1
|
LeMaster DM, Bashir Q, Hernández G. Propagation of conformational instability in FK506-binding protein FKBP12. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140990. [PMID: 38142946 PMCID: PMC10939819 DOI: 10.1016/j.bbapap.2023.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
FKBP12 is the archetype of the FK506 binding domains that define the family of FKBP proteins which participate in the regulation of various distinct physiological signaling processes. As the drugs FK506 and rapamycin inhibit many of these FKBP proteins, there is need to develop therapeutics which exhibit selectivity within this family. The long β4-β5 loop of the FKBP domain is known to regulate transcriptional activity for the steroid hormone receptors and appears to participate in regulating calcium channel activity for the cardiac and skeletal muscle ryanodine receptors. The β4-β5 loop of FKBP12 has been shown to undergo extensive conformational dynamics, and here we report hydrogen exchange measurements for a series of mutational variants in that loop which indicate deviations from a two-state kinetics for those dynamics. In addition to a previously characterized local transition near the tip of this loop, evidence is presented for a second site of conformational dynamics in the stem of this loop. These mutation-dependent hydrogen exchange effects extend beyond the β4-β5 loop, primarily by disrupting the hydrogen bond between the Gly 58 amide and the Tyr 80 carbonyl oxygen which links the two halves of the structural rim that surrounds the active site cleft. Mutationally-induced opening of the cleft between Gly 58 and Tyr 80 not only modulates the global stability of the protein, it promotes a conformational transition in the distant β2-β3a hairpin that modulates the binding affinity for a FKBP51-selective inhibitor previously designed to exploit a localized conformational transition at the homologous site.
Collapse
Affiliation(s)
- David M LeMaster
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America
| | - Qamar Bashir
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America
| | - Griselda Hernández
- Biggs Laboratory Wadsworth Center, NYS Department of Health, Empire State Plaza, Albany, NY 12237, United States of America.
| |
Collapse
|
2
|
Yang Y, Gao Z, Yang D. pH-dependent self-assembly mechanism of a single repetitive domain from a spider silk protein. Int J Biol Macromol 2023; 242:124775. [PMID: 37169045 DOI: 10.1016/j.ijbiomac.2023.124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Spider silk is self-assembled from full-length silk proteins, and some silk protein fragments can also form silk-like fibers in vitro. However, the mechanism underlying the silk fiber formation is not understood well. In this study, we investigated the fiber formation of a single repetitive domain (RP) from a minor ampullate silk protein (MiSp). Our findings revealed that pH and salt concentration affect not only the stability of MiSp-RP but also its self-assembly into fibers and aggregates. Using nuclear magnetic resonance (NMR) spectroscopy, we solved the three-dimensional (3D) structure of MiSp RP in aqueous solution. On the basis of the structure and mutagenesis, we revealed that charge-dipole interactions are responsible for the pH- and salt-dependent properties of MiSp-RP. Our results indicate that fiber formation is regulated by a delicate balance between intermolecular and intramolecular interactions, rather than by the protein stability alone. These findings have implications for the design of silk proteins for mass production of spider silk.
Collapse
Affiliation(s)
- Yadi Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhenwei Gao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
3
|
Dreydoppel M, Lichtenecker RJ, Akke M, Weininger U. 1H R 1ρ relaxation dispersion experiments in aromatic side chains. JOURNAL OF BIOMOLECULAR NMR 2021; 75:383-392. [PMID: 34510298 PMCID: PMC8642340 DOI: 10.1007/s10858-021-00382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aromatic side chains are attractive probes of protein dynamic, since they are often key residues in enzyme active sites and protein binding sites. Dynamic processes on microsecond to millisecond timescales can be studied by relaxation dispersion experiments that attenuate conformational exchange contributions to the transverse relaxation rate by varying the refocusing frequency of applied radio-frequency fields implemented as either CPMG pulse trains or continuous spin-lock periods. Here we present an aromatic 1H R1ρ relaxation dispersion experiment enabling studies of two to three times faster exchange processes than achievable by existing experiments for aromatic side chains. We show that site-specific isotope labeling schemes generating isolated 1H-13C spin pairs with vicinal 2H-12C moieties are necessary to avoid anomalous relaxation dispersion profiles caused by Hartmann-Hahn matching due to the 3JHH couplings and limited chemical shift differences among 1H spins in phenylalanine, tyrosine and the six-ring moiety of tryptophan. This labeling pattern is sufficient in that remote protons do not cause additional complications. We validated the approach by measuring ring-flip kinetics in the small protein GB1. The determined rate constants, kflip, agree well with previous results from 13C R1ρ relaxation dispersion experiments, and yield 1H chemical shift differences between the two sides of the ring in good agreement with values measured under slow-exchange conditions. The aromatic1H R1ρ relaxation dispersion experiment in combination with the site-selective 1H-13C/2H-12C labeling scheme enable measurement of exchange rates up to kex = 2kflip = 80,000 s-1, and serve as a useful complement to previously developed 13C-based methods.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Xiang X, Hansen AL, Yu L, Jameson G, Bruschweiler-Li L, Yuan C, Brüschweiler R. Observation of Sub-Microsecond Protein Methyl-Side Chain Dynamics by Nanoparticle-Assisted NMR Spin Relaxation. J Am Chem Soc 2021; 143:13593-13604. [PMID: 34428032 DOI: 10.1021/jacs.1c04687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amino-acid side-chain properties in proteins are key determinants of protein function. NMR spin relaxation of side chains is an important source of information about local protein dynamics and flexibility. However, traditional solution NMR relaxation methods are most sensitive to sub-nanosecond dynamics lacking information on slower ns-μs time-scale motions. Nanoparticle-assisted NMR spin relaxation (NASR) of methyl-side chains is introduced here as a window into these ns-μs dynamics. NASR utilizes the transient and nonspecific interactions between folded proteins and slowly tumbling spherical nanoparticles (NPs), whereby the increase of the relaxation rates reflects motions on time scales from ps all the way to the overall tumbling correlation time of the NPs ranging from hundreds of ns to μs. The observed motional amplitude of each methyl group can then be expressed by a model-free NASR S2 order parameter. The method is demonstrated for 2H-relaxation of CH2D methyl moieties and cross-correlated relaxation of CH3 groups for proteins Im7 and ubiquitin in the presence of anionic silica-nanoparticles. Both types of relaxation experiments, dominated by either quadrupolar or dipolar interactions, yield highly consistent results. Im7 shows additional dynamics on the intermediate time scales taking place in a functionally important loop, whereas ubiquitin visits the majority of its conformational substates on the sub-ns time scale. These experimental observations are in good agreement with 4-10 μs all-atom molecular dynamics trajectories. NASR probes side-chain dynamics on a much wider range of motional time scales than previously possible, thereby providing new insights into the interplay between protein structure, dynamics, and molecular interactions that govern protein function.
Collapse
Affiliation(s)
- Xinyao Xiang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lei Yu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gregory Jameson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
6
|
Crystal structure and transient dimerization for the FKBP12 protein from the pathogenic fungus Candida auris. Biochem Biophys Res Commun 2020; 525:1103-1108. [PMID: 32184021 DOI: 10.1016/j.bbrc.2020.03.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
Abstract
International concern over the recent emergence of Candida auris infections reflects not only its comparative ease of transmission and substantial mortality but the increasing level of resistance observed to all three major classes of antifungal drugs. Diminution in virulence has been reported for a wide range of fungal pathogens when the FK506-binding protein FKBP12 binds to that immunosuppressant drug and the binary complex then inhibits the fungal calcineurin signaling pathway. Structure-based drug design efforts have described modifications of FK506 which modestly reduce virulence for a number of fungal pathogens while also lessening the side effect of suppressing the tissue immunity response in the patient. To aid in such studies, we report the crystal structure of Candida auris FKBP12. As physiological relevance has been proposed for transient homodimerization interactions of distantly related fungal FKBP12 proteins, we report the solution NMR characterization of the homodimerization interactions of the FKBP12 proteins from both Candida auris and Candida glabrata.
Collapse
|
7
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
8
|
Chao FA, Li Y, Zhang Y, Byrd RA. Probing the Broad Time Scale and Heterogeneous Conformational Dynamics in the Catalytic Core of the Arf-GAP ASAP1 via Methyl Adiabatic Relaxation Dispersion. J Am Chem Soc 2019; 141:11881-11891. [PMID: 31293161 PMCID: PMC7505415 DOI: 10.1021/jacs.9b02602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methyl-TROSY is one of the most powerful NMR spectroscopic tools for studying structures and conformational dynamics of large protein complexes in solution. In studying conformational dynamics, side chains usually display heterogeneous dynamics, including collective and local motions, that can be difficult to detect and analyze by conventional relaxation dispersion (RD) approaches. The combination of NH-based heteronuclear adiabatic relaxation dispersion (HARD) experiments and a geometric approximation (geoHARD) has been shown to have several advantages over conventional RD in revealing conformational dynamics over a broad time scale. Here, we demonstrate a new technique that has been developed to detect both heterogeneous and wide time scale conformational dynamics in the hydrophobic interior of large macromolecules utilizing methyl-geoHARD. It is shown that methyl-geoHARD will be feasible at ultrahigh magnetic fields (>1 GHz), when this technology becomes available. For the ZA domain of Arf-GAP ASAP1, with a global correlational time of 24 ns at 15 °C, a wide range of conformational dynamics (exhibiting chemical exchange rates (kex) between 102 and 105 s-1) are observed in the methyl groups of isoleucine, leucine, and valine. The dynamics include collective and independent local motions. Furthermore, portions of the collective motions have been confirmed by single-quantum Carr-Purcell-Meiboom-Gill (SQ-CPMG) RD experiments; however, motions outside of the detectable CPMG window (400-8000 s-1) cannot be accurately determined by SQ-CPMG experiments. The methyl-geoHARD experiment allows the dissection of heterogeneous conformational dynamics and pinpoints important motions that, potentially, can be correlated with important biological functions and recognition.
Collapse
Affiliation(s)
- Fa-An Chao
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| | - Yifei Li
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| | - Yue Zhang
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| | - R Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| |
Collapse
|
9
|
Resolving biomolecular motion and interactions by R2 and R1ρ relaxation dispersion NMR. Methods 2018; 148:28-38. [DOI: 10.1016/j.ymeth.2018.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
|
10
|
Solomentsev G, Diehl C, Akke M. Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations. Biochemistry 2018; 57:1451-1461. [DOI: 10.1021/acs.biochem.7b01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gleb Solomentsev
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Carl Diehl
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
11
|
Abstract
The measurement of R1ρ , the longitudinal relaxation rate constant in the rotating frame, is one of the few available methods to characterize the μs-ms functional dynamics of biomolecules. Here, we focus on 15N R1ρ experiments for protein NH groups. We present protocols for both on- and off-resonance 15N R1ρ measurements needed for relaxation dispersion studies, and describe the data analysis for extracting kinetic and thermodynamic parameters characterizing the motional processes.
Collapse
Affiliation(s)
- Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
12
|
Warshel A, Bora RP. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 2017; 144:180901. [PMID: 27179464 DOI: 10.1063/1.4947037] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme's conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| | - Ram Prasad Bora
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| |
Collapse
|
13
|
Yu F, Qiao J, Robblee J, Tsao D, Anderson J, Capila I. An Integrated Approach to Unique NMR Assignment of Methionine Methyl Resonances in Proteins. Anal Chem 2017; 89:1610-1616. [PMID: 28208280 DOI: 10.1021/acs.analchem.6b03705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fei Yu
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Jing Qiao
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - John Robblee
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Desiree Tsao
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - James Anderson
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Ishan Capila
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Weininger U, Modig K, Geitner AJ, Schmidpeter PAM, Koch JR, Akke M. Dynamics of Aromatic Side Chains in the Active Site of FKBP12. Biochemistry 2016; 56:334-343. [DOI: 10.1021/acs.biochem.6b01157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ulrich Weininger
- Department
of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O.
Box 124, SE-22100 Lund, Sweden
- Institute
of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Department
of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O.
Box 124, SE-22100 Lund, Sweden
| | - Anne-Juliane Geitner
- Laboratorium
für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Philipp A. M. Schmidpeter
- Laboratorium
für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Johanna R. Koch
- Laboratorium
für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Mikael Akke
- Department
of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O.
Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
15
|
Hernández G, LeMaster DM. Quantifying protein dynamics in the ps-ns time regime by NMR relaxation. JOURNAL OF BIOMOLECULAR NMR 2016; 66:163-174. [PMID: 27734179 PMCID: PMC5446045 DOI: 10.1007/s10858-016-0064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/28/2016] [Indexed: 05/12/2023]
Abstract
Both 15N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide 15N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T1 and T1ρ experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz 1H, differential residue-specific 15N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific 15N CSA values. Experimental access to such differential residue-specific 15N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.
Collapse
Affiliation(s)
- Griselda Hernández
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY, 12201, USA
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY, 12201, USA.
| |
Collapse
|
16
|
LeMaster DM, Hernandez G. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design. Curr Mol Pharmacol 2016; 9:5-26. [PMID: 25986571 DOI: 10.2174/1874467208666150519113146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/25/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.
Collapse
Affiliation(s)
| | - Griselda Hernandez
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York, 12201, USA.
| |
Collapse
|
17
|
Rennella E, Schuetz AK, Kay LE. Quantitative measurement of exchange dynamics in proteins via (13)C relaxation dispersion of (13)CHD2-labeled samples. JOURNAL OF BIOMOLECULAR NMR 2016; 65:59-64. [PMID: 27251650 DOI: 10.1007/s10858-016-0038-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/19/2016] [Indexed: 05/24/2023]
Abstract
Methyl groups have emerged as powerful probes of protein dynamics with timescales from picoseconds to seconds. Typically, studies involving high molecular weight complexes exploit (13)CH3- or (13)CHD2-labeling in otherwise highly deuterated proteins. The (13)CHD2 label offers the unique advantage of providing (13)C, (1)H and (2)H spin probes, however a disadvantage has been the lack of an experiment to record (13)C Carr-Purcell-Meiboom-Gill relaxation dispersion that monitors millisecond time-scale dynamics, implicated in a wide range of biological processes. Herein we develop an experiment that eliminates artifacts that would normally result from the scalar coupling between (13)C and (2)H spins that has limited applications in the past. The utility of the approach is established with a number of applications, including measurement of ms dynamics of a disease mutant of a 320 kDa p97 complex.
Collapse
Affiliation(s)
- Enrico Rennella
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anne K Schuetz
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
18
|
Yang CJ, Takeda M, Terauchi T, Jee J, Kainosho M. Differential Large-Amplitude Breathing Motions in the Interface of FKBP12–Drug Complexes. Biochemistry 2015; 54:6983-95. [DOI: 10.1021/acs.biochem.5b00820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chun-Jiun Yang
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Mitsuhiro Takeda
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| | - Tsutomu Terauchi
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - JunGoo Jee
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Masatsune Kainosho
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
19
|
LeMaster DM, Mustafi SM, Brecher M, Zhang J, Héroux A, Li H, Hernández G. Coupling of Conformational Transitions in the N-terminal Domain of the 51-kDa FK506-binding Protein (FKBP51) Near Its Site of Interaction with the Steroid Receptor Proteins. J Biol Chem 2015; 290:15746-15757. [PMID: 25953903 DOI: 10.1074/jbc.m115.650655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 11/06/2022] Open
Abstract
Interchanging Leu-119 for Pro-119 at the tip of the β4-β5 loop in the first FK506 binding domain (FK1) of the FKBP51 and FKBP52 proteins, respectively, has been reported to largely reverse the inhibitory (FKBP51) or stimulatory (FKBP52) effects of these co-chaperones on the transcriptional activity of glucocorticoid and androgen receptor-protein complexes. Previous NMR relaxation studies have identified exchange line broadening, indicative of submillisecond conformational motion, throughout the β4-β5 loop in the FK1 domain of FKBP51, which are suppressed by the FKBP52-like L119P substitution. This substitution also attenuates exchange line broadening in the underlying β2 and β3a strands that is centered near a bifurcated main chain hydrogen bond interaction between these two strands. The present study demonstrates that these exchange line broadening effects arise from two distinct coupled conformational transitions, and the transition within the β2 and β3a strands samples a transient conformation that resembles the crystal structures of the selectively inhibited FK1 domain of FKBP51 recently reported. Although the crystal structures for their series of inhibitors were interpreted as evidence for an induced fit mechanism of association, the presence of a similar conformation being significantly populated in the unliganded FKBP51 domain is more consistent with a conformational selection binding process. The contrastingly reduced conformational plasticity of the corresponding FK1 domain of FKBP52 is consistent with the current model in which FKBP51 binds to both the apo- and hormone-bound forms of the steroid receptor to modulate its affinity for ligand, whereas FKBP52 binds selectively to the latter state.
Collapse
Affiliation(s)
- David M LeMaster
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201
| | - Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Matthew Brecher
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Annie Héroux
- Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Albany, New York 12201; Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York 12201.
| |
Collapse
|
20
|
Differential conformational dynamics in the closely homologous FK506-binding domains of FKBP51 and FKBP52. Biochem J 2014; 461:115-23. [PMID: 24749623 PMCID: PMC4060953 DOI: 10.1042/bj20140232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As co-chaperones of Hsp90 (heat-shock protein 90), FKBP51 (FK506-binding protein of 51 kDa) and FKBP52 (FK506-binding protein of 52 kDa) act as antagonists in regulating the hormone affinity and nuclear transport of steroid receptor complexes. Exchange of Leu119 in FKBP51 for Pro119 in FKBP52 has been shown to largely reverse the steroid receptor activities of FKBP51 and FKBP52. To examine whether differences in conformational dynamics/plasticity might correlate with changes in the reported receptor activities, 15N-NMR relaxation measurements were carried out on the N-terminal FKBP domains of FKBP51 and FKBP52 as well as their residue-swapped variants. Both proteins exhibit a similar pattern of motion in the picosecond–nanosecond timeframe as well as a small degree of 15N line-broadening, indicative of motion in the microsecond–millisecond timeframe, in the β3a strand of the central sheet. Only the FKBP51 domain exhibits much larger line-broadening in the adjacent β3 bulge (40′s loop of FKBP12) and throughout the long β4–β5 loop (80′s loop of FKBP12). The L119P mutation at the tip of the β4–β5 loop completely suppressed the line-broadening in this loop while partially suppressing the line-broadening in the neighbouring β2 and β3a strands. The complementary P119L and P119L/P124S variants of FKBP52 yielded similar patterns of line-broadening for the β4–β5 loop as that for FKBP51, although only 20% and 60% as intense respectively. However, despite the close structural similarity in the packing interactions between the β4–β5 loop and the β3a strand for FKBP51 and FKBP52, the line-broadening in the β3a strand is unaffected by the P119L or P119L/P124S mutations in FKBP52. Unlike FKBP52, the FK1 domain of FKBP51 exhibits microsecond–millisecond conformational dynamics in the β3 bulge and the β4–β5 loop, known sites of protein signalling interactions. Swapping residue 119 yields altered conformational dynamics in a pattern reminiscent of reported modulations in steroid receptor activity.
Collapse
|
21
|
Anderson JS, Mustafi SM, Hernández G, LeMaster DM. Statistical allosteric coupling to the active site indole ring flip equilibria in the FK506-binding domain. Biophys Chem 2014; 192:41-8. [PMID: 25016286 DOI: 10.1016/j.bpc.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
In solution, the Trp 59 indole ring at the base of the active site cleft in the FKBP domain protein FKBP12 is rotated by ~90° at a population level of 20%, relative to its canonical crystallographic orientation. NMR measurements on the homologous FK1 domains of human FKBP51 and FKBP52 indicate no observable indole ring flip conformation, while the V101I variant of FKBP12 decreases the population having a perpendicular indole orientation by 10-fold. A set of three parallel 400 ns CHARMM27 molecular simulations for both wild type FKBP12 and the V101I variant examined how this ring flip might be energetically coupled to a transition of the Glu 60 sidechain which interacts with the backbone of the 50's loop located ~12 Å from the indole nitrogen. Analysis of the transition matrix for the local dynamics of the Glu 60 sidechain, the Trp 59 sidechain, and of the structurally interposed α-helix hydrogen bonding pattern yielded a statistical allosteric coupling of 10 kJ/mol with negligible concerted dynamical coupling for the transitions of the two sidechains.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, NY 12308, United States
| | - Sourajit M Mustafi
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, NY 12201, United States.
| |
Collapse
|
22
|
Weininger U, Brath U, Modig K, Teilum K, Akke M. Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection. JOURNAL OF BIOMOLECULAR NMR 2014; 59:23-9. [PMID: 24706175 PMCID: PMC4003406 DOI: 10.1007/s10858-014-9826-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/25/2014] [Indexed: 05/04/2023]
Abstract
Protein dynamics on the microsecond-millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R 1ρ experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimization. Using selective excitation and inversion of the narrow component of the (13)C doublet, the experiment achieves significant sensitivity enhancement in terms of both signal intensity and the fractional contribution from exchange to transverse relaxation; additional signal enhancement is achieved by optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-selected R 1ρ experiment by measuring exchange parameters for Y23 in bovine pancreatic trypsin inhibitor at a temperature of 328 K, where the ring flip is in the fast exchange regime with a mean waiting time between flips of 320 μs. The determined chemical shift difference matches perfectly with that measured from the NMR spectrum at lower temperatures, where separate peaks are observed for the two sites. We further show that potentially complicating effects of strong scalar coupling between protons (Weininger et al. in J Phys Chem B 117: 9241-9247, 2013b) can be accounted for using a simple expression, and provide recommendations for data acquisition when the studied system exhibits this behavior. The present method extends the repertoire of relaxation methods tailored for aromatic side chains by enabling studies of faster processes and improved control over artifacts due to strong coupling.
Collapse
Affiliation(s)
- Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Ulrika Brath
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Present Address: Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Göteborg, Sweden
| | - Kristofer Modig
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Kaare Teilum
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
23
|
Villali J, Pontiggia F, Clarkson MW, Hagan MF, Kern D. Evidence against the "Y-T coupling" mechanism of activation in the response regulator NtrC. J Mol Biol 2014; 426:1554-67. [PMID: 24406745 DOI: 10.1016/j.jmb.2013.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 01/17/2023]
Abstract
The dominant theory on the mechanism of response regulators activation in two-component bacterial signaling systems is the "Y-T coupling" mechanism, wherein the χ1 rotameric state of a highly conserved aromatic residue correlates with the activation of the protein via structural rearrangements coupled to a conserved tyrosine. In this paper, we present evidence that, in the receiver domain of the response regulator nitrogen regulatory protein C (NtrC(R)), the interconversion of this tyrosine (Y101) between its rotameric states is actually faster than the rate of inactive/active conversion and is not correlated to the activation process. Data gathered from NMR relaxation dispersion experiments show that a subset of residues surrounding the conserved tyrosine sense a process that is occurring at a faster rate than the inactive/active conformational transition. We show that this process is related to χ1 rotamer exchange of Y101 and that mutation of this aromatic residue to a leucine eliminated this second faster process without affecting activation. Computational simulations of NtrC(R) in its active conformation further demonstrate that the rotameric state of Y101 is uncorrelated with the global conformational transition during activation. Moreover, the tyrosine does not appear to be involved in the stabilization of the active form upon phosphorylation and is not essential in propagating the signal downstream for ATPase activity of the central domain. Our data provide experimental evidence against the generally accepted "Y-T coupling" mechanism of activation in NtrC(R).
Collapse
Affiliation(s)
- Janice Villali
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA
| | - Francesco Pontiggia
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA
| | - Michael W Clarkson
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA 02452, USA
| | - Dorothee Kern
- Department of Biochemistry and Howard Hughes Medical Institute, Waltham, MA 02452, USA.
| |
Collapse
|
24
|
Abstract
The 1H-15N 2D NMR correlation spectrum of the widely studied FK506-binding protein FKBP12 (FK506-binding protein of 12 kDa) contains previously unreported peak doublings for at least 31 residues that arise from a minor conformational state (12% of total) which exchanges with the major conformation with a time constant of 3.0 s at 43°C. The largest differences in chemical shift occur for the 80′s loop that forms critical recognition interactions with many of the protein partners for the FKBP family. The residues exhibiting doubling extend into the adjacent strands of the β-sheet, across the active site to the α-helix and into the 50′s loop. Each of the seven proline residues adopts a trans-peptide linkage in both the major and minor conformations, indicating that this slow transition is not the result of prolyl isomerization. Many of the residues exhibiting resonance doubling also participate in conformational line-broadening transition(s) that occur ~105-fold more rapidly, proposed previously to arise from a single global process. The 1.70 Å (1 Å=0.1 nm) resolution X-ray structure of the H87V variant is strikingly similar to that of FKBP12, yet this substitution quenches the slow conformational transition throughout the protein while quenching the line-broadening transition for residues near the 80′s loop. Line-broadening was also decreased for the residues in the α-helix and 50′s loop, whereas line-broadening in the 40′s loop was unaffected. The K44V mutation selectively reduces the line-broadening in the 40′s loop, verifying that at least three distinct conformational transitions underlie the line-broadening processes of FKBP12.
Collapse
|
25
|
Weininger U, Blissing AT, Hennig J, Ahlner A, Liu Z, Vogel HJ, Akke M, Lundström P. Protein conformational exchange measured by 1H R1ρ relaxation dispersion of methyl groups. JOURNAL OF BIOMOLECULAR NMR 2013; 57:47-55. [PMID: 23904100 DOI: 10.1007/s10858-013-9764-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for (1)H spins in methyl (13)CHD2 groups, which improves the characterization of fast exchange processes. The influence of (1)H-(1)H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R 1ρ relaxation data acquired with tilt angles of 90° and 35°, in which the ROE is maximal and minimal, respectively, and on samples containing different (1)H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any (1)H relaxation dispersion of its methyl groups at 10 or 25 °C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by (1)H and (13)C CPMG experiments. The present R 1ρ experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results.
Collapse
Affiliation(s)
- Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lundström P, Ahlner A, Blissing AT. Isotope labeling methods for relaxation measurements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 992:63-82. [PMID: 23076579 DOI: 10.1007/978-94-007-4954-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nuclear magnetic spin relaxation has emerged as a powerful technique for probing molecular dynamics. Not only is it possible to use it for determination of time constant(s) for molecular reorientation but it can also be used to characterize internal motions on time scales from picoseconds to seconds. Traditionally, uniformly (15)N labeled samples have been used for these experiments but it is clear that this limits the applications. For instance, sensitivity for large systems is dramatically increased if dynamics is probed at methyl groups and structural characterization of low-populated states requires measurements on (13)Cα, (13)Cβ or (13)CO or (1)Hα. Unfortunately, homonuclear scalar couplings may lead to artifacts in the latter types of experiments and selective isotopic labeling schemes that only label the desired position are necessary. Both selective and uniform labeling schemes for measurements of relaxation rates for a large number of positions in proteins are discussed in this chapter.
Collapse
Affiliation(s)
- Patrik Lundström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
27
|
Guan JY, Keizers PHJ, Liu WM, Löhr F, Skinner SP, Heeneman EA, Schwalbe H, Ubbink M, Siegal G. Small-molecule binding sites on proteins established by paramagnetic NMR spectroscopy. J Am Chem Soc 2013; 135:5859-68. [PMID: 23509882 DOI: 10.1021/ja401323m] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determining the three-dimensional structure of a small molecule-protein complex with weak affinity can be a significant challenge. We present a paramagnetic NMR method to determine intermolecular structure restraints based on pseudocontact shifts (PCSs). Since the ligand must be in fast exchange between free and bound states and the fraction bound can be as low as a few percent, the method is ideal for ligands with high micromolar to millimolar dissociation constants. Paramagnetic tags are attached, one at a time, in a well-defined way via two arms at several sites on the protein surface. The ligand PCSs were measured from simple 1D (1)H spectra and used as docking restraints. An independent confirmation of the complex structure was carried out using intermolecular NOEs. The results show that structures derived from these two approaches are similar. The best results are obtained if the magnetic susceptibility tensors of the tags are known, but it is demonstrated that with two-armed probes, the magnetic susceptibility tensor can be predicted with sufficient accuracy to provide a low-resolution model of the ligand orientation and the location of the binding site in the absence of isotope-labeled protein. This approach can facilitate fragment-based drug discovery in obtaining structural information on the initial fragment hits.
Collapse
Affiliation(s)
- Jia-Ying Guan
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Weininger U, Liu Z, McIntyre DD, Vogel HJ, Akke M. Specific 12CβD(2)12CγD(2)S13CεHD(2) isotopomer labeling of methionine to characterize protein dynamics by 1H and 13C NMR relaxation dispersion. J Am Chem Soc 2012; 134:18562-5. [PMID: 23106551 PMCID: PMC3497853 DOI: 10.1021/ja309294u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Protein dynamics on the micro- to millisecond time scale
is increasingly
found to be critical for biological function, as demonstrated by numerous
NMR relaxation dispersion studies. Methyl groups are excellent probes
of protein interactions and dynamics because of their favorable NMR
relaxation properties, which lead to sharp signals in the 1H and 13C NMR spectra. Out of the six different methyl-bearing
amino acid residue types in proteins, methionine plays a special role
because of its extensive side-chain flexibility and the high polarizability
of the sulfur atom. Methionine is over-represented in many protein–protein
recognition sites, making the methyl group of this residue type an
important probe of the relationships among dynamics, interactions,
and biological function. Here we present a straightforward method
to label methionine residues with specific 13CHD2 methyl isotopomers against a deuterated background. The resulting
protein samples yield NMR spectra with improved sensitivity due to
the essentially 100% population of the desired 13CHD2 methyl isotopomer, which is ideal for 1H and 13C spin relaxation experiments to investigate protein dynamics
in general and conformational exchange in particular. We demonstrate
the approach by measuring 1H and 13C CPMG relaxation
dispersion for the nine methionines in calcium-free calmodulin (apo-CaM).
The results show that the C-terminal domain, but not the N-terminal
domain, of apo-CaM undergoes fast exchange between the ground state
and a high-energy state. Since target proteins are known to bind specifically
to the C-terminal domain of apo-CaM, we speculate that the high-energy
state might be involved in target binding through conformational selection.
Collapse
Affiliation(s)
- Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Sweden
| | | | | | | | | |
Collapse
|
29
|
Weininger U, Respondek M, Akke M. Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected ¹³C CPMG relaxation dispersion. JOURNAL OF BIOMOLECULAR NMR 2012; 54:9-14. [PMID: 22833056 PMCID: PMC3427480 DOI: 10.1007/s10858-012-9656-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/12/2012] [Indexed: 05/12/2023]
Abstract
Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.
Collapse
Affiliation(s)
- Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Michal Respondek
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
30
|
Ban D, Gossert AD, Giller K, Becker S, Griesinger C, Lee D. Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 221:1-4. [PMID: 22743535 DOI: 10.1016/j.jmr.2012.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 06/01/2023]
Abstract
Internal motions in the microsecond timescale have been proposed to play an active part in a protein's biological function. Nuclear magnetic resonance (NMR) relaxation dispersion is a robust method sensitive to this timescale with atomic resolution. However, due to technical limitations, the observation of motions faster than ∼40 μs for ¹⁵N nuclei was not possible. We show that with a cryogenically cooled NMR probehead, a high spin-lock field strength can be generated that is able to detect motions as fast as 25 μs. We apply this high spin-lock field strength in an NMR experiment used for characterizing dynamical processes. An on-resonance rotating-frame transverse relaxation experiment was implemented that allows for the detection of a 25 μs process from a dispersion curve, and transverse relaxation rates were compared at low and high spin-lock field strengths showing that at high field strengths contributions from chemical exchange with lifetimes up to 25 μs can be removed. Due to the increase in sensitivity towards fast motion, relaxation dispersion for a residue that undergoes smaller chemical shift variations due to dynamics was identified. This technique reduces the previously inaccessible window between the correlation time and the relaxation dispersion window that covers four orders of magnitude by a factor of 2.
Collapse
Affiliation(s)
- David Ban
- Dept. of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Blobel J, Brath U, Bernadó P, Diehl C, Ballester L, Sornosa A, Akke M, Pons M. Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1327-38. [PMID: 21390527 DOI: 10.1007/s00249-011-0686-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/07/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
Addition of a 50 mM mixture of L: -arginine and L: -glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE.
Collapse
Affiliation(s)
- Jascha Blobel
- Laboratory of Biomolecular NMR, Institute for Research in Biomedicine, Parc Científic de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Liao X, Tugarinov V. Selective detection of ¹³CHD₂ signals from a mixture of ¹³CH₃/¹³CH₂D/¹³CHD₂ methyl isotopomers in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 209:101-107. [PMID: 21269854 DOI: 10.1016/j.jmr.2010.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
In NMR spectra of partially deuterated proteins methyl correlations are commonly observed as a combination of signals from ¹³CH₃, ¹³CH₂D and ¹³CHD₂ isotopomers. In a number of NMR applications, methyl groups of the ¹³CHD₂ variety are targeted because of their AX-like character and concomitant simplification of the involved relaxation mechanisms. Although complete elimination of signals from ¹³CH₂D methyl groups can be easily achieved in such applications, if the magnetization is not transferred through deuterium nuclei, efficient suppression of usually stronger ¹³CH₃ peaks is more problematic. A pair of simple pulse-scheme elements are presented that achieve almost complete suppression of ¹³CH₃ signals in the mixtures of ¹³CH₃/¹³CH₂D/¹³CHD₂ methyl isotopomers of small proteins at the expense of a moderate (∼20-to-40%) reduction in intensities of the targeted ¹³CHD₂ groups. The approaches described are based purely on scalar coupling (¹J(CH)) evolution properties of different ¹³C and ¹H transitions within ¹³CH₃ spin-systems and are superior to magnetization transfer through deuterons with respect to sensitivity of the detected ¹³CHD₂ methyl signals.
Collapse
Affiliation(s)
- Xinli Liao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | | |
Collapse
|
33
|
Yamane T, Okamura H, Nishimura Y, Kidera A, Ikeguchi M. Side-chain conformational changes of transcription factor PhoB upon DNA binding: a population-shift mechanism. J Am Chem Soc 2011; 132:12653-9. [PMID: 20722414 DOI: 10.1021/ja103218x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using molecular dynamics (MD) simulations and analyses of NMR relaxation order parameters, we investigated conformational changes of side chains in hydrophobic cores upon DNA binding for the DNA binding/transactivation domain of the transcription factor PhoB, in which backbone conformational changes upon DNA binding are small. The simulation results correlated well with experimental order parameters for the backbone and side-chain methyl groups, showing that the order parameters generally represent positional fluctuations of the backbone and side-chain methyl groups. However, topological effects of the side chains on the order parameters were also found and could be eliminated using normalized order parameters for each amino acid type. Consistent with the NMR experiments, the normalized order parameters from the MD simulations showed that the side chains in one of the two hydrophobic cores (the soft core) were highly flexible in comparison with those in the other hydrophobic core (the hard core) before DNA binding and that the flexibility of the hydrophobic cores, particularly of the soft core, was reduced upon DNA binding. Principal component analysis of methyl group configurations revealed strikingly different side-chain dynamics for the soft and hard cores. In the hard core, side-chain configurations were simply distributed around one or two average configurations. In contrast, the side chains in the soft core dynamically varied their configurations in an equilibrium ensemble that included binding configurations as minor components before DNA binding. DNA binding led to a restriction of the side-chain dynamics and a shift in the equilibrium toward binding configurations, in clear correspondence with a population-shift model.
Collapse
Affiliation(s)
- Tsutomu Yamane
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan
| | | | | | | | | |
Collapse
|
34
|
Multi-Timescale Dynamics Study of FKBP12 Along the Rapamycin–mTOR Binding Coordinate. J Mol Biol 2011; 405:378-94. [DOI: 10.1016/j.jmb.2010.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/12/2010] [Accepted: 10/20/2010] [Indexed: 01/11/2023]
|
35
|
Otten R, Villali J, Kern D, Mulder FAA. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). J Am Chem Soc 2010; 132:17004-14. [PMID: 21058670 PMCID: PMC2991065 DOI: 10.1021/ja107410x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Indexed: 11/29/2022]
Abstract
To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 ± 0.5) × 10(3) per second (i.e., τ(ex) = 64.7 ± 1.9 μs). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by (1)H CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone (15)N relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins.
Collapse
|
36
|
Diehl C, Engström O, Delaine T, Håkansson M, Genheden S, Modig K, Leffler H, Ryde U, Nilsson UJ, Akke M. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J Am Chem Soc 2010; 132:14577-89. [PMID: 20873837 PMCID: PMC2954529 DOI: 10.1021/ja105852y] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Indexed: 02/08/2023]
Abstract
Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
Collapse
|
37
|
Otten R, Chu B, Krewulak KD, Vogel HJ, Mulder FAA. Comprehensive and cost-effective NMR spectroscopy of methyl groups in large proteins. J Am Chem Soc 2010; 132:2952-60. [PMID: 20148553 DOI: 10.1021/ja907706a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NMR approach is described which yields the methyl resonance assignments of alanine, threonine, valine, leucine, and isoleucine residues in proteins with high sensitivity and excellent resolution. The method relies on protein samples produced by bacterial expression using [(1)H,(13)C]-D-glucose and approximately 100% D(2)O, which is cost-effective and ensures the isotopic enrichment of all possible methyl groups. Magnetization transfer throughout the methyl-containing side chains is possible with this labeling scheme due to the high level of deuteration along the amino acid side chain, coupled with the selection of the favorable CHD(2) methyl isotopomer for detection. In an application to the 34 kDa periplasmic binding protein FepB 164 out of 195 methyl groups (85%) were assigned sequence-specifically and stereospecifically. This percentage increases to 91% when taking into account that not all backbone assignments are available for this system. The remaining unassigned methyl groups belong to six leucine residues, caused by low cross-peak intensities, and four alanine residues due to degeneracy of the (13)C(alpha)/(13)C(beta) frequencies. Our results demonstrate that NMR spectroscopic investigations of protein structure, dynamics, and interactions can be extended to include all methyl-containing amino acids also for larger proteins.
Collapse
Affiliation(s)
- Renee Otten
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Kamerlin SCL, Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins 2010; 78:1339-75. [PMID: 20099310 PMCID: PMC2841229 DOI: 10.1002/prot.22654] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Enzymes play a key role in almost all biological processes, accelerating a variety of metabolic reactions as well as controlling energy transduction, the transcription, and translation of genetic information, and signaling. They possess the remarkable capacity to accelerate reactions by many orders of magnitude compared to their uncatalyzed counterparts, making feasible crucial processes that would otherwise not occur on biologically relevant timescales. Thus, there is broad interest in understanding the catalytic power of enzymes on a molecular level. Several proposals have been put forward to try to explain this phenomenon, and one that has rapidly gained momentum in recent years is the idea that enzyme dynamics somehow contributes to catalysis. This review examines the dynamical proposal in a critical way, considering basically all reasonable definitions, including (but not limited to) such proposed effects as "coupling between conformational and chemical motions," "landscape searches" and "entropy funnels." It is shown that none of these proposed effects have been experimentally demonstrated to contribute to catalysis, nor are they supported by consistent theoretical studies. On the other hand, it is clarified that careful simulation studies have excluded most (if not all) dynamical proposals. This review places significant emphasis on clarifying the role of logical definitions of different catalytic proposals, and on the need for a clear formulation in terms of the assumed potential surface and reaction coordinate. Finally, it is pointed out that electrostatic preorganization actually accounts for the observed catalytic effects of enzymes, through the corresponding changes in the activation free energies.
Collapse
Affiliation(s)
- Shina C. L. Kamerlin
- Department of Chemistry, University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| |
Collapse
|
39
|
Bahar I, Lezon TR, Bakan A, Shrivastava IH. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 2010; 110:1463-97. [PMID: 19785456 PMCID: PMC2836427 DOI: 10.1021/cr900095e] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
40
|
Guo C, Tugarinov V. Selective 1H- 13C NMR spectroscopy of methyl groups in residually protonated samples of large proteins. JOURNAL OF BIOMOLECULAR NMR 2010; 46:127-33. [PMID: 19957200 DOI: 10.1007/s10858-009-9393-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/25/2009] [Indexed: 05/23/2023]
Abstract
Methyl (13)CHD(2) isotopomers of all methyl-containing amino-acids can be observed in residually protonated samples of large proteins obtained from [U-(13)C,(1)H]-glucose/D(2)O-based bacterial media, with sensitivity sufficient for a number of NMR applications. Selective detection of some subsets of methyl groups (Ala(beta), Thr(gamma 2)) is possible using simple 'out-and-back' NMR methodology. Such selective methyl-detected 'out-and-back' NMR experiments allow complete assignments of threonine gamma 2 methyls in residually protonated, [U-(13)C,(1)H]-glucose/D(2)O-derived samples of an 82-kDa enzyme Malate Synthase G. [U-(13)C,(1)H]-glucose/D(2)O-derived protein samples are relatively inexpensive and are usually available at very early stages of any NMR study of high-molecular-weight systems.
Collapse
Affiliation(s)
- Chenyun Guo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
41
|
Mulder FAA. Leucine side-chain conformation and dynamics in proteins from 13C NMR chemical shifts. Chembiochem 2009; 10:1477-9. [PMID: 19466705 DOI: 10.1002/cbic.200900086] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frans A A Mulder
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, NL.
| |
Collapse
|
42
|
Myint W, Ishima R. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments. JOURNAL OF BIOMOLECULAR NMR 2009; 45:207-216. [PMID: 19618276 DOI: 10.1007/s10858-009-9344-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/22/2009] [Indexed: 05/28/2023]
Abstract
In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s(-1). The difference increases significantly when CPMG pulses are miscalibrated.
Collapse
Affiliation(s)
- Wazo Myint
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
43
|
Farès C, Lakomek NA, Walter KFA, Frank BTC, Meiler J, Becker S, Griesinger C. Accessing ns-micros side chain dynamics in ubiquitin with methyl RDCs. JOURNAL OF BIOMOLECULAR NMR 2009; 45:23-44. [PMID: 19652920 PMCID: PMC2728246 DOI: 10.1007/s10858-009-9354-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/27/2009] [Indexed: 05/19/2023]
Abstract
This study presents the first application of the model-free analysis (MFA) (Meiler in J Am Chem Soc 123:6098-6107, 2001; Lakomek in J Biomol NMR 34:101-115, 2006) to methyl group RDCs measured in 13 different alignment media in order to describe their supra-tau (c) dynamics in ubiquitin. Our results indicate that methyl groups vary from rigid to very mobile with good correlation to residue type, distance to backbone and solvent exposure, and that considerable additional dynamics are effective at rates slower than the correlation time tau (c). In fact, the average amplitude of motion expressed in terms of order parameters S (2) associated with the supra-tau (c) window brings evidence to the existence of fluctuations contributing as much additional mobility as those already present in the faster ps-ns time scale measured from relaxation data. Comparison to previous results on ubiquitin demonstrates that the RDC-derived order parameters are dominated both by rotameric interconversions and faster libration-type motions around equilibrium positions. They match best with those derived from a combined J-coupling and residual dipolar coupling approach (Chou in J Am Chem Soc 125:8959-8966, 2003) taking backbone motion into account. In order to appreciate the dynamic scale of side chains over the entire protein, the methyl group order parameters are compared to existing dynamic ensembles of ubiquitin. Of those recently published, the broadest one, namely the EROS ensemble (Lange in Science 320:1471-1475, 2008), fits the collection of methyl group order parameters presented here best. Last, we used the MFA-derived averaged spherical harmonics to perform highly-parameterized rotameric searches of the side chains conformation and find expanded rotamer distributions with excellent fit to our data. These rotamer distributions suggest the presence of concerted motions along the side chains.
Collapse
Affiliation(s)
- Christophe Farès
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
- University Health Network, Max Bell Research Center, University of Toronto, Toronto, ON Canada
| | - Nils-Alexander Lakomek
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Korvin F. A. Walter
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Benedikt T. C. Frank
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jens Meiler
- Department of Chemistry, Center of Structural Biology, Vanderbilt University, Nashville, TN USA
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
44
|
Brath U, Akke M. Differential responses of the backbone and side-chain conformational dynamics in FKBP12 upon binding the transition-state analog FK506: implications for transition-state stabilization and target protein recognition. J Mol Biol 2009; 387:233-44. [PMID: 19361439 DOI: 10.1016/j.jmb.2009.01.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 01/12/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
FKBP12 serves a dual role as a peptidyl-prolyl cis-trans isomerase and as a modulator of several cell signaling pathways. The macrolide FK506 is a transition-state analog of the catalyzed reaction and displaces FKBP12 from its natural target proteins. We compared the conformational exchange dynamics of the backbone and methyl-bearing side chains of FKBP12 in the free and FK506-bound states using NMR relaxation-dispersion experiments. Our results show that the free enzyme exchanges between the ground state and an excited state that resembles the ligand-bound state or Michaelis complex. In FK506-bound FKBP12, the backbone is confined to a single conformation, while conformational exchange prevails for many methyl groups. The residual side-chain dynamics in the transition-state analog-bound state suggests that the transition-state ensemble involves multiple conformations, a finding that challenges the long-standing concept of conformational restriction in the transition-state complex. Furthermore, exchange between alternative conformations is observed in the bound state for an extended network of methyl groups that includes locations remote from the active site. Several of these locations are known to be important for interactions with cellular target proteins, including calcineurin and the ryanodine receptor, suggesting that the conformational heterogeneity might play a role in the promiscuous binding of FKBP12 to different targets.
Collapse
Affiliation(s)
- Ulrika Brath
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Paquin R, Ferrage F, Mulder FAA, Akke M, Bodenhausen G. Multiple-Timescale Dynamics of Side-Chain Carboxyl and Carbonyl Groups in Proteins by 13C Nuclear Spin Relaxation. J Am Chem Soc 2008; 130:15805-7. [PMID: 18975903 DOI: 10.1021/ja803794g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raphaël Paquin
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Fabien Ferrage
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Frans A. A. Mulder
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Mikael Akke
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Geoffrey Bodenhausen
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Goodey NM, Benkovic SJ. Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 2008; 4:474-82. [PMID: 18641628 DOI: 10.1038/nchembio.98] [Citation(s) in RCA: 531] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allosteric regulation of protein function is a mechanism by which an event in one place of a protein structure causes an effect at another site, much like the behavior of a telecommunications network in which a collection of transmitters, receivers and transceivers communicate with each other across long distances. For example, ligand binding or an amino acid mutation at an allosteric site can alter enzymatic activity or binding affinity in a distal region such as the active site or a second binding site. The mechanism of this site-to-site communication is of great interest, especially since allosteric effects must be considered in drug design and protein engineering. In this review, conformational mobility as the common route between allosteric regulation and catalysis is discussed. We summarize recent experimental data and the resulting insights into allostery within proteins, and we discuss the nature of future studies and the new applications that may result from increased understanding of this regulatory mechanism.
Collapse
Affiliation(s)
- Nina M Goodey
- Montclair State University, Department of Chemistry and Biochemistry, 1 Normal Avenue, Montclair, New Jersey 07043, USA
| | | |
Collapse
|
47
|
Weaver DS, Zuiderweg ERP. Eta(z)/kappa: a transverse relaxation optimized spectroscopy NMR experiment measuring longitudinal relaxation interference. J Chem Phys 2008; 128:155103. [PMID: 18433284 DOI: 10.1063/1.2889923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NMR spin relaxation experiments provide a powerful tool for the measurement of global and local biomolecular rotational dynamics at subnanosecond time scales. Technical limitations restrict most spin relaxation studies to biomolecules weighing less than 10 kDa, considerably smaller than the average protein molecular weight of 30 kDa. In particular, experiments measuring eta(z), the longitudinal (1)H(N)-(15)N dipole-dipole (DD)/(15)N chemical shift anisotropy (CSA) cross-correlated relaxation rate, are among those least suitable for use with larger biosystems. This is unfortunate because these experiments yield valuable insight into the variability of the (15)N CSA tensor over the polypeptide backbone, and this knowledge is critical to the correct interpretation of most (15)N-NMR backbone relaxation experiments, including R(2) and R(1). In order to remedy this situation, we present a new (1)H(N)-(15)N transverse relaxation optimized spectroscopy experiment measuring eta(z) suitable for applications with larger proteins (up to at least 30 kDa). The presented experiment also yields kappa, the site-specific rate of longitudinal (1)H(N)-(1)H(') DD cross relaxation. We describe the eta(z)/kappa experiment's performance in protonated human ubiquitin at 30.0 degrees C and in protonated calcium-saturated calmodulin/peptide complex at 20.0 degrees C, and demonstrate preliminary experimental results for a deuterated E. coli DnaK ATPase domain construct at 34 degrees C.
Collapse
Affiliation(s)
- Daniel S Weaver
- Biophysics and Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
48
|
Jee J, Ishima R, Gronenborn AM. Characterization of Specific Protein Association by 15N CPMG Relaxation Dispersion NMR: The GB1A34F Monomer−Dimer Equilibrium. J Phys Chem B 2007; 112:6008-12. [DOI: 10.1021/jp076094h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- JunGoo Jee
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
49
|
Lundström P, Teilum K, Carstensen T, Bezsonova I, Wiesner S, Hansen DF, Religa TL, Akke M, Kay LE. Fractional 13C enrichment of isolated carbons using [1-13C]- or [2- 13C]-glucose facilitates the accurate measurement of dynamics at backbone Calpha and side-chain methyl positions in proteins. JOURNAL OF BIOMOLECULAR NMR 2007; 38:199-212. [PMID: 17554498 DOI: 10.1007/s10858-007-9158-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 05/04/2023]
Abstract
A simple labeling approach is presented based on protein expression in [1-(13)C]- or [2-(13)C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone C(alpha) sites, respectively. All of the methyl groups, with the exception of Thr and Ile(delta1) are produced with isolated (13)C spins (i.e., no (13)C-(13)C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-alpha sites are labeled without concomitant labeling at C(beta) positions for 17 of the common 20 amino acids and there are no cases for which (13)C(alpha)-(13)CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone (15)N studies. The utility of the labeling is established by recording (13)C R (1rho) and CPMG-based experiments on a number of different protein systems.
Collapse
Affiliation(s)
- Patrik Lundström
- Department of Medical Genetics, The University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Korzhnev DM, Religa TL, Lundström P, Fersht AR, Kay LE. The folding pathway of an FF domain: characterization of an on-pathway intermediate state under folding conditions by (15)N, (13)C(alpha) and (13)C-methyl relaxation dispersion and (1)H/(2)H-exchange NMR spectroscopy. J Mol Biol 2007; 372:497-512. [PMID: 17689561 DOI: 10.1016/j.jmb.2007.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
The FF domain from the human protein HYPA/FBP11 folds via a low-energy on-pathway intermediate (I). Elucidation of the structure of such folding intermediates and denatured states under conditions that favour folding are difficult tasks. Here, we investigated the millisecond time-scale equilibrium folding transition of the 71-residue four-helix bundle wild-type protein by (15)N, (13)C(alpha) and methyl(13)C Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiments and by (1)H/(2)H-exchange measurements. The relaxation data for the wild-type protein fitted a simple two-site exchange process between the folded state (F) and I. Destabilization of F in mutants A17G and Q19G allowed the detection of the unfolded state U by (15)N CPMG relaxation dispersion. The dispersion data for these mutants fitted a three-site exchange scheme, U<-->I<-->F, with I populated higher than U. The kinetics and thermodynamics of the folding reaction were obtained via temperature and urea-dependent relaxation dispersion experiments, along with structural information on I from backbone (15)N, (13)C(alpha) and side-chain methyl (13)C chemical shifts, with further information from protection factors for the backbone amide groups from (1)H/(2)H-exchange. Notably, helices H1-H3 are at least partially formed in I, while helix H4 is largely disordered. Chemical shift differences for the methyl (13)C nuclei suggest a paucity of stable, native-like hydrophobic interactions in I. These data are consistent with Phi-analysis of the rate-limiting transition state between I and F. The combination of relaxation dispersion and Phi data can elucidate whole experimental folding pathways.
Collapse
Affiliation(s)
- Dmitry M Korzhnev
- Department of Medical Genetics, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|