics and structure. Investigation of membrane protein functions and enzyme reactions has revealed the presence of soluble or membrane proteins integrated in the giant lipid vesicles. Recent developments in microfluidic technologies and synthetic biology have enabled the development of well-defined artificial cell models with complex reactions based on the giant lipid vesicles. In this review, using microfluidics, the formations of giant lipid vesicles with asymmetric lipid membranes or complex structures have been described. Subsequently, the roles of these biomaterials in the creation of artificial cell models including nanopores, ion channels, and other membrane and soluble proteins have been discussed. Finally, the complex biological functions of giant lipid vesicles reconstituted with various types of biomolecules has been communicated. These complex artificial cell models contribute to the production of minimal cells or protocells for generating valuable or rare biomolecules and communicating between living cells and artificial cell models.
Collapse
Affiliation(s)
- Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu city, Gunma 376-8515, Japan
| |
Collapse
|
30
|
Frey C, Göpfrich K, Pashapour S, Platzman I, Spatz JP. Electrocoalescence of Water-in-Oil Droplets with a Continuous Aqueous Phase: Implementation of Controlled Content Release. ACS OMEGA 2020; 5:7529-7536. [PMID: 32280896 PMCID: PMC7144163 DOI: 10.1021/acsomega.0c00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Droplet-based microfluidics have emerged as an important tool for diverse biomedical and biological applications including, but not limited to, drug screening, cellular analysis, and bottom-up synthetic biology. Each microfluidic water-in-oil droplet contains a well-defined biocontent that, following its manipulation/maturation, has to be released into a physiological environment toward possible end-user investigations. Despite the progress made in recent years, considerable challenges still loom at achieving a precise control over the content release with sufficient speed and sensitivity. Here, we present a quantitative study in which we compare the effectiveness and biocompatibility of chemical and physical microfluidic release methods. We show the advantages of electrocoalescence of water-in-oil droplets in terms of high-throughput release applications. Moreover, we apply programmable DNA nanotechnology to achieve a segregation of the biochemical content within the droplets for the controlled filtration of the encapsulated materials. We envision that the developed bifunctional microfluidic approach, capable of content segregation and selective release, will expand the microfluidic toolbox for cell biology, synthetic biology, and biomedical applications.
Collapse
Affiliation(s)
- Christoph Frey
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
- Biophysical
Engineering of Life Group, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Sadaf Pashapour
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Hindley JW, Law RV, Ces O. Membrane functionalization in artificial cell engineering. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2357-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractBottom-up synthetic biology aims to construct mimics of cellular structure and behaviour known as artificial cells from a small number of molecular components. The development of this nascent field has coupled new insights in molecular biology with large translational potential for application in fields such as drug delivery and biosensing. Multiple approaches have been applied to create cell mimics, with many efforts focusing on phospholipid-based systems. This mini-review focuses on different approaches to incorporating molecular motifs as tools for lipid membrane functionalization in artificial cell construction. Such motifs range from synthetic chemical functional groups to components from extant biology that can be arranged in a ‘plug-and-play’ approach which is hard to replicate in living systems. Rationally designed artificial cells possess the promise of complex biomimetic behaviour from minimal, highly engineered chemical networks.
Collapse
|
32
|
Toprakcioglu Z, Challa PK, Morse DB, Knowles T. Attoliter protein nanogels from droplet nanofluidics for intracellular delivery. SCIENCE ADVANCES 2020; 6:eaay7952. [PMID: 32083185 PMCID: PMC7007244 DOI: 10.1126/sciadv.aay7952] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/22/2019] [Indexed: 05/17/2023]
Abstract
Microscale hydrogels consisting of macromolecular networks in aqueous continuous phases have received increasing attention because of their potential use in tissue engineering, cell encapsulation and for the storage and release of cargo molecules. However, for applications targeting intracellular delivery, their micrometer-scale size is unsuitable for effective cellular uptake. Nanoscale analogs of such materials are thus required for this key area. Here, we describe a microfluidics/nanofluidics-based strategy for generating monodisperse nanosized water-in-oil emulsions with controllable sizes ranging from 2500 ± 110 nm down to 51 ± 6 nm. We demonstrate that these nanoemulsions can act as templates to form protein nanogels stabilized by supramolecular fibrils from three different proteins. We further show that these nanoparticles have the ability to penetrate mammalian cell membranes and deliver intracellular cargo. Due to their biocompatibility and lack of toxicity, natural protein-based nanoparticles present advantageous characteristics as vehicles for cargo molecules in the context of pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Pavan Kumar Challa
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David B. Morse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Tuomas Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 OHE, UK
| |
Collapse
|
33
|
Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. BIOMICROFLUIDICS 2019; 13:061502. [PMID: 31737153 PMCID: PMC6847985 DOI: 10.1063/1.5123518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 06/01/2023]
Abstract
Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies in vitro such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level. In recent years, various methods have been continuously improved and innovated on the basis of existing ones, overcoming the deficiencies and promoting the progress in biomedicine. In particular, microfluidics with the advantages of high throughput, small sample volume, and the ability to combine with other technologies has a wide range of applications in single-cell analysis. Here, we present an overview of the recent advances in single-cell patterning technology, with a special focus on current physical and physicochemical methods including stencil patterning, trap- and droplet-based microfluidics, and chemical modification on surfaces via photolithography, microcontact printing, and scanning probe lithography. Meanwhile, the methods applied to biological studies and the development trends of single-cell patterning technology in biological applications are also described.
Collapse
Affiliation(s)
| | - Baihe Lang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | | | | | | | - Zuobin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
34
|
Ossai EC, Kuroiwa T, Horikoshi K, Otsuka Y, Terasawa J, Kanazawa A, Sato S, Ichikawa S. Lipid Vesicle Preparation Using W/O/W Multiple Emulsions Via Solvent Evaporation: The Effect of Emulsifiers on the Entrapment Yield of Hydrophilic Materials. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emmanuel Chekwube Ossai
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Takashi Kuroiwa
- Department of Chemistry and Energy Engineering, Faculty of EngineeringTokyo City University Tamazutsumi 1‐28‐1, Setagaya‐ku, Tokyo 158‐8557 Japan
| | - Kaname Horikoshi
- Department of Chemistry and Energy Engineering, Faculty of EngineeringTokyo City University Tamazutsumi 1‐28‐1, Setagaya‐ku, Tokyo 158‐8557 Japan
| | - Yuya Otsuka
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Junki Terasawa
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Akihiko Kanazawa
- Department of Chemistry and Energy Engineering, Faculty of EngineeringTokyo City University Tamazutsumi 1‐28‐1, Setagaya‐ku, Tokyo 158‐8557 Japan
| | - Seigo Sato
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Sosaku Ichikawa
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| |
Collapse
|
35
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
36
|
Jusková P, Schmid YRF, Stucki A, Schmitt S, Held M, Dittrich PS. "Basicles": Microbial Growth and Production Monitoring in Giant Lipid Vesicles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34698-34706. [PMID: 31454223 PMCID: PMC7462352 DOI: 10.1021/acsami.9b12169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 05/03/2023]
Abstract
We present an optimized protocol to encapsulate bacteria inside giant unilamellar lipid vesicles combined with a microfluidic platform for real-time monitoring of microbial growth and production. The microfluidic device allows us to immobilize the lipid vesicles and record bacterial growth and production using automated microscopy. Moreover, the lipid vesicles retain hydrophilic molecules and therefore can be used to accumulate products of microbial biosynthesis, which we demonstrate here for a riboflavin-producing bacterial strain. We show that stimulation as well as inhibition of bacterial production can be performed through the liposomal membrane simply by passive diffusion of inducing or antibiotic compounds, respectively. The possibility to introduce as well as accumulate compounds in liposomal cultivation compartments represents great advantage over the current state of the art systems, emulsion droplets, and gel beads. Additionally, the encapsulation of bacteria and monitoring of individual lipid vesicles have been accomplished on a single microfluidic device. The presented system paves the way toward highly parallel microbial cultivation and monitoring as required in biotechnology, basic research, or drug discovery.
Collapse
Affiliation(s)
- Petra Jusková
- Department
of Biosystems Science and Engineering, Bioanalytics Group, and Department of
Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Yannick R. F. Schmid
- Department
of Biosystems Science and Engineering, Bioanalytics Group, and Department of
Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ariane Stucki
- Department
of Biosystems Science and Engineering, Bioanalytics Group, and Department of
Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Steven Schmitt
- Department
of Biosystems Science and Engineering, Bioanalytics Group, and Department of
Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Held
- Department
of Biosystems Science and Engineering, Bioanalytics Group, and Department of
Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department
of Biosystems Science and Engineering, Bioanalytics Group, and Department of
Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
37
|
Hasturk O, Kaplan DL. Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomater 2019; 95:3-31. [PMID: 30481608 PMCID: PMC6534491 DOI: 10.1016/j.actbio.2018.11.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Unlike unicellular organisms and plant cells surrounded with a cell wall, naked plasma membranes of mammalian cells make them more susceptible to environmental stresses encountered during in vitro biofabrication and in vivo cell therapy applications. Recent advances in micro- and nanoencapsulation of single mammalian cells provide an effective strategy to isolate cells from their surroundings and protect them against harsh environmental conditions. Microemulsification and droplet-based microfluidics have enabled researchers to encapsulate single cells within a variety of microscale hydrogel materials with a range of biochemical and mechanical properties and functionalities including enhanced cell-matrix interactions or on-demand degradation. In addition to microcapsules, nanocoatings of various organic and inorganic substances on mammalian cells have allowed for the formation of protective shells. A wide range of synthetic and natural polymers, minerals and supramolecular metal-organic complexes have been deposited as nanolayers on the cells via electrostatic interactions, receptor-ligand binding, non-specific interactions, and in situ polymerization/crosslinking. Here, current strategies in encapsulation of single mammalian cells along with challenges and advances are reviewed. Protection of encapsulated stem cells, fibroblasts, red and white blood cells and cancer cells against harsh in vitro and in vivo conditions including anoikis, UV radiation, physical forces, proteolytic enzymes and immune clearance are discussed. STATEMENT OF SIGNIFICANCE: The mechanical fragility of the plasma membrane and susceptibility to extracellular biochemical factors due to the lack of a physical barrier like a tough cell wall or exoskeleton make mammalian cells extra sensitive to harsh environmental conditions. This sensitively, in turn, limits the ex vivo storage, handling and manipulation of mammalian cells, as well as their in vivo applications. Environmental stresses such as exposure to UV, reactive chemicals and mechanical stress during biofabrication processes like 3D bioprinting can often compromise cell viability and function. Micro- and nanoencapsulation of single mammalian cells in protective shells have emerged as promising approaches to isolate cells from their surroundings and enhance resistance against perturbations in conditions during regenerative medicine and tissue engineering applications. In this review, the current state of art of single cell encapsulation strategies and the challenges associated with these technologies are discussed in detail. This is followed by the review of the protection provided by cell armor against a range of harsh in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
38
|
Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:549-558. [DOI: 10.1007/s00249-019-01383-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
39
|
Supramaniam P, Ces O, Salehi-Reyhani A. Microfluidics for Artificial Life: Techniques for Bottom-Up Synthetic Biology. MICROMACHINES 2019; 10:E299. [PMID: 31052344 PMCID: PMC6562628 DOI: 10.3390/mi10050299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Synthetic biology is a rapidly growing multidisciplinary branch of science that exploits the advancement of molecular and cellular biology. Conventional modification of pre-existing cells is referred to as the top-down approach. Bottom-up synthetic biology is an emerging complementary branch that seeks to construct artificial cells from natural or synthetic components. One of the aims in bottom-up synthetic biology is to construct or mimic the complex pathways present in living cells. The recent, and rapidly growing, application of microfluidics in the field is driven by the central tenet of the bottom-up approach-the pursuit of controllably generating artificial cells with precisely defined parameters, in terms of molecular and geometrical composition. In this review we survey conventional methods of artificial cell synthesis and their limitations. We proceed to show how microfluidic approaches have been pivotal in overcoming these limitations and ushering in a new generation of complexity that may be imbued in artificial cells and the milieu of applications that result.
Collapse
Affiliation(s)
- Pashiini Supramaniam
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
| | - Oscar Ces
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
| | - Ali Salehi-Reyhani
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK.
| |
Collapse
|
40
|
Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Yue K, Zhu Y, Kai L. Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells 2019; 8:cells8040315. [PMID: 30959805 PMCID: PMC6523147 DOI: 10.3390/cells8040315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The quest for a minimal cell not only sheds light on the fundamental principles of life but also brings great advances in related applied fields such as general biotechnology. Minimal cell projects came from the study of a plausible route to the origin of life. Later on, research extended and also referred to the construction of artificial cells, or even more broadly, as in vitro synthetic biology. The cell-free protein synthesis (CFPS) techniques harness the central cellular activity of transcription/translation in an open environment, providing the framework for multiple cellular processes assembling. Therefore, CFPS systems have become the first choice in the construction of the minimal cell. In this review, we focus on the recent advances in the quantitative analysis of CFPS and on its advantage for addressing the bottom-up assembly of a minimal cell and illustrate the importance of systemic chassis behavior, such as stochasticity under a compartmentalized micro-environment.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| |
Collapse
|
42
|
Sato Y, Takinoue M. Creation of Artificial Cell-Like Structures Promoted by Microfluidics Technologies. MICROMACHINES 2019; 10:E216. [PMID: 30934758 PMCID: PMC6523379 DOI: 10.3390/mi10040216] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
The creation of artificial cells is an immensely challenging task in science. Artificial cells contribute to revealing the mechanisms of biological systems and deepening our understanding of them. The progress of versatile biological research fields has clarified many biological phenomena, and various artificial cell models have been proposed in these fields. Microfluidics provides useful technologies for the study of artificial cells because it allows the fabrication of cell-like compartments, including water-in-oil emulsions and giant unilamellar vesicles. Furthermore, microfluidics also allows the mimicry of cellular functions with chip devices based on sophisticated chamber design. In this review, we describe contributions of microfluidics to the study of artificial cells. Although typical microfluidic methods are useful for the creation of artificial-cell compartments, recent methods provide further benefits, including low-cost fabrication and a reduction of the sample volume. Microfluidics also allows us to create multi-compartments, compartments with artificial organelles, and on-chip artificial cells. We discuss these topics and the future perspective of microfluidics for the study of artificial cells and molecular robotics.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| |
Collapse
|
43
|
Friddin MS, Elani Y, Trantidou T, Ces O. New Directions for Artificial Cells Using Prototyped Biosystems. Anal Chem 2019; 91:4921-4928. [PMID: 30841694 DOI: 10.1021/acs.analchem.8b04885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microfluidics has has enabled the generation of a range of single compartment and multicompartment vesicles and bilayer-delineated droplets that can be assembled in 2D and 3D. These model systems are becoming increasingly used as artificial cell chassis and as biomimetic constructs for assembling tissue models, engineering therapeutic delivery systems, and screening drugs. One bottleneck in developing this technology is the time, expertise, and equipment required for device fabrication. This has led to interest across the microfluidics community in using rapid prototyping to engineer microfluidic devices from computer-aided-design (CAD) drawings. We highlight how this rapid-prototyping revolution is transforming the fabrication of microfluidic devices for artificial cell construction in bottom-up synthetic biology. We provide an outline of the current landscape and present how advances in the field may give rise to the next generation of multifunctional biodevices, particularly with Industry 4.0 on the horizon. Successfully developing this technology and making it open-source could pave the way for a new generation of citizen-led science, fueling the possibility that the next multibillion-dollar start-up could emerge from an attic or a basement.
Collapse
Affiliation(s)
- Mark S Friddin
- Department of Chemistry , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom
| | - Yuval Elani
- Department of Chemistry , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom.,Institute of Chemical Biology , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom.,fabriCELL, Molecular Sciences Research Hub , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom
| | - Tatiana Trantidou
- Department of Chemistry , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom
| | - Oscar Ces
- Department of Chemistry , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom.,Institute of Chemical Biology , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom.,fabriCELL, Molecular Sciences Research Hub , Imperial College London , Wood Lane , London , W12 0BZ , United Kingdom
| |
Collapse
|
44
|
Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Kai L, Schwille P. Cell-Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottom-Up. ACTA ACUST UNITED AC 2019; 3:e1800322. [PMID: 32648712 DOI: 10.1002/adbi.201800322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The underlying idea of synthetic biology is that biological reactions/modules/systems can be precisely engineered and controlled toward desired products. Numerous efforts in the past decades in deciphering the complexity of biological systems in vivo have led to a variety of tools for synthetic biology, especially based on recombinant DNA. However, one generic limitation of all living systems is that the vast majority of energy input is dedicated to maintain the system as a whole, rather than the small part of interest. Cell-free synthetic biology is aiming at exactly this fundamental limitation, providing the next level of flexibility for engineering and designing biological systems in vitro. New technology has continuously inspired cell-free biology and extended its applications, including gene circuits, spatiotemporally controlled pathways, coactivated catalysts systems, and rationally designed multienzyme pathways, in particular, minimal cell construction. In the context of this special issue, discussing work being carried out in the "MaxSynBio" consortium, the advances in characterizing stochasticity and dynamics of cell-free protein synthesis within cell-sized compartments, as well as the molecular crowding effect, are discussed. The organization of spatial heterogeneity is the key prerequisite for achieving hierarchy and stepwise assembly of minimal cells from the bottom-up.
Collapse
Affiliation(s)
- Lei Kai
- School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116, Xuzhou, P. R. China.,Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| |
Collapse
|
46
|
Toprakcioglu Z, Challa PK, Levin A, Knowles TPJ. Observation of molecular self-assembly events in massively parallel microdroplet arrays. LAB ON A CHIP 2018; 18:3303-3309. [PMID: 30270398 DOI: 10.1039/c8lc00862k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The self-assembly of peptide and protein molecules into nanoscale filaments is a process associated with both biological function and malfunction. Microfluidic techniques can provide powerful tools in the study of such aggregation phenomena while providing access to exploring the role of molecular interactions in disease development. Yet, a common challenge encountered in the study of protein aggregation is the difficulty in achieving spatial and temporal control of the underlying processes. Here, we present a planar (2-D) device allowing for both the generation and confinement of 10 000 monodisperse water-in-oil droplets in an array of chambers with a trapping efficiency of 99%. Due to the specific geometry of the device, droplets can be formed and immediately trapped on the same chip, without the need for continuous flow of the oil phase. Furthermore, we demonstrate the capability of this device as a platform to study the aggregation kinetics and determine stochastic molecular nanoscale self-assembly events in a highly parallel manner for the aggregation of the dipeptide, diphenylalanine, the core recognition motif of the Aβ-42 peptide associated with Alzheimer's disease. The ability to reproducibly generate and confine monodisperse water-in-oil droplets with an extremely high trapping efficiency while maintaining entrapment under zero-flow conditions, on timescales compatible with observing molecular self-assembly events, renders it promising for numerous potential further applications in the biological and biophysical fields.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | |
Collapse
|
47
|
Trantidou T, Dekker L, Polizzi K, Ces O, Elani Y. Functionalizing cell-mimetic giant vesicles with encapsulated bacterial biosensors. Interface Focus 2018; 8:20180024. [PMID: 30443325 PMCID: PMC6227772 DOI: 10.1098/rsfs.2018.0024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The design of vesicle microsystems as artificial cells (bottom-up synthetic biology) has traditionally relied on the incorporation of molecular components to impart functionality. These cell mimics have reduced capabilities compared with their engineered biological counterparts (top-down synthetic biology), as they lack the powerful metabolic and regulatory pathways associated with living systems. There is increasing scope for using whole intact cellular components as functional modules within artificial cells, as a route to increase the capabilities of artificial cells. In this feasibility study, we design and embed genetically engineered microbes (Escherichia coli) in a vesicle-based cell mimic and use them as biosensing modules for real-time monitoring of lactate in the external environment. Using this conceptual framework, the functionality of other microbial devices can be conferred into vesicle microsystems in the future, bridging the gap between bottom-up and top-down synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Linda Dekker
- Department of Life Sciences and Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK
| | - Karen Polizzi
- Department of Life Sciences and Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- fabriCELL, Imperial College London, London SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- fabriCELL, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
48
|
Jiang Z, Jiang K, McBride R, Oakey JS. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels. Biomed Mater 2018; 13:065012. [PMID: 30191888 PMCID: PMC6215765 DOI: 10.1088/1748-605x/aadf9a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The encapsulation of live cells into photopolymerized hydrogel scaffolds has the potential to augment or repair tissue defects, establish versatile regenerative medicine strategies, and be developed as well-defined, yet tunable microenvironments to study fundamental cellular behavior. However, hydrogel fabrication limitations constrain most studies to macroscale hydrogel scaffolds encapsulating millions of cells. These macroscale materials possess regions of heterogeneous photopolymerization conditions and are therefore poor platforms to identify the response of individual cells to encapsulation. Recently, microfluidic droplet-based hydrogel miniaturization and cell encapsulation offers high-throughput, reproducible, and continuous fabrication. Reports of post-encapsulation cell viability, however, vary widely among specific techniques. Furthermore, different cell types often exhibit different level of tolerance to photoencapsulation-induced toxicity. Accordingly, we evaluate the cellular tolerance of various encapsulation techniques and photopolymerization parameters for four mammalian cell types, with potential applications in tissue regeneration, using polyethylene glycol diacrylate or polyethylene glycol norbornene (PEGNB) hydrogels on micro- and macro-length scales. We found PEGNB provides excellent cellular tolerance and supports long-term cell survival by mitigating the deleterious effects of acrylate photopolymerization, which are exacerbated at diminishing volumes. PEGNB, therefore, is an excellent candidate for hydrogel miniaturization. PEGNB hydrogel properties, however, were found to have variable effects on encapsulating different cell candidates. This study could provide guidance for cell encapsulation practices in tissue engineering and regenerative medicine research.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Department of Chemical Engineering, University of Wyoming, Laramie, United States of America
| | | | | | | |
Collapse
|
49
|
Trantidou T, Friddin MS, Salehi-Reyhani A, Ces O, Elani Y. Droplet microfluidics for the construction of compartmentalised model membranes. LAB ON A CHIP 2018; 18:2488-2509. [PMID: 30066008 DOI: 10.1039/c8lc00028j] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The design of membrane-based constructs with multiple compartments is of increasing importance given their potential applications as microreactors, as artificial cells in synthetic-biology, as simplified cell models, and as drug delivery vehicles. The emergence of droplet microfluidics as a tool for their construction has allowed rapid scale-up in generation throughput, scale-down of size, and control over gross membrane architecture. This is true on several levels: size, level of compartmentalisation and connectivity of compartments can all be programmed to various degrees. This tutorial review explains and explores the reasons behind this. We discuss microfluidic strategies for the generation of a family of compartmentalised systems that have lipid membranes as the basic structural motifs, where droplets are either the fundamental building blocks, or are precursors to the membrane-bound compartments. We examine the key properties associated with these systems (including stability, yield, encapsulation efficiency), discuss relevant device fabrication technologies, and outline the technical challenges. In doing so, we critically review the state-of-play in this rapidly advancing field.
Collapse
Affiliation(s)
- T Trantidou
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
50
|
Morita M, Katoh K, Noda N. Direct Observation of Bacterial Growth in Giant Unilamellar Vesicles: A Novel Tool for Bacterial Cultures. ChemistryOpen 2018; 7:845-849. [PMID: 30402373 PMCID: PMC6208190 DOI: 10.1002/open.201800126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial cultivation techniques are classic, basic, and common processes used to characterize the physiological activity of bacteria in their environment. Owing to recent advances in bacterial cultivation techniques, the physiological activity of bacteria can be elucidated at the single-cell culture level. Here, we report a novel method to monitor the real-time activity of bacterial growth at the single-cell level inside giant unilamellar vesicles (GUVs). This method consists of two steps: 1) encapsulation of single bacteria in 1-33 pL scale GUVs and 2) immobilization of the GUVs on a planar lipid bilayer membrane on a glass surface. We directly observed single E. coli cells actively growing to a great number of cells inside GUVs. GUVs also protected the bacteria from external antibiotic compounds during prolonged cultivation for more than 24 h. This approach can be applied widely in the fields of biochemistry, biotechnology, microbiology, and synthetic biology.
Collapse
Affiliation(s)
- Masamune Morita
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST), Center 6 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Kaoru Katoh
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST), Center 6 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Naohiro Noda
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST), Center 6 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| |
Collapse
|