1
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
2
|
Bukhdruker S, Varaksa T, Orekhov P, Grabovec I, Marin E, Kapranov I, Kovalev K, Astashkin R, Kaluzhskiy L, Ivanov A, Mishin A, Rogachev A, Gordeliy V, Gilep A, Strushkevich N, Borshchevskiy V. Structural insights into the effects of glycerol on ligand binding to cytochrome P450. Acta Crystallogr D Struct Biol 2023; 79:66-77. [PMID: 36601808 DOI: 10.1107/s2059798322011019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023] Open
Abstract
New antitubercular drugs are vital due to the spread of resistant strains. Carbethoxyhexyl imidazole (CHImi) inhibits cytochrome P450 CYP124, which is a steroid-metabolizing enzyme that is important for the survival of Mycobacterium tuberculosis in macrophages. The available crystal structure of the CYP124-CHImi complex reveals two glycerol molecules in the active site. A 1.15 Å resolution crystal structure of the glycerol-free CYP124-CHimi complex reported here shows multiple conformations of CHImi and the CYP124 active site which were previously restricted by glycerol. Complementary molecular dynamics simulations show coherence of the ligand and enzyme conformations. Spectrophotometric titration confirmed the influence of glycerol on CHImi binding: the affinity decreases more than tenfold in glycerol-containing buffer. In addition, it also showed that glycerol has a similar effect on other azole and triazole CYP124 ligands. Together, these data show that glycerol may compromise structural-functional studies and impede rational drug-design campaigns.
Collapse
Affiliation(s)
- Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Kirill Kovalev
- EMBL Outstation Hamburg, c/o DESY, 22607 Hamburg, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | | | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| |
Collapse
|
3
|
Kumar Rai R, Shankar Pati R, Islam A, Roy G. Detoxification of organomercurials by thiones and selones: A short review. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Bridle TG, Kumarathasan P, Gailer J. Toxic Metal Species and 'Endogenous' Metalloproteins at the Blood-Organ Interface: Analytical and Bioinorganic Aspects. Molecules 2021; 26:molecules26113408. [PMID: 34199902 PMCID: PMC8200099 DOI: 10.3390/molecules26113408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023] Open
Abstract
Globally, human exposure to environmental pollutants causes an estimated 9 million deaths per year and it could also be implicated in the etiology of diseases that do not appear to have a genetic origin. Accordingly, there is a need to gain information about the biomolecular mechanisms that causally link exposure to inorganic environmental pollutants with distinct adverse health effects. Although the analysis of blood plasma and red blood cell (RBC) cytosol can provide important biochemical information about these mechanisms, the inherent complexity of these biological matrices can make this a difficult task. In this perspective, we will examine the use of metalloentities that are present in plasma and RBC cytosol as potential exposure biomarkers to assess human exposure to inorganic pollutants. Our primary objective is to explore the principal bioinorganic processes that contribute to increased or decreased metalloprotein concentrations in plasma and/or RBC cytosol. Furthermore, we will also identify metabolites which can form in the bloodstream and contain essential as well as toxic metals for use as exposure biomarkers. While the latter metal species represent useful biomarkers for short-term exposure, endogenous plasma metalloproteins represent indicators to assess the long-term exposure of an individual to inorganic pollutants. Based on these considerations, the quantification of metalloentities in blood plasma and/or RBC cytosol is identified as a feasible research avenue to better understand the adverse health effects that are associated with chronic exposure of various human populations to inorganic pollutants. Exposure to these pollutants will likely increase as a consequence of technological advances, including the fast-growing applications of metal-based engineering nanomaterials.
Collapse
Affiliation(s)
- Tristen G. Bridle
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|
5
|
Gogoi B, Gogoi D, Gogoi N, Mahanta S, Buragohain AK. Network pharmacology based high throughput screening for identification of multi targeted anti-diabetic compound from traditionally used plants. J Biomol Struct Dyn 2021; 40:8004-8017. [PMID: 33769188 DOI: 10.1080/07391102.2021.1905554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The incurable Type 2 diabetes mellitus (T2DM) has now been considered a pandemic with only supportive care in existence. Due to the adverse effects of available anti-diabetic drugs, there arises a great urgency to develop new drug molecules. One of the alternatives that can be considered for the treatment of T2DM are natural compounds from traditionally used herbal medicine. The present study undertakes, an integrated multidisciplinary concept of Network Pharmacology to evaluate the efficacy of potent anti-diabetic compound from traditionally used anti-diabetic plants of north east India and followed by DFT analysis. In the course of the study, 22 plant species were selected on the basis of their use in traditional medicine for the treatment of T2DM by various ethnic groups of the north eastern region of India. Initially, a library of 1053 compounds derived from these plants was generated. This was followed by network preparation between compounds and targets based on the docking result. The compounds having the best network property were considered for DFT analysis. We have identified that auraptene, a monoterpene coumarin for its activity in the management of Type 2 diabetes mellitus and deciphered its unexplored probable mechanisms. Molecular dynamics simulation of the ligand-protein complexes also reveals the stable binding of auraptene with the target proteins namely, Protein Kinase C θ, Glucocorticoid receptor, 11-β hydroxysteroid dehydrogenase 1 and Aldose Reductase, all of which form uniform interactions throughout the MD simulation trajectory. Therefore, this finding could provide new insights for the development of a new anti-diabetic drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhaskarjyoti Gogoi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Biotechnology, Royal Global University, Guwahati, Assam, India
| | - Dhrubajyoti Gogoi
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Alak K Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Biotechnology, Royal Global University, Guwahati, Assam, India
| |
Collapse
|
6
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
7
|
Nogara PA, Oliveira CS, Schmitz GL, Piquini PC, Farina M, Aschner M, Rocha JBT. Methylmercury's chemistry: From the environment to the mammalian brain. Biochim Biophys Acta Gen Subj 2019; 1863:129284. [PMID: 30659885 DOI: 10.1016/j.bbagen.2019.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Methylmercury is a neurotoxicant that is found in fish and rice. MeHg's toxicity is mediated by blockage of -SH and -SeH groups of proteins. However, the identification of MeHg's targets is elusive. Here we focus on the chemistry of MeHg in the abiotic and biotic environment. The toxicological chemistry of MeHg is complex in metazoans, but at the atomic level it can be explained by exchange reactions of MeHg bound to -S(e)H with another free -S(e)H group (R1S(e)-HgMe + R2-S(e)H ↔ R1S(e)H + R2-S(e)-HgMe). This reaction was first studied by professor Rabenstein and here it is referred as the "Rabenstein's Reaction". The absorption, distribution, and excretion of MeHg in the environment and in the body of animals will be dictated by Rabenstein's reactions. The affinity of MeHg by thiol and selenol groups and the exchange of MeHg by Rabenstein's Reaction (which is a diffusion controlled reaction) dictates MeHg's neurotoxicity. However, it is important to emphasize that the MeHg exchange reaction velocity with different types of thiol- and selenol-containing proteins will also depend on protein-specific structural and thermodynamical factors. New experimental approaches and detailed studies about the Rabenstein's reaction between MeHg with low molecular mass thiol (LMM-SH) molecules (cysteine, GSH, acetyl-CoA, lipoate, homocysteine) with abundant high molecular mass thiol (HMM-SH) molecules (albumin, hemoglobin) and HMM-SeH (GPxs, Selenoprotein P, TrxR1-3) are needed. The study of MeHg migration from -S(e)-Hg- bonds to free -S(e)H groups (Rabenstein's Reaction) in pure chemical systems and neural cells (with special emphasis to the LMM-SH and HMM-S(e)H molecules cited above) will be critical to developing realistic constants to be used in silico models that will predict the distribution of MeHg in humans.
Collapse
Affiliation(s)
- Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cláudia S Oliveira
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela L Schmitz
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Paulo C Piquini
- Departamento de Física, CCNE, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Suwa M, Imamura N, Awano P, Nakata E, Takashima H. Photoinduced electron-transfer reactions of tris(2,2′-bipyridine)ruthenium(II)-based carbonic anhydrase inhibitors tethering plural binding sites. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mikiko Suwa
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Narumi Imamura
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Pirika Awano
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Eiji Nakata
- Institute of Advanced Energy; Kyoto University; Kyoto Japan
| | - Hiroshi Takashima
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| |
Collapse
|
10
|
Zakšauskas A, Čapkauskaitė E, Jezepčikas L, Linkuvienė V, Kišonaitė M, Smirnov A, Manakova E, Gražulis S, Matulis D. Design of two-tail compounds with rotationally fixed benzenesulfonamide ring as inhibitors of carbonic anhydrases. Eur J Med Chem 2018; 156:61-78. [PMID: 30006175 DOI: 10.1016/j.ejmech.2018.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2018] [Accepted: 06/23/2018] [Indexed: 01/08/2023]
Abstract
Rational design of compounds that would bind specific pockets of the target proteins is a difficult task in drug design. The 12 isoforms of catalytically active human carbonic anhydrases (CAs) have highly similar active sites that make it difficult to design inhibitors selective for one or several CA isoforms. A series of CA inhibitors based on 2-chloro/bromo-benzenesulfonamide that is largely fixed in the CA active site together with one or two tails yielded compounds that were synthesized and evaluated as inhibitors of CA isoforms. Introduction of a second tail had significant influence on the binding affinity and two-tailed compounds in most cases provided high affinity and selectivity for CA IX and CA XIV. The contacts between several compounds and CA amino acids were determined by X-ray crystallography. Together with the intrinsic enthalpy and entropy of binding they provided the structure-thermodynamics correlations for this series of compounds with the insight how to rationally build compounds with desired CA isoform as a target.
Collapse
Affiliation(s)
- Audrius Zakšauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Edita Čapkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Linas Jezepčikas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Vaida Linkuvienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Miglė Kišonaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Alexey Smirnov
- Department of Protein - DNA Interactions, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Elena Manakova
- Department of Protein - DNA Interactions, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Saulius Gražulis
- Department of Protein - DNA Interactions, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania.
| |
Collapse
|
11
|
Abstract
A key challenge in chemical biology is to identify small molecule regulators for every single protein. However, protein surfaces are notoriously difficult to recognise with synthetic molecules, often having large flat surfaces that are poorly matched to traditional small molecules. In the surface mimetic approach, a supramolecular scaffold is used to project recognition groups in such a manner as to make multivalent non-covalent contacts over a large area of protein surface. Metal based supramolecular scaffolds offer unique advantages over conventional organic molecules for protein binding, including greater stereochemical and geometrical diversity conferred through the metal centre and the potential for direct assessment of binding properties and even visualisation in cells without recourse to further functionalisation. This feature article will highlight the current state of the art in protein surface recognition using metal complexes as surface mimetics.
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Mogaki R, Okuro K, Aida T. Adhesive Photoswitch: Selective Photochemical Modulation of Enzymes under Physiological Conditions. J Am Chem Soc 2017; 139:10072-10078. [DOI: 10.1021/jacs.7b05151] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rina Mogaki
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Kou Okuro
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
|
14
|
Bruno E, Buemi MR, De Luca L, Ferro S, Monforte AM, Supuran CT, Vullo D, De Sarro G, Russo E, Gitto R. In Vivo Evaluation of Selective Carbonic Anhydrase Inhibitors as Potential Anticonvulsant Agents. ChemMedChem 2016; 11:1812-8. [DOI: 10.1002/cmdc.201500596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/05/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Elvira Bruno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Maria R. Buemi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Stefania Ferro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Anna-Maria Monforte
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Claudiu T. Supuran
- Neurofarba: Department of Neuroscience, Psychology, Pharmaceuticals and Child Health; Section of Pharmaceutical and Nutraceutical Sciences; University of Florence; 50019 Sesto Fiorentino Florence Italy
| | - Daniela Vullo
- Neurofarba: Department of Neuroscience, Psychology, Pharmaceuticals and Child Health; Section of Pharmaceutical and Nutraceutical Sciences; University of Florence; 50019 Sesto Fiorentino Florence Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine; University of Catanzaro; Viale Europa Località Germaneto 88100 Catanzaro Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine; University of Catanzaro; Viale Europa Località Germaneto 88100 Catanzaro Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| |
Collapse
|
15
|
Abstract
Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Neurofarba Department, Laboratorio Di Chimica Bioinorganica, Sezione Di Chimica Farmaceutica E Nutraceutica, Università Degli Studi Di Firenze , Florence , Italy
| |
Collapse
|
16
|
Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms. Eur J Med Chem 2015; 102:223-32. [DOI: 10.1016/j.ejmech.2015.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/10/2023]
|
17
|
Nettles WL, Song H, Farquhar ER, Fitzkee NC, Emerson JP. Characterization of the Copper(II) Binding Sites in Human Carbonic Anhydrase II. Inorg Chem 2015; 54:5671-80. [PMID: 26010488 PMCID: PMC4482258 DOI: 10.1021/acs.inorgchem.5b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human carbonic anhydrase (CA) is a well-studied, robust, mononuclear Zn-containing metalloprotein that serves as an excellent biological ligand system to study the thermodynamics associated with metal ion coordination chemistry in aqueous solution. The apo form of human carbonic anhydrase II (CA) binds 2 equiv of copper(II) with high affinity. The Cu(2+) ions bind independently forming two noncoupled type II copper centers in CA (CuA and CuB). However, the location and coordination mode of the CuA site in solution is unclear, compared to the CuB site that has been well-characterized. Using paramagnetic NMR techniques and X-ray absorption spectroscopy we identified an N-terminal Cu(2+) binding location and collected information on the coordination mode of the CuA site in CA, which is consistent with a four- to five-coordinate N-terminal Cu(2+) binding site reminiscent to a number of N-terminal copper(II) binding sites including the copper(II)-amino terminal Cu(2+) and Ni(2+) and copper(II)-β-amyloid complexes. Additionally, we report a more detailed analysis of the thermodynamics associated with copper(II) binding to CA. Although we are still unable to fully deconvolute Cu(2+) binding data to the high-affinity CuA site, we derived pH- and buffer-independent values for the thermodynamics parameters K and ΔH associated with Cu(2+) binding to the CuB site of CA to be 2 × 10(9) and -17.4 kcal/mol, respectively.
Collapse
Affiliation(s)
- Whitnee L. Nettles
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - He Song
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - Erik R. Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nicholas C. Fitzkee
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - Joseph P. Emerson
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| |
Collapse
|
18
|
Dilworth JR, Pascu SI, Waghorn PA, Vullo D, Bayly SR, Christlieb M, Sun X, Supuran CT. Synthesis of sulfonamide conjugates of Cu(ii), Ga(iii), In(iii), Re(v) and Zn(ii) complexes: carbonic anhydrase inhibition studies and cellular imaging investigations. Dalton Trans 2015; 44:4859-73. [DOI: 10.1039/c4dt03206c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
New sulfonamides and their metal complexes are reported, with a focus on porphyrin derivatives for simultaneous cellular optical imaging, radiolabelling and Carbonic Anhydrase inhibition capabilities.
Collapse
Affiliation(s)
- Jonathan R. Dilworth
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | | | - Philip A. Waghorn
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Daniela Vullo
- University of Florence
- NEUROFARBA Department
- Pharmaceutical Sciences Section
- 5019 Sesto Fiorentino
- Italy
| | - Simon R. Bayly
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Martin Christlieb
- CRUK/MRC Gray Institute for Radiation Oncology and Biology
- University of Oxford
- Oxford
- UK
| | - Xin Sun
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Claudiu T. Supuran
- University of Florence
- NEUROFARBA Department
- Pharmaceutical Sciences Section
- 5019 Sesto Fiorentino
- Italy
| |
Collapse
|
19
|
Singh RK, Suzuki T, Mandal T, Balsubramanian N, Haldar M, Mueller DJ, Strode JA, Cook G, Mallik S, Srivastava DK. Thermodynamics of binding of structurally similar ligands to histone deacetylase 8 sheds light on challenges in the rational design of potent and isozyme-selective inhibitors of the enzyme. Biochemistry 2014; 53:7445-58. [PMID: 25407689 PMCID: PMC4263425 DOI: 10.1021/bi500711x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Among the different histone deacetylase
(HDAC) isozymes, HDAC8
is the most highly malleable enzyme, and it exhibits the potential
to accommodate structurally diverse ligands (albeit with moderate
binding affinities) in its active site pocket. To probe the molecular
basis of this feature, we performed detailed thermodynamic studies
of the binding of structurally similar ligands, which differed with
respect to the “cap”, “linker”, and “metal-binding”
regions of the suberoylanilide hydroxamic acid (SAHA) pharmacophore,
to HDAC8. The experimental data revealed that although the enthalpic
(ΔH°) and entropic (ΔS°) changes for the binding of individual SAHA analogues to HDAC8
were substantially different, their binding free energies (ΔG°) were markedly similar, conforming to a strong enthalpy–entropy
compensation effect. This effect was further observed in the temperature-dependent
thermodynamics of binding of all SAHA analogues to the enzyme. Notably,
in contrast to other metalloenzymes, our isothermal titration calorimetry
experiments (performed in different buffers of varying ionization
enthalpies) suggest that depending on the ligand, its zinc-binding
group may or may not be deprotonated upon the binding to HDAC8. Furthermore,
the heat capacity changes (ΔCp°) associated with the ligand binding
to HDAC8 markedly differed from one SAHA analogue to the other, and
such features could primarily be rationalized in light of the dynamic
flexibility in the enzyme structure in conjunction with the reorganization
of the active site resident water molecules. Arguments are presented
that although the binding thermodynamic features described above would
facilitate identification of weak to moderately tight-binding HDAC8
inhibitors (by a high-throughput and/or virtual screening of libraries
of small molecules), they would pose major challenges for the structure-based
rational design of highly potent and isozyme-selective inhibitors
of human HDAC8.
Collapse
Affiliation(s)
- Raushan K Singh
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Taratula O, Bai Y, D'Antonio EL, Dmochowski IJ. Enantiopure Cryptophane- 129Xe Nuclear Magnetic Resonance Biosensors Targeting Carbonic Anhydrase. Supramol Chem 2014; 27:65-71. [PMID: 25506191 DOI: 10.1080/10610278.2014.906601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The (+) and (-) enantiomers for a cryptophane-7-bond-linker-benzenesulfonamide biosensor (C7B) were synthesized and their chirality confirmed by electronic circular dichroism (ECD) spectroscopy. Biosensor binding to carbonic anhydrase II (CAII) was characterized for both enantiomers by hyperpolarized (hp) 129Xe NMR spectroscopy. Our previous study of the racemic (+/-) C7B biosensor-CAII complex [Chambers, et al., J. Am. Chem. Soc. 2009, 131, 563-569], identified two "bound" 129Xe@C7B peaks by hp 129Xe NMR (at 71 and 67 ppm, relative to "free" biosensor at 64 ppm), which led to the initial hypothesis that (+) and (-) enantiomers produce diastereomeric peaks when coordinated to Zn2+ at the chiral CAII active site. Unexpectedly, the single enantiomers complexed with CAII also identified two "bound" 129Xe@C7B peaks: (+) 72, 68 ppm and (-) 68, 67 ppm. These results are consistent with X-ray crystallographic evidence for benzenesulfonamide inhibitors occupying a second site near the CAII surface. As illustrated by our studies of this model protein-ligand interaction, hp 129Xe NMR spectroscopy can be useful for identifying supramolecular assemblies in solution.
Collapse
Affiliation(s)
- Olena Taratula
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Yubin Bai
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Edward L D'Antonio
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104
| |
Collapse
|
21
|
|
22
|
de Almeida A, Oliveira BL, Correia JD, Soveral G, Casini A. Emerging protein targets for metal-based pharmaceutical agents: An update. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Aggarwal M, Boone CD, Kondeti B, Tu C, Silverman DN, McKenna R. Effects of cryoprotectants on the structure and thermostability of the human carbonic anhydrase II-acetazolamide complex. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:860-5. [PMID: 23633596 PMCID: PMC3640473 DOI: 10.1107/s0907444913002771] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/28/2013] [Indexed: 11/10/2022]
Abstract
Protein X-ray crystallography has seen a progressive shift from data collection at cool/room temperature (277-298 K) to data collection at cryotemperature (100 K) because of its ease of crystal preparation and the lessening of the detrimental effects of radiation-induced crystal damage, with 20-25%(v/v) glycerol (GOL) being the preferred choice of cryoprotectant. Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Comparative studies of crystal structure, kinetics, inhibition and thermostability were performed on CA II and its complex with AZM in the presence of either GOL or sucrose. These results suggest that even though the cryoprotectant GOL was previously shown to be directly bound in the active site and to interact with AZM, it affects neither the thermostability of CA II nor the binding of AZM in the crystal structure or in solution. However, addition of GOL does affect the kinetics of CA II, presumably as it displaces the water proton-transfer network in the active site.
Collapse
Affiliation(s)
- Mayank Aggarwal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610, USA
| | - Christopher D. Boone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610, USA
| | - Bhargav Kondeti
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Pharmacology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610, USA
| | - David N. Silverman
- Department of Pharmacology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610, USA
| |
Collapse
|
24
|
De Simone G, Alterio V, Supuran CT. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. Expert Opin Drug Discov 2013; 8:793-810. [DOI: 10.1517/17460441.2013.795145] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Aggarwal M, Kondeti B, McKenna R. Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Bioorg Med Chem 2013; 21:1526-33. [PMID: 22985956 PMCID: PMC3593968 DOI: 10.1016/j.bmc.2012.08.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a group of metalloenzymes that play important roles in carbon metabolism, pH regulation, CO2 fixation in plants, ion transport etc., and are found in all eukaryotic and many microbial organisms. This family of enzymes catalyzes the interconversion of CO2 and HCO3(-). There are at least 16 different CA isoforms in the alpha structural class (α-CAs) that have been isolated in higher vertebrates, with CA isoform II (CA II) being ubiquitously abundant in all human cell types. CA inhibition has been exploited clinically for decades for various classes of diuretics and anti-glaucoma treatment. The characterization of the overexpression of CA isoform IX (CA IX) in certain tumors has raised interest in CA IX as a diagnostic marker and drug target for aggressive cancers and therefore the development of CA IX specific inhibitors. An important goal in the field of CA is to identify, rationalize, and design potential compounds that will preferentially inhibit CA IX over all other isoforms of CA. The variations in the active sites between isoforms of CA are subtle and this causes non-specific CA inhibition which leads to various side effects. In the case of CA IX inhibition, CA II along with other isoforms of CA provide off-target binding sites which is undesirable for cancer treatment. The focus of this article is on CA IX inhibition and two different structural approaches to CA isoform specific drug designing: tail approach and fragment addition approach.
Collapse
Affiliation(s)
- Mayank Aggarwal
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| | - Bhargav Kondeti
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida 1600 SW Archer Rd, PO Box 100245 Gainesville, FL 32610 United States of America
| |
Collapse
|
26
|
Inhibition pattern of sulfamide-related compounds in binding to carbonic anhydrase isoforms I, II, VII, XII and XIV. Bioorg Med Chem 2013; 21:1410-8. [DOI: 10.1016/j.bmc.2012.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
27
|
Takashima H, Fukuda M, Nakagaki F, Ogata T, Tsukahara K. Photoinduced Electron-Transfer Reactions of Carbonic Anhydrase Inhibitor Containing Tris(2,2′-bipyridine)ruthenium(II) Analogue. J Phys Chem B 2013; 117:2625-35. [DOI: 10.1021/jp310604w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Misa Fukuda
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Fumie Nakagaki
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Tomoko Ogata
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Keiichi Tsukahara
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
28
|
Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012; 112:4421-68. [PMID: 22607219 DOI: 10.1021/cr200176r] [Citation(s) in RCA: 944] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
29
|
Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 2012; 21:1570-82. [PMID: 22607884 DOI: 10.1016/j.bmc.2012.04.044] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/02/2012] [Accepted: 04/21/2012] [Indexed: 01/16/2023]
Abstract
The carbonic anhydrases enzymes (CAs, EC 4.2.1.1) are zinc containing metalloproteins, which efficiently catalyse the reversible conversion of carbon dioxide to bicarbonate and release proton. These enzymes are essentially important for biological system and play several important physiological and patho-physiological functions. There are 16 different alpha-carbonic anhydrase isoforms studied, differing widely in their cellular localization and biophysical properties. The catalytic domains of all CAs possess a conserved tertiary structure fold, with predominately β-strands. We performed an extensive analysis of all 16 mammalian CAs for its structure and function in order to establish a structure-function relationship. CAs have been a potential therapeutic target for many diseases. Sulfonamides are considered as a strong and specific inhibitor of CA, and are being used as diuretics, anti-glaucoma, anti-epileptic, anti-ulcer agents. Currently CA inhibitors are widely used as a drug for the treatment of neurological disorders, anti-glaucoma drugs, anti-cancer, or anti-obesity agents. Here we tried to emphasize how CAs can be used for drug discovery, design and screening. Furthermore, we discussed the role of CA in carbon capture, carbon sensor and metabolon. We hope this review provide many useful information on structure, function, mechanism, and applications of CAs in various discipline.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | | | | | | | | |
Collapse
|
30
|
Can D, Spingler B, Schmutz P, Mendes F, Raposinho P, Fernandes C, Carta F, Innocenti A, Santos I, Supuran CT, Alberto R. [(Cp-R)M(CO)3] (M=Re or 99mTc) Arylsulfonamide, Arylsulfamide, and Arylsulfamate Conjugates for Selective Targeting of Human Carbonic Anhydrase IX. Angew Chem Int Ed Engl 2012; 51:3354-7. [DOI: 10.1002/anie.201107333] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/24/2012] [Indexed: 12/11/2022]
|
31
|
Can D, Spingler B, Schmutz P, Mendes F, Raposinho P, Fernandes C, Carta F, Innocenti A, Santos I, Supuran CT, Alberto R. [(Cp-R)M(CO)3] (M=Re or 99mTc) Arylsulfonamide, Arylsulfamide, and Arylsulfamate Conjugates for Selective Targeting of Human Carbonic Anhydrase IX. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Monnard FW, Heinisch T, Nogueira ES, Schirmer T, Ward TR. Human Carbonic Anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor. Chem Commun (Camb) 2011; 47:8238-40. [DOI: 10.1039/c1cc10345h] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Manokaran S, Banerjee J, Mallik S, Srivastava DK. Stabilization of anionic and neutral forms of a fluorophoric ligand at the active site of human carbonic anhydrase I. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1965-1973. [PMID: 20620244 PMCID: PMC2930141 DOI: 10.1016/j.bbapap.2010.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 05/29/2023]
Abstract
We synthesized a fluorogenic dansylamide derivative (JB2-48), which fills the entire (15 A deep) active site pocket of human carbonic anhydrase I, and investigated the contributions of sulfonamide and hydrophobic regions of the ligand structure on the spectral, kinetic, and thermodynamic properties of the enzyme-ligand complex. The steady-state and fluorescence lifetime data revealed that the deprotonation of the sulfonamide moiety of the enzyme bound ligand increases the fluorescence emission intensity as well as the lifetime of the fluorophores. This is manifested via the electrostatic interaction between the active site resident Zn²+ cofactor and the negatively charged sulfonamide group of the ligand, and such interaction contributes to about 2.2 kcal/mol (ΔΔG°) and 0.89 kcal/mol (ΔΔG(#)) energy in stabilizing the ground and the putative transition states, respectively. We provide evidence that the anionic and neutral forms of JB2-48 are stabilized by the complementary microscopic/conformational states of the enzyme. The implication of the mechanistic studies presented herein in rationale design of carbonic anhydrase inhibitors is discussed.
Collapse
Affiliation(s)
- Sumathra Manokaran
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105
| | - Jayati Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105
| | - D. K. Srivastava
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105
| |
Collapse
|
34
|
Avvaru BS, Wagner JM, Maresca A, Scozzafava A, Robbins AH, Supuran CT, McKenna R. Carbonic anhydrase inhibitors. The X-ray crystal structure of human isoform II in adduct with an adamantyl analogue of acetazolamide resides in a less utilized binding pocket than most hydrophobic inhibitors. Bioorg Med Chem Lett 2010; 20:4376-81. [PMID: 20605094 DOI: 10.1016/j.bmcl.2010.06.082] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 12/01/2022]
Abstract
We investigated the inhibitory activity of several 1,3,4-thiadiazole-sulfonamides against all catalytically active CA (EC 4.2.1.1), CA I-XV. The tail derivatizing the 5-position in the 1,3,4-thiadiazole-2-sulfonamide scaffold was observed to be critical as an inhibitory determinant of these compounds. The high resolution X-ray crystal structure of hCA II in complex with 5-(1-adamantylcarboxamido)-1,3,4-thiadiazole-2-sulfonamide, showed the adamantyl moiety of the inhibitor residing in a less utilized binding pocket than that of most hydrophobic inhibitors, lined by the amino acid residues Ile91, Val121 and Phe131. This binding site may explain the diverse inhibition profiles of 5-carboxamide- and sufonamide-derivatized 1,3,4-thiadiazole-2-sulfonamides and offers a hot spot for designing isoform selective inhibitors, considering that residues 91 and 131 are highly variable among the 13 catalytically active isoforms.
Collapse
Affiliation(s)
- Balendu Sankara Avvaru
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Alterio V, Monti SM, Truppo E, Pedone C, Supuran CT, De Simone G. The first example of a significant active site conformational rearrangement in a carbonic anhydrase-inhibitor adduct: the carbonic anhydrase I-topiramate complex. Org Biomol Chem 2010; 8:3528-33. [PMID: 20505865 DOI: 10.1039/b926832d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Topiramate is a widely used antiepileptic drug, which has been demonstrated to act as an efficient weight loss agent. Since several studies have pointed out that is a potent in vitro inhibitor of several Carbonic anhydrase (CA) isozymes, it has been hypothesized that its anti-obesity properties could be ascribed to the inhibition of the CAs involved in de novo lipogenesis. Consequently, the study of the interactions of with all human CA isoforms represents an important step for the rational drug design of selective CA inhibitors to be used as anti-obesity drugs. In this paper we report the crystallographic structure of the adduct that forms with hCA I, showing for the first time a profound reorganization of the CA active site upon binding of the inhibitor. Moreover, a structural comparison with hCA II- and hCA VA- adducts, previously investigated, has been performed showing that a different H-bond network together with the movement of some amino acid residues in the active site may account for the different inhibition constants of toward these three CA isozymes.
Collapse
Affiliation(s)
- Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Gavernet L, Gonzalez Funes JL, Blanch LB, Estiu G, Maresca A, Supuran CT. Affinity of Sulfamates and Sulfamides to Carbonic Anhydrase II Isoform: Experimental and Molecular Modeling Approaches. J Chem Inf Model 2010; 50:1113-22. [DOI: 10.1021/ci100112s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Jose L. Gonzalez Funes
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Luis Bruno Blanch
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Guillermina Estiu
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Alfonso Maresca
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T. Supuran
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 and 115, La Plata B1900BJW, Argentina, Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
37
|
Behnke CA, Le Trong I, Godden JW, Merritt EA, Teller DC, Bajorath J, Stenkamp RE. Atomic resolution studies of carbonic anhydrase II. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:616-27. [PMID: 20445237 DOI: 10.1107/s0907444910006554] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022]
Abstract
Carbonic anhydrase has been well studied structurally and functionally owing to its importance in respiration. A large number of X-ray crystallographic structures of carbonic anhydrase and its inhibitor complexes have been determined, some at atomic resolution. Structure determination of a sulfonamide-containing inhibitor complex has been carried out and the structure was refined at 0.9 A resolution with anisotropic atomic displacement parameters to an R value of 0.141. The structure is similar to those of other carbonic anhydrase complexes, with the inhibitor providing a fourth nonprotein ligand to the active-site zinc. Comparison of this structure with 13 other atomic resolution (higher than 1.25 A) isomorphous carbonic anhydrase structures provides a view of the structural similarity and variability in a series of crystal structures. At the center of the protein the structures superpose very well. The metal complexes superpose (with only two exceptions) with standard deviations of 0.01 A in some zinc-protein and zinc-ligand bond lengths. In contrast, regions of structural variability are found on the protein surface, possibly owing to flexibility and disorder in the individual structures, differences in the chemical and crystalline environments or the different approaches used by different investigators to model weak or complicated electron-density maps. These findings suggest that care must be taken in interpreting structural details on protein surfaces on the basis of individual X-ray structures, even if atomic resolution data are available.
Collapse
Affiliation(s)
- Craig A Behnke
- Department of Biochemistry, University of Washington, Box 357430, Seattle, WA 98195-7430, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Cozier GE, Leese MP, Lloyd MD, Baker MD, Thiyagarajan N, Acharya KR, Potter BVL. Structures of Human Carbonic Anhydrase II/Inhibitor Complexes Reveal a Second Binding Site for Steroidal and Nonsteroidal Inhibitors,. Biochemistry 2010; 49:3464-76. [DOI: 10.1021/bi902178w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gyles E. Cozier
- Medicinal Chemistry, Department of Pharmacy and Pharmacology
| | - Mathew P. Leese
- Medicinal Chemistry, Department of Pharmacy and Pharmacology
| | | | | | | | | | | |
Collapse
|
39
|
Gitto R, Agnello S, Ferro S, De Luca L, Vullo D, Brynda J, Mader P, Supuran CT, Chimirri A. Identification of 3,4-Dihydroisoquinoline-2(1H)-sulfonamides as Potent Carbonic Anhydrase Inhibitors: Synthesis, Biological Evaluation, and Enzyme−Ligand X-ray Studies. J Med Chem 2010; 53:2401-8. [DOI: 10.1021/jm9014026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rosaria Gitto
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Stefano Agnello
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Stefania Ferro
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Laura De Luca
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Firenze, Italy
| | - Jiri Brynda
- Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-16637 Prague, Czech Republic
- Department of Structural Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16637 Prague, Czech Republic
| | - Pavel Mader
- Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-16637 Prague, Czech Republic
- Department of Structural Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16637 Prague, Czech Republic
| | - Claudiu T. Supuran
- Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Firenze, Italy
| | - Alba Chimirri
- Dipartimento Farmaco-Chimico, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| |
Collapse
|
40
|
Haas KL, Franz KJ. Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev 2009; 109:4921-60. [PMID: 19715312 PMCID: PMC2761982 DOI: 10.1021/cr900134a] [Citation(s) in RCA: 611] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathryn L Haas
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708-0346, USA
| | | |
Collapse
|
41
|
Sippel KH, Robbins AH, Domsic J, Genis C, Agbandje-McKenna M, McKenna R. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:992-5. [PMID: 19851004 DOI: 10.1107/s1744309109036665] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022]
Abstract
The crystal structure of human carbonic anhydrase II (CA II) complexed with the inhibitor acetazolamide (AZM) has been determined at 1.1 A resolution and refined to an R(cryst) of 11.2% and an R(free) of 14.7%. As observed in previous CA II-inhibitor complexes, AZM binds directly to the zinc and makes several key interactions with active-site residues. The high-resolution data also showed a glycerol molecule adjacent to the AZM in the active site and two additional AZMs that are adventitiously bound on the surface of the enzyme. The co-binding of AZM and glycerol in the active site demonstrate that given an appropriate ring orientation and substituents, an isozyme-specific CA inhibitor may be developed.
Collapse
Affiliation(s)
- Katherine H Sippel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Unique properties of metal complexes, such as structural diversity, adjustable ligand exchange kinetics, fine-tuned redox activities, and distinct spectroscopic signatures, make them exciting scaffolds not only for binding to nucleic acids but increasingly also to proteins as non-traditional targets. This feature article discusses recent trends in this field. These include the use of chemically inert metal complexes as structural scaffolds for the design of enzyme inhibitors, new strategies for inducing selective coordination chemistry at the protein binding site, recent advances in the development of catalytic enzyme inhibitors, and the design of metal complexes that can inject electrons or holes into redox enzymes. A common theme in many of the discussed examples is that binding selectivity is at least in part achieved through weak interactions between the ligand sphere and the protein binding site. These examples hint to an exciting future in which "organic-like" molecular recognition principles are combined with properties that are unique to metals and thus promise to yield compounds with novel and unprecedented properties.
Collapse
Affiliation(s)
- Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043, Marburg, Germany.
| |
Collapse
|
43
|
Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem 2008; 2:152-71. [PMID: 17163561 DOI: 10.1002/cmdc.200600204] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of metalloproteins are important medicinal targets for conditions ranging from pathogenic infections to cancer. Many but not all of these metalloproteins contain a zinc(II) ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In this review several metalloproteins of interest are discussed, including matrix metalloproteinases (MMPs), histone deacetylases (HDACs), anthrax lethal factor (LF), and others. Different strategies that have been employed to design effective inhibitors against these proteins are described, with an effort to highlight the strengths and drawbacks of each approach. An emphasis is placed on examining the bioinorganic chemistry of these metal active sites and how a better understanding of the coordination chemistry in these systems may lead to improved inhibitors. It is hoped that this review will help inspire medicinal, biological, and inorganic chemists to tackle this important problem by considering all aspects of metalloprotein inhibitor design.
Collapse
Affiliation(s)
- Faith E Jacobsen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | | | | |
Collapse
|
44
|
Machida S, Usuba K, Blaskovich MA, Yano A, Harada K, Sebti SM, Kato N, Ohkanda J. Module assembly for protein-surface recognition: geranylgeranyltransferase I bivalent inhibitors for simultaneous targeting of interior and exterior protein surfaces. Chemistry 2008; 14:1392-401. [PMID: 18200641 DOI: 10.1002/chem.200701634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synthetic chemical probes designed to simultaneously targeting multiple sites of protein surfaces are of interest owing to their potential application as site specific modulators of protein-protein interactions. A new approach toward bivalent inhibitors of mammalian type I geranylgeranyltransferase (GGTase I) based on module assembly for simultaneous recognition of both interior and exterior protein surfaces is reported. The inhibitors synthesized in this study consist of two modules linked by an alkyl spacer; one is the tetrapeptide CVIL module for binding to the interior protein surface (active pocket) and the other is a 3,4,5-alkoxy substituted benzoyl motif that contains three aminoalkyl groups designed to bind to the negatively charged protein exterior surface near the active site. The compounds were screened by two distinct enzyme inhibition assays based on fluorescence spectroscopy and incorporation of a [(3)H]-labeled prenyl group onto a protein substrate. The bivalent inhibitors block GGTase I enzymatic activity with K(i) values in the submicromolar range and are approximately one order of magnitude and more than 150 times more effective than the tetrapeptide CVIL and the methyl benzoate derivatives, respectively. The bivalent compounds 6 and 8 were shown to be competitive inhibitors, suggesting that the CVIL module anchors the whole molecule to the GGTase I active site and delivers the other module to the targeting protein surface. Thus, our module-assembly approach resulted in simultaneous multiple-site recognition, and as a consequence, synergetic inhibition of GGTase I activity, thereby providing a new approach in designing protein-surface-directed inhibitors for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Shinnosuke Machida
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 2008; 108:946-1051. [PMID: 18335973 PMCID: PMC2740730 DOI: 10.1021/cr050262p] [Citation(s) in RCA: 565] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Vijay M. Krishnamurthy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George K. Kaufman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Adam R. Urbach
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Irina Gitlin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Katherine L. Gudiksen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Douglas B. Weibel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
46
|
Carbonic anhydrase inhibitors: Copper(II) complexes of polyamino-polycarboxylamido aromatic/heterocyclic sulfonamides are very potent inhibitors of the tumor-associated isoforms IX and XII. Bioorg Med Chem Lett 2008; 18:836-41. [DOI: 10.1016/j.bmcl.2007.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 11/19/2022]
|
47
|
Abstract
Rapid progress in the synthetic application of benzotriazole derivatives in the last 20 years has resulted in over 1000 scientific papers on the subject. This fact is reflected in Section 5.01.7, which involves almost a half of the volume of this chapter. The section is arranged according to hybridization of the C-α atom and atomic numbers of the atoms in positions β and γ to allow an easy access to the material of interest. Recent discovery of copper catalysis in [3+2] cycloadditions of azides to acetylenes, the so-called ‘click chemistry’, which boosted application of the 1,2,3-triazole derivatives, especially in medicinal chemistry, is presented in Section 5.01.9. From the point of view of practical applications, Section 5.01.11 is organized according to the number, position, and combination of the substituents at the aromatic rings. Another novel feature that has no precedence in the previous editions of Comprehensive Heterocyclic Chemistry is an addition of triazole and benzotriazole complexes with various transitions metals to Section 5.01.4.
Collapse
|
48
|
Höst GE, Razkin J, Baltzer L, Jonsson BH. Combined enzyme and substrate design: grafting of a cooperative two-histidine catalytic motif into a protein targeted at the scissile bond in a designed ester substrate. Chembiochem 2007; 8:1570-6. [PMID: 17665409 DOI: 10.1002/cbic.200600540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A histidine-based, two-residue reactive site for the catalysis of hydrolysis of designed sulfonamide-containing para-nitrophenyl esters has been engineered into a scaffold protein. A matching substrate was designed to exploit the natural active site of human carbonic anhydrase II (HCAII) for well-defined binding. In this we took advantage of the high affinity between the active site zinc atom and sulfonamides. The ester substrate was designed to position the scissile bond in close proximity to the His64 residue in the scaffold protein. Three potential sites for grafting the catalytic His-His pair were identified, and the corresponding N62H/H64, F131H/V135H and L198H/P202H mutants were constructed. The most efficient variant, F131H/V135H, has a maximum k(cat)/K(M) value of approximately 14 000 M(-1) s(-1), with a k(cat) value that is increased by a factor of 3 relative to that of the wild-type HCAII, and by a factor of over 13 relative to the H64A mutant. The results show that an esterase can be designed in a stepwise way by a combination of substrate design and grafting of a designed catalytic motif into a well-defined substrate binding site.
Collapse
Affiliation(s)
- Gunnar E Höst
- Molecular Biotechnology/IFM, Linköping University, 58183 Linköping, Sweden
| | | | | | | |
Collapse
|
49
|
Elegbede AI, Haldar MK, Manokaran S, Kooren J, Roy BC, Mallik S, Srivastava DK. A strategy for designing "multi-prong" enzyme inhibitors by incorporating selective ligands to the liposomal surface. Chem Commun (Camb) 2007:3377-9. [PMID: 18019504 DOI: 10.1039/b707141h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We offer a novel strategy for designing "multi-prong" inhibitors of enzymes by incorporating selective ligands on the liposomal surface.
Collapse
Affiliation(s)
- Adekunle I Elegbede
- Department of Chemistry, Biochemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Srivastava DK, Jude KM, Banerjee AL, Haldar M, Manokaran S, Kooren J, Mallik S, Christianson DW. Structural analysis of charge discrimination in the binding of inhibitors to human carbonic anhydrases I and II. J Am Chem Soc 2007; 129:5528-37. [PMID: 17407288 PMCID: PMC2532950 DOI: 10.1021/ja068359w] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the similarity in the active site pockets of carbonic anhydrase (CA) isozymes I and II, the binding affinities of benzenesulfonamide inhibitors are invariably higher with CA II as compared to CA I. To explore the structural basis of this molecular recognition phenomenon, we have designed and synthesized simple benzenesulfonamide inhibitors substituted at the para position with positively charged, negatively charged, and neutral functional groups, and we have determined the affinities and X-ray crystal structures of their enzyme complexes. The para-substituents are designed to bind in the midsection of the 15 A deep active site cleft, where interactions with enzyme residues and solvent molecules are possible. We find that a para-substituted positively charged amino group is more poorly tolerated in the active site of CA I compared with CA II. In contrast, a para-substituted negatively charged carboxylate substituent is tolerated equally well in the active sites of both CA isozymes. Notably, enzyme-inhibitor affinity increases upon neutralization of inhibitor charged groups by amidation or esterification. These results inform the design of short molecular linkers connecting the benzenesulfonamide group and a para-substituted tail group in "two-prong" CA inhibitors: an optimal linker segment will be electronically neutral, yet capable of engaging in at least some hydrogen bond interactions with protein residues and/or solvent. Microcalorimetric data reveal that inhibitor binding to CA I is enthalpically less favorable and entropically more favorable than inhibitor binding to CA II. This contrasting behavior may arise in part from differences in active site desolvation and the conformational entropy of inhibitor binding to each isozyme active site.
Collapse
Affiliation(s)
- D. K. Srivastava
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105
| | - Kevin M. Jude
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Abir L. Banerjee
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105
| | - Manas Haldar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105
| | - Sumathra Manokaran
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105
| | - Joel Kooren
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| |
Collapse
|