1
|
Sarimov RM, Matveyeva TA, Mozhaeva VA, Kuleshova AI, Ignatova AA, Simakin AV. Optical Study of Lysozyme Molecules in Aqueous Solutions after Exposure to Laser-Induced Breakdown. Biomolecules 2022; 12:1613. [PMID: 36358963 PMCID: PMC9687580 DOI: 10.3390/biom12111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 09/08/2024] Open
Abstract
The properties of a lysozyme solution under laser-induced breakdown were studied. An optical breakdown under laser action in protein solutions proceeds with high efficiency: the formation of plasma and acoustic oscillations is observed. The concentration of protein molecules has very little effect on the physicochemical characteristics of optical breakdown. After exposure to optical breakdown, changes were observed in the enzymatic activity of lysozyme, absorption and fluorescence spectra, viscosity, and the sizes of molecules and aggregates of lysozyme measured by dynamic light scattering. However, the refractive index of the solution and the Raman spectrum did not change. The appearance of a new fluorescence peak was observed upon excitation at 350 nm and emission at 434 nm at exposure for 30 min. Previously, a peak in this range was associated with the fluorescence of amyloid fibrils. However, neither the ThT assay nor the circular dichroism dispersion confirmed the formation of amyloid fibrils. Probably, under the influence of optical breakdown, a small part of the protein degraded, and a part changed its native state and aggregated, forming functional dimers or "native aggregates".
Collapse
Affiliation(s)
- Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI RAS), 119991 Moscow, Russia
| | - Tatiana A. Matveyeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI RAS), 119991 Moscow, Russia
| | - Vera A. Mozhaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI RAS), 119991 Moscow, Russia
| | - Aleksandra I. Kuleshova
- Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI RAS), 119991 Moscow, Russia
| | - Anastasia A. Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI RAS), 119991 Moscow, Russia
| |
Collapse
|
2
|
Li J, Zheng H, Feng C. Effect of Macromolecular Crowding on the FMN-Heme Intraprotein Electron Transfer in Inducible NO Synthase. Biochemistry 2019; 58:3087-3096. [PMID: 31251033 DOI: 10.1021/acs.biochem.9b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous biochemical studies of nitric oxide synthase enzymes (NOSs) were conducted in diluted solutions. However, the intracellular milieu where the proteins perform their biological functions is crowded with macromolecules. The effect of crowding on the electron transfer kinetics of multidomain proteins is much less understood. Herein, we investigated the effect of macromolecular crowding on the FMN-heme intraprotein interdomain electron transfer (IET), an obligatory step in NOS catalysis. A noticeable increase in the IET rate in the bidomain oxygenase/FMN (oxyFMN) and the holoprotein of human inducible NOS (iNOS) was observed upon addition of Ficoll 70 in a nonsaturable manner. Additionally, the magnitude of IET enhancement for the holoenzyme is much higher than that that of the oxyFMN construct. The crowding effect is also evident at different ionic strengths. Importantly, the enhancing extent is similar for the iNOS oxyFMN protein with added Ficoll 70 and Dextran 70 that give the same solution viscosity, showing that specific interactions do not exist between the NOS protein and the crowder. Moreover, the population of the docked FMN-heme state is significantly increased upon addition of Ficoll 70 and the fluorescence lifetime values do not correspond to those in the absence of Ficoll 70. The steady-state cytochrome c reduction by the holoenzyme is noticeably enhanced by the crowder, while the ferricyanide reduction is unchanged. The NO production activity of the iNOS holoenzyme is stimulated by Ficoll 70. The effect of macromolecular crowding on the kinetics can be rationalized on the basis of the excluded volume effect, with an entropic origin. The intraprotein electron transfer kinetics, fluorescence lifetime, and steady-state enzymatic activity results indicate that macromolecular crowding modulates the NOS electron transfer through multiple pathways. Such a mechanism should be applicable to electron transfer in other multidomain redox proteins.
Collapse
Affiliation(s)
- Jinghui Li
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Huayu Zheng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Changjian Feng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
3
|
Arnett DC, Bailey SK, Johnson CK. Exploring the conformations of nitric oxide synthase with fluorescence. Front Biosci (Landmark Ed) 2018; 23:2133-2145. [PMID: 29772550 DOI: 10.2741/4694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multi-domain oxidoreductases are a family of enzymes that catalyze oxidation-reduction reactions through a series of electron transfers. Efficient electron transfer requires a sequence of protein conformations that position electron donor and acceptor domains in close proximity to each other so that electron transfer can occur efficiently. An example is mammalian nitric oxide synthase (NOS), which consists of an N-terminal oxygenase domain containing heme and a C-terminal reductase domain containing NADPH/FAD and FMN subdomains. We describe the use of time-resolved and single-molecule fluorescence to detect and characterize the conformations and conformational dynamics of the neuronal and endothelial isoforms of NOS. Fluorescence signals are provided by a fluorescent dye attached to the Ca2+-signaling protein calmodulin (CaM), which regulates NOS activity. Time-resolved fluorescence decays reveal the presence of at least four underlying conformational states that are differentiated by the extent of fluorescence quenching. Single-molecule fluorescence displays transitions between conformational states on the time scales of milliseconds to seconds. This review describes the type of information available by analysis of time-resolved and single-molecule fluorescence experiments.
Collapse
Affiliation(s)
- David C Arnett
- Department of Chemistry, Northwestern College, 101 7th Street SW, Orange City, IA 51041
| | - Sheila K Bailey
- Department of Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045,
| |
Collapse
|
4
|
Astashkin AV, Li J, Zheng H, Miao Y, Feng C. A docked state conformational dynamics model to explain the ionic strength dependence of FMN - heme electron transfer in nitric oxide synthase. J Inorg Biochem 2018; 184:146-155. [PMID: 29751215 DOI: 10.1016/j.jinorgbio.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The FMN-heme interdomain electron transfer (IET) in nitric oxide synthase (NOS) is a key stage of the electron transport chain, which supplies the catalytic heme site(s) with the NADPH-derived electrons. While there is a recognition that this IET depends on both the electron tunneling and the conformational dynamics, the detailed mechanism remains unclear. In this work, the IET kinetics were measured by laser flash photolysis for a bidomain oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS) over the ionic strength range from 0.1 to 0.5 M. The forward (heme → FMN, kETf) and backward (FMN → heme, kETb) intrinsic IET rate constants were determined from the analysis of the observed IET rates using the additional information regarding the conformational dynamics obtained from the FMN fluorescence lifetime measurements and theoretical estimates. Both kETf and kETb exhibit a bell-shaped dependence on the ionic strength, I, with the maximum rates corresponding to I ~ 0.2 M. This dependence was explained using a new model, which considers the effect of formation of pairs between the protein surface charged residues and solution ions on the docked state dynamics. The trial simulations of the intrinsic IET rate dependences using this model show that the data can be reproduced using reasonable energetic, structural, and chemical parameters. The suggested model can explain both the monophasic and biphasic ionic strength dependences and can be used to rationalize the interprotein/interdomain electron transfer rates for other types of protein systems where the docked state is sufficiently long-lived.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Hedison TM, Hay S, Scrutton NS. A perspective on conformational control of electron transfer in nitric oxide synthases. Nitric Oxide 2017; 63:61-67. [PMID: 27619338 PMCID: PMC5295631 DOI: 10.1016/j.niox.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/20/2023]
Abstract
This perspective reviews single molecule and ensemble fluorescence spectroscopy studies of the three tissue specific nitric oxide synthase (NOS) isoenzymes and the related diflavin oxidoreductase cytochrome P450 reductase. The focus is on the role of protein dynamics and the protein conformational landscape and we discuss how recent fluorescence-based studies have helped in illustrating how the nature of the NOS conformational landscape relates to enzyme turnover and catalysis.
Collapse
Affiliation(s)
- Tobias M Hedison
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
6
|
Chen L, Zheng H, Li W, Li W, Miao Y, Feng C. Role of a Conserved Tyrosine Residue in the FMN-Heme Interdomain Electron Transfer in Inducible Nitric Oxide Synthase. J Phys Chem A 2016; 120:7610-7616. [PMID: 27633182 DOI: 10.1021/acs.jpca.6b08207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains is essential in the biosynthesis of nitric oxide (NO) by the NO synthase (NOS) enzymes. A conserved tyrosine residue in the FMN domain (Y631 in human inducible NOS) was proposed to be a key part of the electron transfer pathway in the FMN/heme docked complex model. In the present study, the FMN-heme IET kinetics in the Y631F mutant and wild type of a bidomain oxygenase/FMN construct of human inducible NOS were determined by laser flash photolysis. The rate constant of the Y631F mutant is significantly decreased by ∼75% (compared to the wild type), showing that the tyrosine residue indeed facilitates the FMN-heme IET through the protein medium. The IET rate constant of the wild type protein decreases from 345 to 242 s-1 on going from H2O to 95% D2O, giving a solvent kinetic isotope effect of 1.4. In contrast, no deuterium isotope effect was observed for the Tyr-to-Phe mutant. Moreover, an appreciable change in the wild type iNOS IET rate constant value was observed upon changing pH. These results indicate that the FMN-heme IET is proton coupled, in which the conserved tyrosine residue may play an important role.
Collapse
Affiliation(s)
- Li Chen
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States.,Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Wenbing Li
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Wei Li
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Yubin Miao
- Radiology, University of Colorado Denver , Denver, Colorado 80045, United States
| | - Changjian Feng
- College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States.,Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
7
|
Haque MM, Ray SS, Stuehr DJ. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics. J Biol Chem 2016; 291:23047-23057. [PMID: 27613870 DOI: 10.1074/jbc.m116.737361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
The activity of endothelial NO synthase (eNOS) is triggered by calmodulin (CaM) binding and is often further regulated by phosphorylation at several positions in the enzyme. Phosphorylation at Ser1179 occurs in response to diverse physiologic stimuli and increases the NO synthesis and cytochrome c reductase activities of eNOS, thereby enhancing its participation in biological signal cascades. Despite its importance, the mechanism by which Ser1179 phosphorylation increases eNOS activity is not understood. To address this, we used stopped-flow spectroscopy and computer modeling approaches to determine how the phosphomimetic mutation (S1179D) may impact electron flux through eNOS and the conformational behaviors of its reductase domain, both in the absence and presence of bound CaM. We found that S1179D substitution in CaM-free eNOS had multiple effects; it increased the rate of flavin reduction, altered the conformational equilibrium of the reductase domain, and increased the rate of its conformational transitions. We found these changes were equivalent in degree to those caused by CaM binding to wild-type eNOS, and the S1179D substitution together with CaM binding caused even greater changes in these parameters. The modeling indicated that the changes caused by the S1179D substitution, despite being restricted to the reductase domain, are sufficient to explain the stimulation of both the cytochrome c reductase and NO synthase activities of eNOS. This helps clarify how Ser1179 phosphorylation regulates eNOS and provides a foundation to compare its regulation by other phosphorylation events.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sougata Sinha Ray
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
8
|
Hung CC, Yabushita A, Kobayashi T, Chen PF, Liang KS. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation. Biophys Chem 2016; 214-215:11-6. [PMID: 27183248 DOI: 10.1016/j.bpc.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in <300fs, then followed by vibrational cooling and recombination within 2ps. Such impulsive bond breaking and late rebinding generate proteinquakes, which relaxes in several tens of picoseconds. The photo excited dynamics of eNOS-oxy with L-arginine substrate mainly occurs at the local site of heme, including ultrafast internal conversion within 400fs, vibrational cooling, charge transfer, and complete ground-state recovery within 1.4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps.
Collapse
Affiliation(s)
- Chih-Chang Hung
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan; Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan; CREST, JST, Saitama, Japan.
| | - Takayoshi Kobayashi
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan; Department of Applied Physics and Chemistry and Institute for Laser Science, The University of Electrocommunications, Tokyo, Japan; CREST, JST, Saitama, Japan; Institute of Laser Engineering, Osaka University
| | - Pei-Feng Chen
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Keng S Liang
- Institute of Physics, Academia Sinica, Taipei, Taiwan; Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
9
|
Astashkin AV, Feng C. Solving Kinetic Equations for the Laser Flash Photolysis Experiment on Nitric Oxide Synthases: Effect of Conformational Dynamics on the Interdomain Electron Transfer. J Phys Chem A 2015; 119:11066-75. [PMID: 26477677 DOI: 10.1021/acs.jpca.5b08414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
10
|
Sheng Y, Zhong L, Guo D, Lau G, Feng C. Insight into structural rearrangements and interdomain interactions related to electron transfer between flavin mononucleotide and heme in nitric oxide synthase: A molecular dynamics study. J Inorg Biochem 2015; 153:186-196. [PMID: 26277414 DOI: 10.1016/j.jinorgbio.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Calmodulin (CaM) binding to nitric oxide synthase (NOS) enables a conformational change, in which the FMN domain shuttles between the FAD and heme domains to deliver electrons to the active site heme center. A clear understanding of this large conformational change is critical, since this step is the rate-limiting in NOS catalysis. Herein molecular dynamics simulations were conducted on a model of an oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS). This is to investigate the structural rearrangements and the domain interactions related to the FMN-heme interdomain electron transfer (IET). We carried out simulations on the iNOS oxyFMN·CaM complex models in [Fe(III)][FMNH(-)] and [Fe(II)][FMNH] oxidation states, the pre- and post-IET states. The comparison of the dynamics and conformations of the iNOS construct at the two oxidation states has allowed us to identify key factors related to facilitating the FMN-heme IET process. The computational results demonstrated, for the first time, that the conformational change is redox-dependent. Predictions of the key interacting sites in optimal interdomain FMN/heme docking are well supported by experimental data in the literature. An intra-subunit pivot region is predicted to modulate the FMN domain motion and correlate with existence of a bottleneck in the conformational sampling that leads to the electron transfer-competent state. Interactions of the residues identified in this work are proposed to ensure that the FMN domain moves with appropriate degrees of freedom and docks to proper positions at the heme domain, resulting in efficient IET and nitric oxide production.
Collapse
Affiliation(s)
- Yinghong Sheng
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA.
| | - Linghao Zhong
- Pennsylvania State University at Mont Alto, 1 Campus Drive, Mont Alto, PA 17237, USA
| | - Dahai Guo
- Department of Bioengineering and Software Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Gavin Lau
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Leferink NGH, Hay S, Rigby SEJ, Scrutton NS. Towards the free energy landscape for catalysis in mammalian nitric oxide synthases. FEBS J 2014; 282:3016-29. [PMID: 25491181 DOI: 10.1111/febs.13171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/30/2023]
Abstract
The general requirement for conformational sampling in biological electron transfer reactions catalysed by multi-domain redox systems has been emphasized in recent years. Crucially, we lack insight into the extent of the conformational space explored and the nature of the energy landscapes associated with these reactions. The nitric oxide synthases (NOS) produce the signalling molecule NO through a series of complex electron transfer reactions. There is accumulating evidence that protein domain dynamics and calmodulin binding are implicated in regulating electron flow from NADPH, through the FAD and FMN cofactors, to the haem oxygenase domain, where NO is generated. Simple models based on static crystal structures of the isolated reductase domain have suggested a role for large-scale motions of the FMN-binding domain in shuttling electrons from the reductase domain to the oxygenase domain. However, detailed insight into the higher-order domain architecture and dynamic structural transitions in NOS enzymes during enzyme turnover is lacking. In this review, we discuss the recent advances made towards mapping the catalytic free energy landscapes of NOS enzymes through integration of both structural techniques (e.g. cryo-electron microscopy) and biophysical techniques (e.g. pulsed-electron paramagnetic resonance). The general picture that emerges from these experiments is that NOS enzymes exist in an equilibrium of conformations, comprising a 'rugged' or 'frustrated' energy landscape, with a key regulatory role for calmodulin in driving vectorial electron transfer by altering the conformational equilibrium. A detailed understanding of these landscapes may provide new opportunities for discovery of isoform-specific inhibitors that bind at the dynamic interfaces of these multi-dimensional energy landscapes.
Collapse
Affiliation(s)
- Nicole G H Leferink
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| |
Collapse
|
12
|
Astashkin AV, Chen L, Zhou X, Li H, Poulos TL, Liu KJ, Guillemette JG, Feng C. Pulsed electron paramagnetic resonance study of domain docking in neuronal nitric oxide synthase: the calmodulin and output state perspective. J Phys Chem A 2014; 118:6864-72. [PMID: 25046446 PMCID: PMC4148148 DOI: 10.1021/jp503547w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca(2+)], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca(2+)]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca(2+)-CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. J Inorg Biochem 2013; 130:130-40. [PMID: 24084585 DOI: 10.1016/j.jinorgbio.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, is responsible for biosynthesis of nitric oxide (NO) in mammals. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their biological functions by tight control of interdomain electron transfer (IET) process through interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O2 activation at the catalytic heme site. Emerging evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS by a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the FMN and heme domains in the three NOS isoforms. In the absence of a structure of full-length NOS, an integrated approach of spectroscopic, rapid kinetic and mutagenesis methods is required to unravel regulation mechanism of the FMN-heme IET process. This is to investigate the roles of the FMN domain motions and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in this area that are driven by the combined approach are the focuses of this review. A better understanding of the roles of interdomain FMN/heme interactions and CaM binding may serve as a basis for the rational design of new selective modulators of the NOS enzymes.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation. Proc Natl Acad Sci U S A 2013; 110:E3577-86. [PMID: 24003111 DOI: 10.1073/pnas.1313331110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) produced by NO synthase (NOS) participates in diverse physiological processes such as vasodilation, neurotransmission, and the innate immune response. Mammalian NOS isoforms are homodimers composed of two domains connected by an intervening calmodulin-binding region. The N-terminal oxidase domain binds heme and tetrahydrobiopterin and the arginine substrate. The C-terminal reductase domain binds FAD and FMN and the cosubstrate NADPH. Although several high-resolution structures of individual NOS domains have been reported, a structure of a NOS holoenzyme has remained elusive. Determination of the higher-order domain architecture of NOS is essential to elucidate the molecular underpinnings of NO formation. In particular, the pathway of electron transfer from FMN to heme, and the mechanism through which calmodulin activates this electron transfer, are largely unknown. In this report, hydrogen-deuterium exchange mass spectrometry was used to map critical NOS interaction surfaces. Direct interactions between the heme domain, the FMN subdomain, and calmodulin were observed. These interaction surfaces were confirmed by kinetic studies of site-specific interface mutants. Integration of the hydrogen-deuterium exchange mass spectrometry results with computational docking resulted in models of the NOS heme and FMN subdomain bound to calmodulin. These models suggest a pathway for electron transfer from FMN to heme and a mechanism for calmodulin activation of this critical step.
Collapse
|
15
|
Li W, Chen L, Lu C, Elmore BO, Astashkin AV, Rousseau DL, Yeh SR, Feng C. Regulatory role of Glu546 in flavin mononucleotide-heme electron transfer in human inducible nitric oxide synthase. Inorg Chem 2013; 52:4795-801. [PMID: 23570607 DOI: 10.1021/ic3020892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) production by mammalian NO synthase (NOS) is believed to be regulated by the docking of the flavin mononucleotide (FMN) domain in one subunit of the dimer onto the heme domain of the adjacent subunit. Glu546, a conserved charged surface residue of the FMN domain in human inducible NOS (iNOS), is proposed to participate in the interdomain FMN/heme interactions [Sempombe et al. Inorg. Chem.2011, 50, 6869-6861]. In the present work, we further investigated the role of the E546 residue in the FMN-heme interdomain electron transfer (IET), a catalytically essential step in the NOS enzymes. Laser flash photolysis was employed to directly measure the FMN-heme IET kinetics for the E546N mutant of human iNOS oxygenase/FMN (oxyFMN) construct. The temperature dependence of the IET kinetics was also measured over the temperature range of 283-304 K to determine changes in the IET activation parameters. The E546N mutation was found to retard the IET by significantly raising the activation entropic barrier. Moreover, pulsed electron paramagnetic resonance data showed that the geometry of the docked FMN/heme complex in the mutant is basically the same as in the wild type construct, whereas the probability of formation of such a complex is about twice lower. These results indicate that the retarded IET in the E546N mutant is not caused by an altered conformation of the docked FMN/heme complex, but by a lower population of the IET-active conformation. In addition, the negative activation entropy of the mutant is still substantially lower than that of the holoenzyme. This supports a mechanism by which the FMN domain can modify the IET through altering probability of the docked state formation.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Astashkin AV, Elmore BO, Chen L, Fan W, Guillemette JG, Feng C. Pulsed ENDOR determination of the arginine location in the ferrous-NO form of neuronal NOS. J Phys Chem A 2012; 116:6731-9. [PMID: 22667467 DOI: 10.1021/jp302319c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian nitric oxide synthases (NOSs) are enzymes responsible for oxidation of L-arginine (L-Arg) to nitric oxide (NO). Mechanisms of reactions at the catalytic heme site are not well understood, and it is of current interest to study structures of the heme species that activates O(2) and transforms the substrate. The NOS ferrous-NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis. In this work, pulsed electron-nuclear double resonance (ENDOR) was used to probe the position of the l-Arg substrate at the NO(•)-coordinated ferrous heme center(s) in the oxygenase domain of rat neuronal NOS (nNOS). The analysis of (2)H and (15)N ENDOR spectra of samples containing d(7)- or guanidino-(15)N(2) labeled L-Arg has resulted in distance estimates for the nearby guanidino nitrogen and the nearby proton (deuteron) at C(δ). The L-Arg position was found to be noticeably different from that in the X-ray crystal structure of nNOS ferrous-NO complex [Li et al. J. Biol. Inorg. Chem.2006, 11, 753-768], with the nearby guanidino nitrogen being ~0.5 Å closer to, and the nearby H(δ) about 1 Å further from, the NO ligand than in the X-ray structure. The difference might be related to the structural constraints imposed on the protein by the crystal. Importantly, in spite of its closer position, the guanidino nitrogen does not form a hydrogen bond with the NO ligand, as evidenced by the absence of significant isotropic hfi constant for N(g1). This is consistent with the previous reports that it is not the L-Arg substrate itself that would most likely serve as a direct proton donor to the diatomic ligands (NO and O(2)) bound to the heme.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ghosh DK, Ray K, Rogers AJ, Nahm NJ, Salerno JC. FMN fluorescence in inducible NOS constructs reveals a series of conformational states involved in the reductase catalytic cycle. FEBS J 2012; 279:1306-17. [PMID: 22325715 DOI: 10.1111/j.1742-4658.2012.08525.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nitric oxide synthases (NOSs) produce NO as a molecular signal in the nervous and cardiovascular systems and as a cytotoxin in the immune response. NO production in the constitutive isoforms is controlled by calmodulin regulation of electron transfer. In the tethered shuttle model for NOS reductase function, the FMN domain moves between NADPH dehydrogenase and oxygenase catalytic centers. Crystal structures of neuronal NOS reductase domain and homologs correspond to an 'input state', with FMN in close contact with FAD. We recently produced two domain 'output state' (oxyFMN) constructs showing calmodulin dependent FMN domain association with the oxygenase domain. FMN fluorescence is sensitive to enzyme conformation and calmodulin binding. The inducible NOS (iNOS) oxyFMN construct is more fluorescent than iNOS holoenzyme. The difference in steady state fluorescence is rationalized by the observation of a series of characteristic states in the two constructs, which we assign to FMN in different environments. OxyFMN and holoenzyme share open conformations with an average lifetime of ~4.3 ns. The majority state in holoenzyme has a short lifetime of ~90 ps, probably because of FAD-FMN interactions. In oxyFMN about 25-30% of the FMN is in a state with a lifetime of 0.9 ns, which we attribute to quenching by heme in the output state. Occupancy of the output state together with our previous kinetic results yields a heme edge to FMN distance estimate of 12-15 Å. These results indicate that FMN fluorescence is a valuable tool to study conformational states involved in the NOS reductase catalytic cycle.
Collapse
Affiliation(s)
- Dipak K Ghosh
- Department of Medicine, Duke University, VA Medical Centers, Durham, NC, USA.
| | | | | | | | | |
Collapse
|
18
|
Li W, Fan W, Chen L, Elmore BO, Piazza M, Guillemette JG, Feng C. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase. J Biol Inorg Chem 2012; 17:675-85. [PMID: 22407542 DOI: 10.1007/s00775-012-0887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 01/30/2023]
Abstract
In the crystal structure of a calmodulin (CaM)-bound FMN domain of human inducible nitric oxide synthase (NOS), the CaM-binding region together with CaM forms a hinge, and pivots on an R536(NOS)/E47(CaM) pair (Xia et al. J Biol Chem 284:30708-30717, 2009). Notably, isoform-specific human inducible NOS S562 and C563 residues form hydrogen bonds with the R536 residue through their backbone oxygens. In this study, we investigated the roles of the S562 and C563 residues in the NOS FMN-heme interdomain electron transfer (IET), the rates of which can be used to probe the interdomain FMN/heme alignment. Human inducible NOS S562K and C563R mutants of an oxygenase/FMN (oxyFMN) construct were made by introducing charged residues at these sites as found in human neuronal NOS and endothelial NOS isoforms, respectively. The IET rate constant of the S562K mutant is notably decreased by one third, and its flavin fluorescence intensity per micromole per liter is diminished by approximately 24 %. These results suggest that a positive charge at position 562 destabilizes the hydrogen-bond-mediated NOS/CaM alignment, resulting in slower FMN-heme IET in the mutant. On the other hand, the IET rate constant of the C563R mutant is similar to that of the wild-type, indicating that the mutational effect is site-specific. Moreover, the human inducible NOS oxyFMN R536E mutant was constructed to disrupt the bridging CaM/NOS interaction, and its FMN-heme IET rate was decreased by 96 %. These results demonstrated a new role of the isoform-specific serine residue of the key CaM/FMN(NOS) bridging site in regulating the FMN-heme IET (possibly by tuning the alignment of the FMN and heme domains).
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
20
|
Comparing the temperature dependence of FMN to heme electron transfer in full length and truncated inducible nitric oxide synthase proteins. FEBS Lett 2011; 586:159-62. [PMID: 22198200 DOI: 10.1016/j.febslet.2011.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 11/20/2022]
Abstract
The FMN-heme interdomain (intraprotein) electron transfer (IET) kinetics in full length and oxygenase/FMN (oxyFMN) construct of human iNOS were determined by laser flash photolysis over the temperature range from 283 to 304K. An appreciable increase in the rate constant value was observed with an increase in the temperature. Our previous viscosity study indicated that the IET process is conformationally gated, and Eyring equation was thus used to analyze the temperature dependence data. The obtained magnitude of activation entropy for the IET in the oxyFMN construct is only one-fifth of that for the holoenzyme. This indicates that the FMN domain in the holoenzyme needs to sample more conformations before the IET takes place, and that the FMN domain in the oxyFMN construct is better poised for efficient IET.
Collapse
|
21
|
Astashkin AV, Fan W, Elmore BO, Guillemette JG, Feng C. Pulsed ENDOR determination of relative orientation of g-frame and molecular frame of imidazole-coordinated heme center of iNOS. J Phys Chem A 2011; 115:10345-52. [PMID: 21834532 PMCID: PMC3174316 DOI: 10.1021/jp204969d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian nitric oxide synthase (NOS) is a flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide. Information about the relative alignment of the heme and FMN domains of NOS is important for understanding the electron transfer between the heme and FMN centers, but no crystal structure data for NOS holoenzyme are available. In our previous work [Astashkin, A. V.; Elmore, B. O.; Fan, W.; Guillemette, J. G.; Feng, C. J. Am. Chem. Soc. 2010, 132, 12059-12067], the distance between the imidazole-coordinated low-spin Fe(III) heme and FMN semiquinone in a human inducible NOS (iNOS) oxygenase/FMN construct has been determined by pulsed electron paramagnetic resonance (EPR). The orientation of the Fe-FMN radius vector, R(Fe-FMN), with respect to the heme g-frame was also determined. In the present study, pulsed electron-nuclear double resonance (ENDOR) investigation of the deuterons at carbons C2 and C5 in the deuterated coordinated imidazole was used to determine the relative orientation of the heme g-frame and molecular frame, from which R(Fe-FMN) can be referenced to the heme molecular frame. Numerical simulations of the ENDOR spectra showed that the g-factor axis corresponding to the low-field EPR turning point is perpendicular to the heme plane, whereas the axis corresponding to the high-field turning point is in the heme plane and makes an angle of about 80° with the coordinated imidazole plane. The FMN-heme domain docking model obtained in the previous work was found to be in qualitative agreement with the combined experimental results of the two pulsed EPR works.
Collapse
Affiliation(s)
- Andrei V. Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Weihong Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bradley O. Elmore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - J. Guy Guillemette
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
22
|
Intraprotein electron transfer between the FMN and heme domains in endothelial nitric oxide synthase holoenzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1997-2002. [PMID: 21864726 DOI: 10.1016/j.bbapap.2011.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 11/22/2022]
Abstract
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is an essential step in nitric oxide (NO) synthesis by NO synthase (NOS). The IET kinetics in neuronal and inducible NOS (nNOS and iNOS) holoenzymes have been previously determined in our laboratories by laser flash photolysis [reviewed in: C.J. Feng, G. Tollin, Dalton Trans., (2009) 6692-6700]. Here we report the kinetics of the IET in a bovine endothelial NOS (eNOS) holoenzyme in the presence and absence of added calmodulin (CaM). The IET rate constant in the presence of CaM is estimated to be ~4.3s(-1). No IET was observed in the absence of CaM, indicating that CaM is the primary factor in controlling the FMN-heme IET in the eNOS enzyme. The IET rate constant value for the eNOS holoenzyme is approximately 10 times smaller than those obtained for the iNOS and CaM-bound nNOS holoenzymes. Possible mechanisms underlying the difference in IET kinetics among the NOS isoforms are discussed. Because the rate-limiting step in the IET process in these enzymes is the conformational change from input state to output state, a slower conformational change (than in the other isoforms) is most likely to cause the slower IET in eNOS.
Collapse
|
23
|
Li W, Fan W, Elmore BO, Feng C. Effect of solution viscosity on intraprotein electron transfer between the FMN and heme domains in inducible nitric oxide synthase. FEBS Lett 2011; 585:2622-6. [PMID: 21803041 DOI: 10.1016/j.febslet.2011.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/15/2022]
Abstract
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN construct were determined by laser flash photolysis as a function of solution viscosity (1.0-3.0 cP). In the presence of ethylene glycol or sucrose, an appreciable decrease in the IET rate constant value was observed with an increase in the solution viscosity. The IET rate constant is inversely proportional to the viscosity for both viscosogens. This demonstrates that viscosity, and not other properties of the added viscosogens, causes the dependence of IET rates on the solvent concentration. The IET kinetics results indicate that the FMN-heme IET in iNOS is gated by a large conformational change of the FMN domain. The kinetics and NOS flavin fluorescence results together indicate that the docked FMN/heme state is populated transiently.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
24
|
Sempombe J, Galinato MGI, Elmore BO, Fan W, Guillemette JG, Lehnert N, Kirk ML, Feng C. Mutation in the flavin mononucleotide domain modulates magnetic circular dichroism spectra of the iNOS ferric cyano complex in a substrate-specific manner. Inorg Chem 2011; 50:6859-61. [PMID: 21718007 DOI: 10.1021/ic200952c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have obtained low-temperature magnetic circular dichroism (MCD) spectra for ferric cyano complexes of the wild type and E546N mutant of a human inducible nitric oxide synthase (iNOS) oxygenase/flavin mononucleotide (oxyFMN) construct. The mutation at the FMN domain has previously been shown to modulate the MCD spectra of the l-arginine-bound ferric iNOS heme (Sempombe, J.; et al. J. Am. Chem. Soc. 2009, 131, 6940-6941). The addition of l-arginine to the wild-type protein causes notable changes in the CN(-)-adduct MCD spectrum, while the E546N mutant spectrum is not perturbed. Moreover, the MCD spectral perturbation observed with l-arginine is absent in the CN(-) complexes incubated with N-hydroxy-L-arginine, which is the substrate for the second step of NOS catalysis. These results indicate that interdomain FMN-heme interactions exert a long-range effect on key heme axial ligand-substrate interactions that determine substrate oxidation pathways of NOS.
Collapse
Affiliation(s)
- Joseph Sempombe
- Department of Chemistry and Chemical Biology, The University of New Mexico, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Astashkin AV, Elmore BO, Fan W, Guillemette JG, Feng C. Pulsed EPR determination of the distance between heme iron and FMN centers in a human inducible nitric oxide synthase. J Am Chem Soc 2010; 132:12059-67. [PMID: 20695464 DOI: 10.1021/ja104461p] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian nitric oxide synthase (NOS) is a homodimeric flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide (NO). Regulation of NO biosynthesis by NOS is primarily through control of interdomain electron transfer (IET) processes in NOS catalysis. The IET from the flavin mononucleotide (FMN) to heme domains is essential in the delivery of electrons required for O(2) activation in the heme domain and the subsequent NO synthesis by NOS. The NOS output state for NO production is an IET-competent complex of the FMN-binding domain and heme domain, and thereby it facilitates the IET from the FMN to the catalytic heme site. The structure of the functional output state has not yet been determined. In the absence of crystal structure data for NOS holoenzyme, it is important to experimentally determine the Fe...FMN distance to provide a key calibration for computational docking studies and for the IET kinetics studies. Here we used the relaxation-induced dipolar modulation enhancement (RIDME) technique to measure the electron spin echo envelope modulation caused by the dipole interactions between paramagnetic FMN and heme iron centers in the [Fe(III)][FMNH(*)] (FMNH(*): FMN semiquinone) form of a human inducible NOS (iNOS) bidomain oxygenase/FMN construct. The FMNH(*)...Fe distance has been directly determined from the RIDME spectrum. This distance (18.8 +/- 0.1 A) is in excellent agreement with the IET rate constant measured by laser flash photolysis [Feng, C. J.; Dupont, A.; Nahm, N.; Spratt, D.; Hazzard, J. T.; Weinberg, J.; Guillemette, J.; Tollin, G.; Ghosh, D. K. J. Biol. Inorg. Chem. 2009, 14, 133-142].
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
26
|
Feng C, Fan W, Dupont A, Guy Guillemette J, Ghosh DK, Tollin G. Electron transfer in a human inducible nitric oxide synthase oxygenase/FMN construct co-expressed with the N-terminal globular domain of calmodulin. FEBS Lett 2010; 584:4335-8. [PMID: 20868689 DOI: 10.1016/j.febslet.2010.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 11/26/2022]
Abstract
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN (oxyFMN) construct co-expressed with NCaM, a truncated calmodulin (CaM) construct that includes only its N-terminal globular domain consisting of residues 1-75, were determined by laser flash photolysis. The IET rate constant is significantly decreased by nearly fourfold (compared to the iNOS oxyFMN co-expressed with full length CaM). This supports an important role of full length CaM in proper interdomain FMN/heme alignment in iNOS. The IET process was not observed with added excess EDTA, suggesting that Ca(2+) depletion results in the FMN domain moving away from the heme domain. The results indicate that a Ca(2+)-dependent reorganization of the truncated CaM construct could cause a major modification of the NCaM/iNOS association resulting in a loss of the IET.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Tejero J, Haque MM, Durra D, Stuehr DJ. A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism. J Biol Chem 2010; 285:25941-9. [PMID: 20529840 DOI: 10.1074/jbc.m110.126797] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) activates the nitric-oxide synthases (NOS) by a mechanism that is not completely understood. A recent crystal structure showed that bound CaM engages in a bridging interaction with the NOS FMN subdomain. We investigated its importance in neuronal NOS (nNOS) by mutating the two residues that primarily create the bridging interaction (Arg(752) in the FMN subdomain and Glu(47) in CaM). Mutations designed to completely destroy the bridging interaction prevented bound CaM from increasing electron flux through the FMN subdomain and diminished the FMN-to-heme electron transfer by 90%, whereas mutations that partly preserve the interaction had intermediate effects. The bridging interaction appeared to control FMN subdomain interactions with both its electron donor (NADPH-FAD subdomain) and electron acceptor (heme domain) partner subdomains in nNOS. We conclude that the Arg(752)-Glu(47) bridging interaction is the main feature that enables CaM to activate nNOS. The mechanism is bi-modal and links a single structural aspect of CaM binding to specific changes in nNOS protein conformational and electron transfer properties that are essential for catalysis.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
28
|
Stuehr DJ, Tejero J, Haque MM. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 2009; 276:3959-74. [PMID: 19583767 DOI: 10.1111/j.1742-4658.2009.07120.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide synthases belong to a family of dual-flavin enzymes that transfer electrons from NAD(P)H to a variety of heme protein acceptors. During catalysis, their FMN subdomain plays a central role by acting as both an electron acceptor (receiving electrons from FAD) and an electron donor, and is thought to undergo large conformational movements and engage in two distinct protein-protein interactions in the process. This minireview summarizes what we know about the many factors regulating nitric oxide synthase flavoprotein domain function, primarily from the viewpoint of how they impact electron input/output and conformational behaviors of the FMN subdomain.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
29
|
Sempombe J, Elmore BO, Sun X, Dupont A, Ghosh DK, Guillemette JG, Kirk ML, Feng C. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase. J Am Chem Soc 2009; 131:6940-1. [PMID: 19405537 DOI: 10.1021/ja902141v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.
Collapse
Affiliation(s)
- Joseph Sempombe
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Feng C, Tollin G. Regulation of interdomain electron transfer in the NOS output state for NO production. Dalton Trans 2009:6692-700. [PMID: 19690675 DOI: 10.1039/b902884f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is still much that is unknown about how nitric oxide (NO) biosynthesis by NO synthase (NOS) isoform is tightly regulated at the molecular level. This is remarkable because deviated NO production in vivo has been implicated in an increasing number of diseases that currently lack effective treatments, including stroke and cancer. Given the significant public health burden of these diseases, the NOS enzyme family is a key target for development of new pharmaceuticals. Three NOS isoforms, inducible, endothelial and neuronal NOS (iNOS, eNOS and nNOS, respectively), achieve their key biological functions via stringent regulations of interdomain electron transfer (IET) processes. Unlike iNOS, eNOS and nNOS isoforms are controlled by calmodulin (CaM) binding through facilitating catalytically significant IET processes. The CaM-modulated NOS output state is an IET-competent complex between the flavin mononucleotide (FMN) domain and the catalytic heme domain. The output state facilitates the catalytically essential FMN-heme IET, and thereby enables NO production by NOS. Due to lack of reliable techniques for specifically determining the inter-domain FMN-heme interactions and their direct effects on the catalytic heme center, the molecular mechanism that underlies the output state formation remains elusive. The recent developments in our understanding of mechanisms of the NOS output state formation that are driven by a combination of molecular biology, laser flash photolysis, and spectroscopic techniques are the subject of this perspective.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
31
|
Ilagan RP, Tejero J, Aulak KS, Ray SS, Hemann C, Wang ZQ, Gangoda M, Zweier JL, Stuehr DJ. Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase. Biochemistry 2009; 48:3864-76. [PMID: 19290671 DOI: 10.1021/bi8021087] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthases (NOS) are modular, calmodulin- (CaM-) dependent, flavoheme enzymes that catalyze oxidation of l-arginine to generate nitric oxide (NO) and citrulline. During catalysis, the FMN subdomain cycles between interaction with an NADPH-FAD subdomain to receive electrons and interaction with an oxygenase domain to deliver electrons to the NOS heme. This process can be described by a three-state, two-equilibrium model for the conformation of the FMN subdomain, in which it exists in two distinct bound states (FMN-shielded) and one common unbound state (FMN-deshielded). We studied how each partner subdomain, the FMN redox state, and CaM binding may regulate the conformational equilibria of the FMN module in rat neuronal NOS (nNOS). We utilized four nNOS protein constructs of different subdomain composition, including the isolated FMN subdomain, and determined changes in the conformational state by measuring the degree of FMN shielding by fluorescence, electron paramagnetic resonance, or stopped-flow spectroscopic techniques. Our results suggest the following: (i) The NADPH-FAD subdomain has a far greater capacity to interact with the FMN subdomain than does the oxygenase domain. (ii) CaM binding has no direct effects on the FMN subdomain. (iii) CaM destabilizes interaction of the FMN subdomain with the NADPH-FAD subdomain but does not measurably increase its interaction with the oxygenase domain. Our results imply that a different set point and CaM regulation exists for either conformational equilibrium of the FMN subdomain. This helps to explain the unique electron transfer and catalytic behaviors of nNOS, relative to other dual-flavin enzymes.
Collapse
Affiliation(s)
- Robielyn P Ilagan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Heyes DJ, Quinn AM, Cullis PM, Lee M, Munro AW, Scrutton NS. Internal electron transfer in multi-site redox enzymes is accessed by laser excitation of thiouredopyrene-3,6,8-trisulfonate (TUPS). Chem Commun (Camb) 2009:1124-6. [PMID: 19225657 DOI: 10.1039/b820386e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that thiouredopyrene-3,6,8-trisulfonate (TUPS), a photoactivatable reagent, can rapidly inject electrons into complex redox enzymes, enabling studies of the kinetics of internal electron that are not accessible using conventional rapid mixing, stopped-flow methods.
Collapse
Affiliation(s)
- Derren J Heyes
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St., Manchester, UKM1 7DN
| | | | | | | | | | | |
Collapse
|
33
|
Intraprotein electron transfer in inducible nitric oxide synthase holoenzyme. J Biol Inorg Chem 2008; 14:133-42. [PMID: 18830722 DOI: 10.1007/s00775-008-0431-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 09/09/2008] [Indexed: 01/13/2023]
Abstract
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in NO synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN-heme IET in a truncated two-domain construct (oxyFMN) of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present (Feng et al. J. Am. Chem. Soc. 128, 3808-3811, 2006). Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme, and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 +/- 5 and 35 +/- 3 s(-1), respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in neuronal NOS.
Collapse
|
34
|
Spratt DE, Israel OK, Taiakina V, Guillemette JG. Regulation of mammalian nitric oxide synthases by electrostatic interactions in the linker region of calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2065-70. [PMID: 18845278 DOI: 10.1016/j.bbapap.2008.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/29/2008] [Accepted: 09/04/2008] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM), the ubiquitous Ca(2+)-sensing protein, consists of two globular domains separated by a flexible central linker that properly orients CaM's globular domains to bind and regulate various intracellular proteins, including the nitric oxide synthase (NOS) enzymes. In the present study we determined that the charge and length of the central linker of CaM has an effect on the binding and activation of the NOS isozymes by using a variety of charge CaM mutants (T79D, S81D, T79D/S81D, S101D and E84R/E87K) and CaM mutants with residues removed (Delta84, Delta83-84, and Delta81-84). Our kinetic and spectropolarimetry results demonstrate that the NOS enzymes are not adversely affected by the CaM mutants with the exceptions of S101D, E84R/E87K and the deletion of residue 84. Electrostatic interactions in the central linker between residues 82-87 in combination with hydrophobic interactions in the globular domains of CaM are important for its tight association to inducible NOS.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
35
|
Feng C, Roman LJ, Hazzard JT, Ghosh DK, Tollin G, Masters BSS. Deletion of the autoregulatory insert modulates intraprotein electron transfer in rat neuronal nitric oxide synthase. FEBS Lett 2008; 582:2768-72. [PMID: 18625229 DOI: 10.1016/j.febslet.2008.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
Comparative CO photolysis kinetics studies on wild-type and autoregulatory (AR) insert-deletion mutant of rat nNOS holoenzyme were conducted to directly investigate the role of the unique AR insert in the catalytically significant FMN-heme intraprotein electron transfer (IET). Although the amplitude of the IET kinetic traces was decreased two- to three-fold, the AR deletion did not change the rate constant for the calmodulin-controlled IET. This suggests that the rate-limiting conversion of the electron-accepting state to a new electron-donating (output) state does not involve interactions with the AR insert, but that AR may stabilize the output state once it is formed.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States.
| | | | | | | | | | | |
Collapse
|
36
|
Nishino Y, Yamamoto K, Kimura S, Kikuchi A, Shiro Y, Iyanagi T. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human endothelial NOS reductase domain. Arch Biochem Biophys 2007; 465:254-65. [PMID: 17610838 DOI: 10.1016/j.abb.2007.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/27/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
The object of this study was to clarify the mechanism of electron transfer in the human endothelial nitric oxide synthase (eNOS) reductase domain using recombinant eNOS reductase domains; the FAD/NADPH domain containing FAD- and NADPH-binding sites and the FAD/FMN domain containing FAD/NADPH-, FMN-, and a calmodulin-binding sites. In the presence of molecular oxygen or menadione, the reduced FAD/NADPH domain is oxidized via the neutral (blue) semiquinone (FADH(*)), which has a characteristic absorption peak at 520 nm. The FAD/NADPH and FAD/FMN domains have high activity for ferricyanide, but the FAD/FMN domain has low activity for cytochrome c. In the presence or absence of calcium/calmodulin (Ca(2+)/CaM), reduction of the oxidized flavins (FAD-FMN) and air-stable semiquinone (FAD-FMNH(*)) with NADPH occurred in at least two phases in the absorbance change at 457nm. In the presence of Ca(2+)/CaM, the reduction rate of both phases was significantly increased. In contrast, an absorbance change at 596nm gradually increased in two phases, but the rate of the fast phase was decreased by approximately 50% of that in the presence of Ca(2+)/CaM. The air-stable semiquinone form was rapidly reduced by NADPH, but a significant absorbance change at 520 nm was not observed. These findings indicate that the conversion of FADH(2)-FMNH(*) to FADH(*)-FMNH(2) is unfavorable. Reduction of the FAD moiety is activated by CaM, but the formation rate of the active intermediate, FADH(*)-FMNH(2) is extremely low. These events could cause a lowering of enzyme activity in the catalytic cycle.
Collapse
Affiliation(s)
- Yoshitaka Nishino
- Graduate School of Life Science, Himeji Institute of Technology, University of Hyogo, Kouto 3-2-1, Kamigori, Hyogo 678-1297, Japan
| | | | | | | | | | | |
Collapse
|