1
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
2
|
Gardner S, Darrow MC, Lukoyanova N, Thalassinos K, Saibil HR. Structural basis of substrate progression through the bacterial chaperonin cycle. Proc Natl Acad Sci U S A 2023; 120:e2308933120. [PMID: 38064510 PMCID: PMC10723157 DOI: 10.1073/pnas.2308933120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.
Collapse
Affiliation(s)
- Scott Gardner
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| | | | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| |
Collapse
|
3
|
Bhanot JS, Fabijanczuk KC, Abdillahi AM, Chao HC, Pizzala NJ, Londry FA, Dziekonski ET, Hager JW, McLuckey SA. Adaptation and Operation of a Quadrupole/Time-of-Flight Tandem Mass Spectrometer for High Mass Ion/Ion Reaction Studies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 478:116874. [PMID: 37032994 PMCID: PMC10081487 DOI: 10.1016/j.ijms.2022.116874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A commercial quadrupole/time-of-flight tandem mass spectrometer has been modified and evaluated for its performance in conducting ion/ion reaction studies involving high mass (>100 kDa) ions. Modifications include enabling the application of dipolar AC waveforms to opposing rods in three quadrupole arrays in the ion path. This modification allows for resonance excitation of ions to effect ion activation, selective ion isolation, and ion parking. The other set of opposing rods in each array is enabled for the application of dipolar DC voltages for the purpose of broad-band (non-selective) ion heating. The plates between each quadrupole array are enabled for the application of either DC or AC (or both) voltages. The use of AC voltages allows for the simultaneous storage of ions of opposite polarity, thereby enabling mutual storage ion/ion reactions. Ions derived from nano-electrospray ionization of GroEL and β-galactosidase under native conditions were used to evaluate limits of instrument performance, in terms of m/z range, ion isolation, and ion storage. After adjustment of the pulser frequency, ions as high in m/z as 400,000 were detected. Significant losses in efficiency were noted above m/z 250,000 that is likely due to roll-over in the ion detector efficiency and possibly also due to limitations in ion transfer efficiency from the collision quadrupole to the pulser region of the mass analyzer. No measurable decrease in the apparent mass resolving power was noted upon charge state reduction of the model ions. Resonance ejection techniques that employ the dipolar AC capabilities of the quadrupoles allow for ion isolation at m/z values much greater than the RF/DC limitation of Q1 of m/z = 2100. For example, at the highest low-mass cutoff achievable in the collision quadrupole (m/z = 500), it is possible to isolate ions of m/z as high as 62,000. This is limited by the lowest dipolar AC frequency (5 kHz) that can be applied. A simple model is included to provide for an estimate of the ion cloud radius based on ion m/z, ion z, and ion trap operating conditions. The model predicts that singly charged ions of 1 MDa and thermal energy can be contained in the ion trap at the maximum low-mass cutoff, although such an ion would not be detected efficiently. Doubly charged GroEL ions were observed experimentally. Collectively, the performance characteristics at high m/z, the functionality provided by the standard instrument capabilities, the modifications described above, and highly flexible instrument control software provide for a highly versatile platform for the study of high mass ion/ion reactions.
Collapse
Affiliation(s)
- Jay S. Bhanot
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | - Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | - Nicolas J. Pizzala
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | | | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| |
Collapse
|
4
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Pitts-McCoy AM, Abdillahi AM, Lee KW, McLuckey SA. Multiply Charged Cation Attachment to Facilitate Mass Measurement in Negative-Mode Native Mass Spectrometry. Anal Chem 2022; 94:2220-2226. [PMID: 35029382 PMCID: PMC9670251 DOI: 10.1021/acs.analchem.1c04875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Native mass spectrometry (MS) is usually conducted in the positive-ion mode; however, in some cases, it is advantageous to use the negative-ion polarity. Challenges associated with native MS using ensemble measurements (i.e., the measurement of many ions at a time as opposed to the measurement of the charge and the mass-to-charge ratio of individual ions) include narrow charge state distributions with the potential for an overlap in neighboring charge states. These issues can either compromise or preclude confident charge state (and hence mass) determination. Charge state determination in challenging instances can be enabled via the attachment of multiply charged ions of opposite polarity. Multiply charged ion attachment facilitates the resolution of charge states and generates mass-to-charge (m/z) information across a broad m/z range. In this work, we demonstrated the attachment of multiply charged cations to anionic complexes generated under native MS conditions. To illustrate the flexibility available in selecting the mass and charge of the reagents, the 15+ and 20+ charge states of horse skeletal muscle apomyoglobin and the 20+ and 30+ charge states of bovine carbonic anhydrase were demonstrated to attach to model complex anions derived from either β-galactosidase or GroEL. The exclusive attachment of reagent ions is observed with no evidence for proton transfer, which is the key for the unambiguous interpretation of the post-ion/ion reaction product ion spectrum. To illustrate the application to mixtures of complex ions, the 10+ charge state of bovine ubiquitin was attached to mixtures of anions generated from the 30S and 50S particles of the Escherichia coli ribosome. Six and five major components were revealed, respectively. In the case of the 50S anion population, it was shown that the attachment of two 30+ cations of carbonic anhydrase revealed the same information as the attachment of six 10+ cations of ubiquitin. In neither case was the intact 50S particle observed. Rather, particles with different combinations of missing components were observed. This work demonstrated the utility of multiply charged cation attachment to facilitate charge state assignments in native MS ensemble measurements of heterogeneous mixtures.
Collapse
Affiliation(s)
- Anthony M. Pitts-McCoy
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Abdirahman M. Abdillahi
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Kenneth W. Lee
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Scott A. McLuckey
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| |
Collapse
|
6
|
McCabe JW, Jones BJ, Walker TE, Schrader RL, Huntley AP, Lyu J, Hoffman NM, Anderson GA, Reilly PTA, Laganowsky A, Wysocki VH, Russell DH. Implementing Digital-Waveform Technology for Extended m/ z Range Operation on a Native Dual-Quadrupole FT-IM-Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2812-2820. [PMID: 34797072 PMCID: PMC9026758 DOI: 10.1021/jasms.1c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we describe a digital-waveform dual-quadrupole mass spectrometer that enhances the performance of our drift tube FT-IMS high-resolution Orbitrap mass spectrometer (MS). The dual-quadrupole analyzer enhances the instrument capabilities for studies of large protein and protein complexes. The first quadrupole (q) provides a means for performing low-energy collisional activation of ions to reduce or eliminate noncovalent adducts, viz., salts, buffers, detergents, and/or endogenous ligands. The second quadrupole (Q) is used to mass-select ions of interest for further interrogation by ion mobility spectrometry and/or collision-induced dissociation (CID). Q is operated using digital-waveform technology (DWT) to improve the mass selection compared to that achieved using traditional sinusoidal waveforms at floated DC potentials (>500 V DC). DWT allows for increased precision of the waveform for a fraction of the cost of conventional RF drivers and with readily programmable operation and precision (Hoffman, N. M. . A comparison-based digital-waveform generator for high-resolution duty cycle. Review of Scientific Instruments 2018, 89, 084101).
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Robert L Schrader
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Adam P Huntley
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Nathan M Hoffman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | | | - Peter T A Reilly
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
7
|
Jooß K, McGee JP, Melani RD, Kelleher NL. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa. Electrophoresis 2021; 42:1050-1059. [PMID: 33502026 PMCID: PMC8122066 DOI: 10.1002/elps.202000317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Native mass spectrometry (nMS) is a rapidly growing method for the characterization of large proteins and protein complexes, preserving "native" non-covalent inter- and intramolecular interactions. Direct infusion of purified analytes into a mass spectrometer represents the standard approach for conducting nMS experiments. Alternatively, CZE can be performed under native conditions, providing high separation performance while consuming trace amounts of sample material. Here, we provide standard operating procedures for acquiring high-quality data using CZE in native mode coupled online to various Orbitrap mass spectrometers via a commercial sheathless interface, covering a wide range of analytes from 30-800 kDa. Using a standard protein mix, the influence of various CZE method parameters were evaluated, such as BGE/conductive liquid composition and separation voltage. Additionally, a universal approach for the optimization of fragmentation settings in the context of protein subunit and metalloenzyme characterization is discussed in detail for model analytes. A short section is dedicated to troubleshooting of the nCZE-MS setup. This study is aimed to help normalize nCZE-MS practices to enhance the CE community and provide a resource for the production of reproducible and high-quality data.
Collapse
Affiliation(s)
- Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - John P McGee
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Rafael D Melani
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
8
|
Mathew A, Buijs R, Eijkel GB, Giskes F, Dyachenko A, van der Horst J, Byelov D, Spaanderman DJ, Heck AJR, Porta Siegel T, Ellis SR, Heeren RMA. Ion Imaging of Native Protein Complexes Using Orthogonal Time-of-Flight Mass Spectrometry and a Timepix Detector. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:569-580. [PMID: 33439014 PMCID: PMC7863068 DOI: 10.1021/jasms.0c00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Native mass spectrometry (native MS) has emerged as a powerful technique to study the structure and stoichiometry of large protein complexes. Traditionally, native MS has been performed on modified time-of-flight (TOF) systems combined with detectors that do not provide information on the arrival coordinates of each ion at the detector. In this study, we describe the implementation of a Timepix (TPX) pixelated detector on a modified orthogonal TOF (O-TOF) mass spectrometer for the analysis and imaging of native protein complexes. In this unique experimental setup, we have used the impact positions of the ions at the detector to visualize the effects of various ion optical parameters on the flight path of ions. We also demonstrate the ability to unambiguously detect and image individual ion events, providing the first report of single-ion imaging of protein complexes in native MS. Furthermore, the simultaneous space- and time-sensitive nature of the TPX detector was critical in the identification of the origin of an unexpected TOF signal. A signal that could easily be mistaken as a fragment of the protein complex was explicitly identified as a secondary electron signal arising from ion-surface collisions inside the TOF housing. This work significantly extends the mass range previously detected with the TPX and exemplifies the value of simultaneous space- and time-resolved detection in the study of ion optical processes and ion trajectories in TOF mass spectrometers.
Collapse
Affiliation(s)
- Anjusha Mathew
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ronald Buijs
- NWO
Institute AMOLF Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Gert B. Eijkel
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Frans Giskes
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Andrey Dyachenko
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | | | - Dimitry Byelov
- Amsterdam
Scientific Instruments (ASI), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | | | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Shane R. Ellis
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Hevler JF, Lukassen MV, Cabrera-Orefice A, Arnold S, Pronker MF, Franc V, Heck AJR. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. EMBO J 2021; 40:e106174. [PMID: 33459420 PMCID: PMC7883291 DOI: 10.15252/embj.2020106174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
10
|
Gadkari VV, Ramírez CR, Vallejo DD, Kurulugama RT, Fjeldsted JC, Ruotolo BT. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Anal Chem 2020; 92:15489-15496. [PMID: 33166123 PMCID: PMC7861131 DOI: 10.1021/acs.analchem.0c03372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6-1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (-3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel D Vallejo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ruwan T Kurulugama
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - John C Fjeldsted
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Mallis CS, Zheng X, Qiu X, McCabe JW, Shirzadeh M, Lyu J, Laganowsky A, Russell DH. Development of Native MS Capabilities on an Extended Mass Range Q-TOF MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116451. [PMID: 33162786 PMCID: PMC7641504 DOI: 10.1016/j.ijms.2020.116451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Native mass spectrometry (nMS) is increasingly used for studies of large biomolecules (>100 kDa), especially proteins and protein complexes. The growth in this area can be attributed to advances in native electrospray ionization as well as instrumentation that is capable of accessing high mass-to-charge (m/z) regimes without significant losses in sensitivity and resolution. Here, we describe modifications to the ESI source of an Agilent 6545XT Q-TOF MS that is tailored for analysis of large biomolecules. The modified ESI source was evaluated using both soluble and membrane protein complexes ranging from ~127 to ~232 kDa and the ~801 kDa protein chaperone GroEL. The increased mass resolution of the instrument affords the ability to resolve small molecule adducts and analyze collision-induced dissociation products of the native complexes.
Collapse
Affiliation(s)
| | - Xueyun Zheng
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Xi Qiu
- Agilent Technologies, Inc., Wilmington, DE 19808
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Correspondence to David H. Russell;
| |
Collapse
|
12
|
Vallejo DD, Polasky DA, Kurulugama RT, Eschweiler JD, Fjeldsted JC, Ruotolo BT. A Modified Drift Tube Ion Mobility-Mass Spectrometer for Charge-Multiplexed Collision-Induced Unfolding. Anal Chem 2019; 91:8137-8146. [PMID: 31194508 DOI: 10.1021/acs.analchem.9b00427] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collision-induced unfolding (CIU) of protein ions and their noncovalent complexes offers relatively rapid access to a rich portfolio of biophysical information, without the need to tag or purify proteins prior to analysis. Such assays have been characterized extensively for a range of therapeutic proteins, proving exquisitely sensitive to alterations in protein sequence, structure, and post-translational modification state. Despite advantages over traditional probes of protein stability, improving the throughput and information content of gas-phase protein unfolding assays remains a challenge for current instrument platforms. In this report, we describe modifications to an Agilent 6560 drift tube ion mobility-mass spectrometer in order to perform robust, simultaneous CIU across all precursor ions detected. This approach dramatically increases the speed associated with typical CIU assays, which typically involve mass selection of narrow m/ z regions prior to collisional activation, and thus their development requires a comprehensive assessment of charge-stripping reactions that can unintentionally pollute CIU data with chemical noise when more than one precursor ion is allowed to undergo simultaneous activation. By studying the unfolding and dissociation of intact antibody ions, a key analyte class associated with biotherapeutics, we reveal a predictive relationship between the precursor charge state, the amount of buffer components bound to the ions of interest, and the amount of charge stripping detected. We then utilize our knowledge of antibody charge stripping to rapidly capture CIU data for a range of antibody subclasses and subtypes across all charge states simultaneously, demonstrating a strong charge state dependence on the information content of CIU. Finally, we demonstrate that CIU data collection times can be further reduced by scanning fewer voltage steps, enabling us to optimize the throughput of our improved CIU methods and confidently differentiate antibody variant ions using ∼20% of the data typically collected during CIU. Taken together, our results characterize a new instrument platform for biotherapeutic stability measurements with dramatically improved throughput and information content.
Collapse
Affiliation(s)
- Daniel D Vallejo
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Daniel A Polasky
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | | | - Joseph D Eschweiler
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States.,AbbVie , North Chicago , Illinois 60064 , United States
| | - John C Fjeldsted
- Agilent Technologies , Santa Clara , California 95051 , United States
| | - Brandon T Ruotolo
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
13
|
Sipe SN, Brodbelt JS. Impact of charge state on 193 nm ultraviolet photodissociation of protein complexes. Phys Chem Chem Phys 2019; 21:9265-9276. [PMID: 31016301 DOI: 10.1039/c9cp01144g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As applications in mass spectrometry continue to expand into the field of structural biology, there have been an increasing number of studies on noncovalent biological assemblies. Ensuring that protein complexes maintain native-like conformations and architectures during the transition from solution to the gas phase is a key aim. Probing composition and arrangement of subunits of multi-charged complexes via tandem mass spectrometry (MS/MS) may lead to protein unfolding and the redistribution of charges on the constituent subunits, leading to asymmetric charge partitioning and ejection of a high-charged monomer. Additionally, the overall dissociation efficiency of many ion activation methods is often suppressed for low charge states, hindering the effectiveness of MS/MS for complexes that have low charge density. Ultraviolet photodissociation (UVPD) of proteins using 193 nm photons is a high-energy alternative to collisional activation and demonstrates little to no charge state dependence. Here the symmetry of charge partitioning upon UVPD is evaluated for an array of multimeric protein complexes as a function of initial charge state. The results demonstrate that high laser energies (3 mJ) for UVPD induces more symmetric charge partitioning and ejection of low-charged, presumably compact monomers than higher-energy collisional dissociation (HCD).
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
14
|
Uetrecht C, Lorenzen K, Kitel M, Heidemann J, Robinson Spencer JH, Schlüter H, Schulz J. Native mass spectrometry provides sufficient ion flux for XFEL single-particle imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:653-659. [PMID: 31074428 PMCID: PMC6510201 DOI: 10.1107/s1600577519002686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/21/2019] [Indexed: 05/11/2023]
Abstract
The SPB/SFX instrument at the European XFEL provides unique conditions for single-particle imaging (SPI) experiments due to its high brilliance, nano-focus and unique pulse structure. Promising initial results provided by the international LCLS (Linac Coherent Light Source) SPI initiative highlight the potential of SPI. Current available injection methods generally have high sample consumption and do not provide any options for pulsing, selection or orientation of particles, which poses a problem for data evaluation. Aerosol-injector-based sample delivery is the current method of choice for SPI experiments, although, to a lesser extent, electrospray and electrospinning are used. Single particles scatter only a limited number of photons providing a single orientation for data evaluation, hence large datasets are required from particles in multiple orientations in order to reconstruct a structure. Here, a feasibility study demonstrates that nano-electrospray ionization, usually employed in biomolecular mass spectrometry, provides enough ion flux for SPI experiments. A novel instrument setup at the SPB/SFX instrument is proposed, which has the benefit of extremely low background while delivering mass over charge and conformation-selected ions for SPI.
Collapse
Affiliation(s)
- Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | | | - Matthäus Kitel
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Jesse Huron Robinson Spencer
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
- Institute for Clinical Chemistry, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| |
Collapse
|
15
|
Natesh R, Clare DK, Farr GW, Horwich AL, Saibil HR. A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin. Int J Biol Macromol 2018; 118:671-675. [PMID: 29959019 PMCID: PMC6096091 DOI: 10.1016/j.ijbiomac.2018.06.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
Abstract
The chaperonins (GroEL and GroES in Escherichia coli) are ubiquitous molecular chaperones that assist a subset of essential substrate proteins to undergo productive folding to the native state. Using single particle cryo EM and image processing we have examined complexes of E. coli GroEL with the stringently GroE-dependent substrate enzyme RuBisCO from Rhodospirillum rubrum. Here we present snapshots of non-native RuBisCO - GroEL complexes. We observe two distinct substrate densities in the binary complex reminiscent of the two-domain structure of the RuBisCO subunit, so that this may represent a captured form of an early folding intermediate. The occupancy of the complex is consistent with the negative cooperativity of GroEL with respect to substrate binding, in accordance with earlier mass spectroscopy studies.
Collapse
Affiliation(s)
- Ramanathan Natesh
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK
| | - Daniel K Clare
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK
| | - George W Farr
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Arthur L Horwich
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Helen R Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
16
|
Yewdall NA, Allison TM, Pearce FG, Robinson CV, Gerrard JA. Self-assembly of toroidal proteins explored using native mass spectrometry. Chem Sci 2018; 9:6099-6106. [PMID: 30090298 PMCID: PMC6053953 DOI: 10.1039/c8sc01379a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology.
The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology. Tools to characterise these assemblies are currently scarce. Here, assemblies of peroxiredoxin proteins were examined using native mass spectrometry and complementary solution techniques. We demonstrated unequivocally that tube formation is fully reversible, a useful feature in a molecular switch. Simple assembly of individual toroids was shown to be tunable by pH and the presence of a histidine tag. Collision induced dissociation experiments on peroxiredoxin rings revealed a highly unusual symmetrical disassembly pathway, consistent with the structure disassembling as a hexamer of dimers. This study provides the foundation for the rational design and precise characterisation of peroxiredoxin protein structures where self-assembly can be harnessed as a key feature for applications in nanotechnology.
Collapse
Affiliation(s)
- N Amy Yewdall
- School of Biological Sciences , School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand.,Biomolecular Interaction Centre , School of Biological Sciences , University of Canterbury , Christchurch 8140 , New Zealand
| | - Timothy M Allison
- Department of Chemistry , University of Oxford , Oxford OX1 5QY , UK
| | - F Grant Pearce
- School of Biological Sciences , School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand
| | - Carol V Robinson
- Department of Chemistry , University of Oxford , Oxford OX1 5QY , UK
| | - Juliet A Gerrard
- Biomolecular Interaction Centre , School of Biological Sciences , University of Canterbury , Christchurch 8140 , New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology , Victoria University , Wellington 6140 , New Zealand
| |
Collapse
|
17
|
Ishii K, Zhou M, Uchiyama S. Native mass spectrometry for understanding dynamic protein complex. Biochim Biophys Acta Gen Subj 2017; 1862:275-286. [PMID: 28965879 DOI: 10.1016/j.bbagen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers 2016; 99:846-59. [PMID: 23877967 PMCID: PMC3814418 DOI: 10.1002/bip.22361] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
This review is focused on the mechanisms by which ATP binding and hydrolysis drive chaperone machines assisting protein folding and unfolding. A survey of the key, general chaperone systems Hsp70 and Hsp90, and the unfoldase Hsp100 is followed by a focus on the Hsp60 chaperonin machine which is understood in most detail. Cryo-electron microscopy analysis of the E. coli Hsp60 GroEL reveals intermediate conformations in the ATPase cycle and in substrate folding. These structures suggest a mechanism by which GroEL can forcefully unfold and then encapsulate substrates for subsequent folding in isolation from all other binding surfaces.
Collapse
Affiliation(s)
- Daniel K Clare
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
19
|
Doussineau T, Mathevon C, Altamura L, Vendrely C, Dugourd P, Forge V, Antoine R. Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tristan Doussineau
- Institut Lumière Matière; UMR5306 Université Lyon 1-CNRS; Université de Lyon; 5 rue de la Doua 69622 Villeurbanne France
| | - Carole Mathevon
- CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux; UMR5249 CEA-CNRS-UJF; CEA Grenoble; 17 rue des Martyrs 38054 Grenoble France
| | - Lucie Altamura
- CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux; UMR5249 CEA-CNRS-UJF; CEA Grenoble; 17 rue des Martyrs 38054 Grenoble France
| | - Charlotte Vendrely
- ERRMECe, I-MAT FD4122; Université de Cergy-Pontoise; France
- LMGP, CNRS UMR 5628; Grenoble France
| | - Philippe Dugourd
- Institut Lumière Matière; UMR5306 Université Lyon 1-CNRS; Université de Lyon; 5 rue de la Doua 69622 Villeurbanne France
| | - Vincent Forge
- CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux; UMR5249 CEA-CNRS-UJF; CEA Grenoble; 17 rue des Martyrs 38054 Grenoble France
| | - Rodolphe Antoine
- Institut Lumière Matière; UMR5306 Université Lyon 1-CNRS; Université de Lyon; 5 rue de la Doua 69622 Villeurbanne France
| |
Collapse
|
20
|
Doussineau T, Mathevon C, Altamura L, Vendrely C, Dugourd P, Forge V, Antoine R. Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry. Angew Chem Int Ed Engl 2015; 55:2340-4. [DOI: 10.1002/anie.201508995] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/12/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Tristan Doussineau
- Institut Lumière Matière; UMR5306 Université Lyon 1-CNRS; Université de Lyon; 5 rue de la Doua 69622 Villeurbanne France
| | - Carole Mathevon
- CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux; UMR5249 CEA-CNRS-UJF; CEA Grenoble; 17 rue des Martyrs 38054 Grenoble France
| | - Lucie Altamura
- CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux; UMR5249 CEA-CNRS-UJF; CEA Grenoble; 17 rue des Martyrs 38054 Grenoble France
| | - Charlotte Vendrely
- ERRMECe, I-MAT FD4122; Université de Cergy-Pontoise; France
- LMGP, CNRS UMR 5628; Grenoble France
| | - Philippe Dugourd
- Institut Lumière Matière; UMR5306 Université Lyon 1-CNRS; Université de Lyon; 5 rue de la Doua 69622 Villeurbanne France
| | - Vincent Forge
- CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des Métaux; UMR5249 CEA-CNRS-UJF; CEA Grenoble; 17 rue des Martyrs 38054 Grenoble France
| | - Rodolphe Antoine
- Institut Lumière Matière; UMR5306 Université Lyon 1-CNRS; Université de Lyon; 5 rue de la Doua 69622 Villeurbanne France
| |
Collapse
|
21
|
Rajabi K, Ashcroft AE, Radford SE. Mass spectrometric methods to analyze the structural organization of macromolecular complexes. Methods 2015; 89:13-21. [DOI: 10.1016/j.ymeth.2015.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 01/14/2023] Open
|
22
|
Ma X, Loo JA, Wysocki VH. Surface induced dissociation yields substructure of Methanosarcina thermophila 20S proteasome complexes. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:201-204. [PMID: 26005366 PMCID: PMC4441206 DOI: 10.1016/j.ijms.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Native mass spectrometry (MS) and surface induced dissociation (SID) have been applied to study the stoichiometry and quaternary structure of non-covalent protein complexes. In this study, Methanosarcina thermophila 20S proteasome, which consists of four stacked heptameric rings (α7β7β7α7 symmetry), has been selected to explore the SID dissociation pattern of a complicated stacked ring protein complex. SID produces both α and β subunits while collision induced dissociation (CID) produces only highly charged α subunit. In addition, the charge reduced 20S proteasome produces the α7β7 fragment, reflecting the stacked ring topology of the complex. The combination of SID and charge reduction is shown to be a powerful tool for the study of protein complex structure.
Collapse
Affiliation(s)
- Xin Ma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph A. Loo
- Department of Biological Chemistry, Department of Chemistry & Biochemistry, and UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Belov ME, Damoc E, Denisov E, Compton PD, Horning S, Makarov AA, Kelleher NL. From Protein Complexes to Subunit Backbone Fragments: A Multi-stage Approach to Native Mass Spectrometry. Anal Chem 2013; 85:11163-73. [DOI: 10.1021/ac4029328] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Eugen Damoc
- Thermo Fisher Scientific, 28199 Bremen, Germany
| | | | | | | | | | - Neil L. Kelleher
- Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Zhou M, Jones CM, Wysocki VH. Dissecting the Large Noncovalent Protein Complex GroEL with Surface-Induced Dissociation and Ion Mobility–Mass Spectrometry. Anal Chem 2013; 85:8262-7. [DOI: 10.1021/ac401497c] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mowei Zhou
- Department of Chemistry
and Biochemistry, Ohio State University, 484 W. 12th Ave., Columbus, Ohio 43210, United States
- Department of Chemistry
and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Christopher M. Jones
- Department of Chemistry
and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Vicki H. Wysocki
- Department of Chemistry
and Biochemistry, Ohio State University, 484 W. 12th Ave., Columbus, Ohio 43210, United States
- Department of Chemistry
and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| |
Collapse
|
25
|
Williams DM, Pukala TL. Novel insights into protein misfolding diseases revealed by ion mobility-mass spectrometry. MASS SPECTROMETRY REVIEWS 2013; 32:169-187. [PMID: 23345084 DOI: 10.1002/mas.21358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Amyloid disorders incorporate a wide range of human diseases arising from the failure of a specific peptide or protein to adopt, or remain in, its native functional conformational state. These pathological conditions, such as Parkinson's disease, Alzheimer's disease and Huntington's disease are highly debilitating, exact enormous costs on both individuals and society, and are predicted to increase in prevalence. Consequently, they form the focus of a topical and rich area of current scientific research. A major goal in attempts to understand and treat protein misfolding diseases is to define the structures and interactions of protein species intermediate between fully folded and aggregated, and extract a description of the aggregation process. This has proven a difficult task due to the inability of traditional structural biology approaches to analyze structurally heterogeneous systems. Continued developments in instrumentation and analytical approaches have seen ion mobility-mass spectrometry (IM-MS) emerge as a complementary approach for protein structure determination, and in some cases, a structural biology tool in its own right. IM-MS is well suited to the study of protein misfolding, and has already yielded significant structural information for selected amyloidogenic systems during the aggregation process. This review describes IM-MS for protein structure investigation, and provides a summary of current research highlighting how this methodology has unequivocally and unprecedentedly provided structural and mechanistic detail pertaining to the oligomerization of a variety of disease related proteins.
Collapse
Affiliation(s)
- Danielle M Williams
- School of Chemistry and Physics, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
26
|
Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1239-56. [PMID: 23246828 DOI: 10.1016/j.bbapap.2012.11.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
Mass spectrometry-based methods have become increasingly important in structural biology - in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|
27
|
Kükrer B, Barbu IM, Copps J, Hogan P, Taylor SS, van Duijn E, Heck AJR. Conformational isomers of calcineurin follow distinct dissociation pathways. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1534-43. [PMID: 22811075 PMCID: PMC4120237 DOI: 10.1007/s13361-012-0441-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 05/12/2023]
Abstract
In the gas-phase, ions of protein complexes typically follow an asymmetric dissociation pathway upon collisional activation, whereby an expelled small monomer takes a disproportionately large amount of the charges from the precursor ion. This phenomenon has been rationalized by assuming that upon activation, a single monomer becomes unfolded, thereby attracting charges to its newly exposed basic residues. Here, we report on the atypical gas-phase dissociation of the therapeutically important, heterodimeric calcium/calmodulin-dependent serine/threonine phosphatase calcineurin, using a combination of tandem mass spectrometry, ion mobility mass spectrometry, and computational modeling. Therefore, a hetero-dimeric calcineurin construct (62 kDa), composed of CNa (44 kDa, a truncation mutant missing the calmodulin binding and auto-inhibitory domains), and CNb (18 kDa), was used. Upon collisional activation, this hetero-dimer follows the commonly observed dissociation behavior, whereby the smaller CNb becomes highly charged and is expelled. Surprisingly, in addition, a second atypical dissociation pathway, whereby the charge partitioning over the two entities is more symmetric is observed. The presence of two gas-phase conformational isomers of calcineurin as revealed by ion mobility mass spectrometry (IM-MS) may explain the co-occurrence of these two dissociation pathways. We reveal the direct relationship between the conformation of the calcineurin precursor ion and its concomitant dissociation pathway and provide insights into the mechanisms underlying this co-occurrence of the typical and atypical fragmentation mechanisms.
Collapse
Affiliation(s)
- Basak Kükrer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Ioana M. Barbu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Jeffrey Copps
- The Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Patrick Hogan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Susan S. Taylor
- The Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| |
Collapse
|
28
|
Morrissey B, Leney AC, Toste Rêgo A, Phan G, Allen WJ, Verger D, Waksman G, Ashcroft AE, Radford SE. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS. Mol Cell Proteomics 2012; 11:M111.015289. [PMID: 22371487 PMCID: PMC3394950 DOI: 10.1074/mcp.m111.015289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/23/2012] [Indexed: 01/12/2023] Open
Abstract
The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species.
Collapse
MESH Headings
- Adhesins, Escherichia coli/chemistry
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/metabolism
- Bacterial Adhesion
- Binding Sites
- Binding, Competitive
- Escherichia coli/pathogenicity
- Escherichia coli/physiology
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Models, Molecular
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Periplasmic Proteins/chemistry
- Periplasmic Proteins/genetics
- Periplasmic Proteins/metabolism
- Porins/chemistry
- Porins/genetics
- Porins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Bethny Morrissey
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Aneika C. Leney
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Ana Toste Rêgo
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Gilles Phan
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - William J. Allen
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Denis Verger
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Gabriel Waksman
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Alison E. Ashcroft
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E. Radford
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
29
|
Liu L, Michelsen K, Kitova EN, Schnier PD, Klassen JS. Energetics of Lipid Binding in a Hydrophobic Protein Cavity. J Am Chem Soc 2012; 134:3054-60. [DOI: 10.1021/ja208909n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lan Liu
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Klaus Michelsen
- Molecular Structure, Amgen, Thousand Oaks,
California 91320, United States
| | - Elena N. Kitova
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Paul D. Schnier
- Molecular Structure, Amgen, Thousand Oaks,
California 91320, United States
| | - John S. Klassen
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
30
|
Robinson CV. Finding the right balance - a personal journey from individual proteins to membrane-embedded motors. FEBS J 2012; 279:663-77. [DOI: 10.1111/j.1742-4658.2011.08460.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Stengel F, Aebersold R, Robinson CV. Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics 2011; 11:R111.014027. [PMID: 22180098 PMCID: PMC3316738 DOI: 10.1074/mcp.r111.014027] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein assemblies are critical for cellular function and understanding their physical organization is the key aim of structural biology. However, applying conventional structural biology approaches is challenging for transient, dynamic, or polydisperse assemblies. There is therefore a growing demand for hybrid technologies that are able to complement classical structural biology methods and thereby broaden our arsenal for the study of these important complexes. Exciting new developments in the field of mass spectrometry and proteomics have added a new dimension to the study of protein-protein interactions and protein complex architecture. In this review, we focus on how complementary mass spectrometry-based techniques can greatly facilitate structural understanding of protein assemblies.
Collapse
Affiliation(s)
- Florian Stengel
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA United Kingdom
| | | | | |
Collapse
|
32
|
Uetrecht C, Heck AJR. Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew Chem Int Ed Engl 2011; 50:8248-62. [PMID: 21793131 PMCID: PMC7159578 DOI: 10.1002/anie.201008120] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Indexed: 01/04/2023]
Abstract
Over a century since its development, the analytical technique of mass spectrometry is blooming more than ever, and applied in nearly all aspects of the natural and life sciences. In the last two decades mass spectrometry has also become amenable to the analysis of proteins and even intact protein complexes, and thus begun to make a significant impact in the field of structural biology. In this Review, we describe the emerging role of mass spectrometry, with its different technical facets, in structural biology, focusing especially on structural virology. We describe how mass spectrometry has evolved into a tool that can provide unique structural and functional information about viral-protein and protein-complex structure, conformation, assembly, and topology, extending to the direct analysis of intact virus capsids of several million Dalton in mass. Mass spectrometry is now used to address important questions in virology ranging from how viruses assemble to how they interact with their host.
Collapse
Affiliation(s)
- Charlotte Uetrecht
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
- Present address: Molecular Biophysics, Uppsala University, Uppsala (Sweden)
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
| |
Collapse
|
33
|
Uetrecht C, Heck AJR. Moderne biomolekulare Massenspektrometrie und ihre Bedeutung für die Erforschung der Struktur, der Dynamik und des Aufbaus von Viren. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Pukala TL. Mass Spectrometry for Structural Biology: Determining the Composition and Architecture of Protein Complexes. Aust J Chem 2011. [DOI: 10.1071/ch11025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Knowledge of protein structure and protein–protein interactions is vital for appreciating the elaborate biochemical pathways that underlie cellular function. While many techniques exist to probe the structure and complex interplay between functional proteins, none currently offer a complete picture. Mass spectrometry and associated methods provide complementary information to established structural biology tools, and with rapidly evolving technological advances, can in some cases even exceed other techniques by its diversity in application and information content. This is primarily because of the ability of mass spectrometry to precisely identify protein complex stoichiometry, detect individual species present in a mixture, and concomitantly offer conformational information. This review describes the attributes of mass spectrometry for the structural investigation of multiprotein assemblies in the context of recent developments and highlights in the field.
Collapse
|
35
|
Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem 2010; 3:126-32. [PMID: 21258385 DOI: 10.1038/nchem.947] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/11/2010] [Indexed: 12/22/2022]
Abstract
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.
Collapse
|
36
|
El-Faramawy A, Guo Y, Verkerk UH, Thomson BA, Siu KWM. Infrared irradiation in the collision cell of a hybrid tandem quadrupole/time-of-flight mass spectrometer for declustering and cleaning of nanoelectrosprayed protein complex ions. Anal Chem 2010; 82:9878-84. [PMID: 21062028 DOI: 10.1021/ac102351m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report the performance of a hybrid quadrupole time-of-flight tandem mass spectrometer with an improved designed for coaxial infrared laser introduction for the characterization and dissociation of large protein complex ions and their aggregates formed under nanoelectrospray ionization. The major improvement from the original design (Raspopov, S. A.; El-Faramawy, A.; Thomson, B. A.; Siu, K. W. M. Anal. Chem. 2006, 78, 4572-4577) involves the use of a hollow silica waveguide and physical isolation of the infrared laser. Large model protein complex ions and their aggregates examined include alcohol dehydrogenase, avidin, GroEL, and others. Gentle heating of these complexes with the infrared laser facilitated declustering and resulted in better resolved mass spectral peaks and more accurate molecular-weight measurements.
Collapse
Affiliation(s)
- Ayman El-Faramawy
- Centre for Research in Earth and Space Science, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
37
|
Erba EB, Ruotolo BT, Barsky D, Robinson CV. Ion Mobility-Mass Spectrometry Reveals the Influence of Subunit Packing and Charge on the Dissociation of Multiprotein Complexes. Anal Chem 2010; 82:9702-10. [DOI: 10.1021/ac101778e] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elisabetta Boeri Erba
- University Chemistry Department, University of Cambridge, Cambridge, United Kingdom, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, Lawrence Livermore National Laboratory, Livermore, California, and Department of Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Brandon T. Ruotolo
- University Chemistry Department, University of Cambridge, Cambridge, United Kingdom, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, Lawrence Livermore National Laboratory, Livermore, California, and Department of Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniel Barsky
- University Chemistry Department, University of Cambridge, Cambridge, United Kingdom, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, Lawrence Livermore National Laboratory, Livermore, California, and Department of Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Carol V. Robinson
- University Chemistry Department, University of Cambridge, Cambridge, United Kingdom, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, Lawrence Livermore National Laboratory, Livermore, California, and Department of Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Knapman TW, Morton VL, Stonehouse NJ, Stockley PG, Ashcroft AE. Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3033-3042. [PMID: 20872636 PMCID: PMC4789508 DOI: 10.1002/rcm.4732] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have combined ion mobility spectrometry-mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways.
Collapse
Affiliation(s)
- Tom W. Knapman
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria L. Morton
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
39
|
Akashi S, Watanabe M, Heddle JG, Unzai S, Park SY, Tame JRH. RNA and protein complexes of trp RNA-binding attenuation protein characterized by mass spectrometry. Anal Chem 2010; 81:2218-26. [PMID: 19219981 DOI: 10.1021/ac802354j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have characterized both wild-type and mutant TRAP (trp RNA-binding attenuation protein) from Bacillus stearothermophilus , and their complexes with RNA or its regulator anti-TRAP protein (AT), by electrospray ionization mass spectrometry (ESI-MS). Wild-type TRAP mainly forms homo-11mer rings. The mutant used carries three copies of the TRAP monomer on a single polypeptide chain so that it associates to form a 12mer ring with four polypeptide molecules. Mass spectra showed that both the wild-type TRAP 11mer and the mutant TRAP 12mer can bind a cognate single-stranded RNA molecule with a molar ratio of 1:1. The crystal structure of wild-type TRAP complexed with AT shows a TRAP 12mer ring surrounded by six AT trimers. However, nanoESI-MS of wild-type TRAP mixed with AT shows four species with different binding stoichiometries, and the complex observed by crystallography represents only a minor species in solution; most of the TRAP remains in an 11mer ring form. Mass spectra of mutant TRAP showed only a single species, TRAP 12mer + six copies of AT trimer, which is observed by crystallography. These results suggest that crystallization selects only the most symmetrical TRAP-AT complex from the solution, whereas ESI-MS can take a "snapshot" of all the species in solution.
Collapse
Affiliation(s)
- Satoko Akashi
- Yokohama City University, Supramolecular Biology, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Kirshenbaum N, Michaelevski I, Sharon M. Analyzing large protein complexes by structural mass spectrometry. J Vis Exp 2010:1954. [PMID: 20567215 PMCID: PMC3149987 DOI: 10.3791/1954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Living cells control and regulate their biological processes through the coordinated action of a large number of proteins that assemble themselves into an array of dynamic, multi-protein complexes1. To gain a mechanistic understanding of the various cellular processes, it is crucial to determine the structure of such protein complexes, and reveal how their structural organization dictates their function. Many aspects of multi-protein complexes are, however, difficult to characterize, due to their heterogeneous nature, asymmetric structure, and dynamics. Therefore, new approaches are required for the study of the tertiary levels of protein organization. One of the emerging structural biology tools for analyzing macromolecular complexes is mass spectrometry (MS)2-5. This method yields information on the complex protein composition, subunit stoichiometry, and structural topology. The power of MS derives from its high sensitivity and, as a consequence, low sample requirement, which enables examination of protein complexes expressed at endogenous levels. Another advantage is the speed of analysis, which allows monitoring of reactions in real time. Moreover, the technique can simultaneously measure the characteristics of separate populations co-existing in a mixture. Here, we describe a detailed protocol for the application of structural MS to the analysis of large protein assemblies. The procedure begins with the preparation of gold-coated capillaries for nanoflow electrospray ionization (nESI). It then continues with sample preparation, emphasizing the buffer conditions which should be compatible with nESI on the one hand, and enable to maintain complexes intact on the other. We then explain, step-by-step, how to optimize the experimental conditions for high mass measurements and acquire MS and tandem MS spectra. Finally, we chart the data processing and analyses that follow. Rather than attempting to characterize every aspect of protein assemblies, this protocol introduces basic MS procedures, enabling the performance of MS and MS/MS experiments on non-covalent complexes. Overall, our goal is to provide researchers unacquainted with the field of structural MS, with knowledge of the principal experimental tools.
Collapse
Affiliation(s)
- Noam Kirshenbaum
- Department of Biological Chemistry, Weizmann Institute of Science
| | | | | |
Collapse
|
41
|
van Duijn E. Current limitations in native mass spectrometry based structural biology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:971-978. [PMID: 20116282 DOI: 10.1016/j.jasms.2009.12.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/10/2009] [Accepted: 12/18/2009] [Indexed: 05/28/2023]
Abstract
Nowadays, mass spectrometry plays an important role in structural biology. At one end it can be used to investigate intact protein complexes, providing details about the complex composition, topology, stability, and dynamics, whereas at the other end the protein's identity and possible modifications can be visualized using proteomics approaches. Combining all this information allows the generation of detailed models for functional biological assemblies. Here, a perspective on the application of native mass spectrometry in structural biology is presented. The potential of this technique and some important current limitations are discussed. This includes issues regarding the quality/homogeneity of the sample, the dissociation efficiency of protein complexes during tandem mass spectrometric analysis, and some boundaries of ion mobility mass spectrometry.
Collapse
Affiliation(s)
- Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
42
|
Sterling HJ, Batchelor JD, Wemmer DE, Williams ER. Effects of buffer loading for electrospray ionization mass spectrometry of a noncovalent protein complex that requires high concentrations of essential salts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1045-9. [PMID: 20226685 PMCID: PMC2893594 DOI: 10.1016/j.jasms.2010.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 05/25/2023]
Abstract
Electrospray ionization (ESI) mass spectrometry (MS) is a powerful method for analyzing the active forms of macromolecular complexes of biomolecules. However, these solutions often contain high concentrations of salts and/or detergents that adversely effect ESI performance by making ion formation less reproducible, causing severe adduction or ion suppression. Many methods for separating complexes from nonvolatile additives are routinely used with ESI-MS, but these methods may not be appropriate for complexes that require such stabilizers for activity. Here, the effects of buffer loading using concentrations of ammonium acetate ranging from 0.22 to 1.41 M on the ESI mass spectra of a solution containing a domain truncation mutant of a sigma(54) activator from Aquifex aeolicus were studied. This 44.9 kDa protein requires the presence of millimolar concentrations of Mg(2+), BeF(3)(-), and ADP, (at approximately 60 degrees C) to assemble into an active homo-hexamer. Addition of ammonium acetate can improve signal stability and reproducibility, and can significantly lower adduction and background signals. However, at higher concentrations, the relative ion abundance of the hexamer is diminished, while that of the constituent monomer is enhanced. These results are consistent with loss of enzymatic activity as measured by ATP hydrolysis and indicate that the high concentration of ammonium acetate interferes with assembly of the hexamer. This shows that buffer loading with ammonium acetate is effective for obtaining ESI signal for complexes that require high concentrations of essential salts, but can interfere with formation of, and/or destabilize complexes by disrupting crucial electrostatic interactions at high concentration.
Collapse
Affiliation(s)
- Harry J Sterling
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
43
|
Sharon M. How far can we go with structural mass spectrometry of protein complexes? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:487-500. [PMID: 20116283 DOI: 10.1016/j.jasms.2009.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 05/11/2023]
Abstract
Physical interactions between proteins and the formation of stable complexes form the basis of most biological functions. Therefore, a critical step toward understanding the integrated workings of the cell is to determine the structure of protein complexes, and reveal how their structural organization dictates function. Studying the three-dimensional organization of protein assemblies, however, represents a major challenge for structural biologists, due to the large size of the complexes, their heterogeneous composition, their flexibility, and their asymmetric structure. In the last decade, mass spectrometry has proven to be a valuable tool for analyzing such noncovalent complexes. Here, I illustrate the breadth of structural information that can be obtained from this approach, and the steps taken to elucidate the stoichiometry, topology, packing, dynamics, and shape of protein complexes. In addition, I illustrate the challenges that lie ahead, and the future directions toward which the field might be heading.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
44
|
Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJR. Ion mobility mass spectrometry of proteins and proteinassemblies. Chem Soc Rev 2010; 39:1633-55. [DOI: 10.1039/b914002f] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Bruneaux M, Terrier P, Leize E, Mary J, Lallier FH, Zal F. Structural study ofCarcinus maenashemocyanin by native ESI-MS: Interaction withL-lactate and divalent cations. Proteins 2009; 77:589-601. [DOI: 10.1002/prot.22471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
van Duijn E, Barendregt A, Synowsky S, Versluis C, Heck AJR. Chaperonin complexes monitored by ion mobility mass spectrometry. J Am Chem Soc 2009; 131:1452-9. [PMID: 19138114 DOI: 10.1021/ja8055134] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural analysis of macromolecular functional protein assemblies by contemporary high resolution structural biology techniques (such as nuclear magnetic resonance, X-ray crystallography, and electron microscopy) is often still challenging. The potential of a rather new method to generate structural information, native mass spectrometry, in combination with ion mobility mass spectrometry (IM-MS), is highlighted here. IM-MS allows the assessment of gas phase ion collision cross sections of protein complex ions, which can be related to overall shapes/volumes of protein assemblies, and thus be used to monitor changes in structure. Here we applied IM-MS to study several (intermediate) chaperonin complexes that can be present during substrate folding. Our results reveal that the protein assemblies retain their solution phase structural properties in the gas phase, addressing a long-standing issue in mass spectrometry. All IM-MS data on the chaperonins point toward the burial of genuine substrates inside the GroEL cavity being retained in the gas phase. Additionally, the overall dimensions of the ternary complexes between GroEL, a substrate, and cochaperonin were found to be similar to the dimensions of the empty GroEL-GroES complex. We also investigated the effect of reducing the charge, obtained in the electrospray process, of the protein complex on the global shape of the chaperonin. At decreased charge, the protein complex was found to be more compact, possibly occupying a lower number of conformational states, enabling an improved ion mobility separation. Charge state reduction was found not to affect the relative differences observed in collision cross sections for the chaperonin assemblies.
Collapse
Affiliation(s)
- Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Benesch JLP. Collisional activation of protein complexes: picking up the pieces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:341-8. [PMID: 19110440 DOI: 10.1016/j.jasms.2008.11.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/19/2008] [Accepted: 11/19/2008] [Indexed: 05/12/2023]
Abstract
Mass spectrometry is fast becoming a vital approach not only for the identification and quantification of proteins, but also for the study of the noncovalent assemblies they form. Approaches for ionizing, transmitting, and detecting protein complexes intact in the mass spectrometer are now well established. The challenge has therefore shifted to developing and applying mass spectrometry approaches to elucidate the structure of such species. A crucial aspect to this goal is inducing their disassembly in the gas phase to mine information as to their composition and organization. Here the consequences of collisionally activating protein complexes are illustrated through ion mobility mass spectrometry measurements and discussed in the context of the current literature. Although a consensus view of the mechanism of dissociation is starting to emerge, it is also clear that a number of aspects remain unresolved. These outstanding questions and frontier challenges must be addressed if gas-phase dissociative approaches are to reach their full potential in the study of protein assemblies.
Collapse
Affiliation(s)
- Justin L P Benesch
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
48
|
Beardsley RL, Jones CM, Galhena AS, Wysocki VH. Noncovalent protein tetramers and pentamers with "n" charges yield monomers with n/4 and n/5 charges. Anal Chem 2009; 81:1347-56. [PMID: 19140748 PMCID: PMC3477242 DOI: 10.1021/ac801883k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years mass spectrometry based techniques have emerged as structural biology tools for the characterization of macromolecular, noncovalent assemblies. Many of these efforts involve preservation of intact protein complexes within the mass spectrometer, providing molecular weight measurements that allow the determination of subunit stoichiometry and real-time monitoring of protein interactions. Attempts have been made to further elucidate subunit architecture through the dissociation of subunits from the intact complex by colliding it into inert gas atoms such as argon or xenon. Unfortunately, the amount of structural information that can be derived from such strategies is limited by the nearly ubiquitous ejection of a single, unfolded subunit. Here, we present results from the gas-phase dissociation of protein-protein complexes upon collision into a surface. Dissociation of a series of tetrameric and pentameric proteins demonstrate that alternative subunit fragments, not observed through multiple collisions with gas atoms, can be generated through surface collision. Evidence is presented for the retention of individual subunit structure, and in some cases, retention of noncovalent interactions between subunits and ligands. We attribute these differences to the rapid large energy input of ion-surface collisions, which leads to the dissociation of subunits prior to the unfolding of individual monomers.
Collapse
Affiliation(s)
- Richard L Beardsley
- Department of Chemistry, University of Arizona, 1306 E. University Blvd., PO Box 210041, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
49
|
Gaikwad NW, Yang L, Rogan EG, Cavalieri EL. Evidence for NQO2-mediated reduction of the carcinogenic estrogen ortho-quinones. Free Radic Biol Med 2009; 46:253-62. [PMID: 18996184 PMCID: PMC2746554 DOI: 10.1016/j.freeradbiomed.2008.10.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 12/18/2022]
Abstract
The physiological function of NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase) is to detoxify potentially reactive quinones by direct transfer of two electrons. A similar detoxification role has not been established for its homologue NRH:quinone oxidoreductase 2 (NQO2). Estrogen quinones, including estradiol(E(2))-3,4-Q, generated by estrogen metabolism, are thought to be responsible for estrogen-initiated carcinogenesis. In this investigation, we have shown for the first time that NQO2 catalyzes the reduction of electrophilic estrogen quinones and thereby may act as a detoxification enzyme. ESI and MALDI mass spectrometric binding studies involving E(2)-3,4-Q with NQO2 clearly support the formation of an enzyme-substrate physical complex. The problem of spontaneous reduction of substrate by cofactor, benzyldihydronicotinamide riboside (BNAH), was successfully overcome by taking advantage of the ping-pong mechanism of NQO2 catalysis. The involvement of the enzyme in the reduction of E(2)-3,4-Q was further supported by addition of the inhibitor quercetin to the assay mixture. NQO2 is a newly discovered binding site (MT3) of melatonin. However, addition of melatonin to the assay mixture did not affect the catalytic activity of NQO2. Preliminary kinetic studies show that NQO2 is faster in reducing estrogen quinones than its homologue NQO1. Both UV and liquid chromatography-tandem mass spectrometry assays unequivocally corroborate the reduction of estrogen ortho-quinones by NQO2, indicating that it could be a novel target for prevention of breast cancer initiation.
Collapse
Affiliation(s)
| | | | | | - Ercole L. Cavalieri
- Corresponding Author: Ercole L. Cavalieri, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, Tel. 402-559-7237, Fax 402-559-8068, e-mail:
| |
Collapse
|
50
|
Grandori R, Santambrogio C, Brocca S, Invernizzi G, Lotti M. Electrospray-ionization mass spectrometry as a tool for fast screening of protein structural properties. Biotechnol J 2009; 4:73-87. [DOI: 10.1002/biot.200800250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|