1
|
Vallooran JJ, Duss M, Ansorge P, Mezzenga R, Landau EM. Stereochemical Purity Can Induce a New Crystalline Mesophase in Phytantriol Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9132-9141. [PMID: 32654490 DOI: 10.1021/acs.langmuir.0c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of stereochemical purity of lipids on their self-assembly behavior is critical for establishing their true phase behavior from their commercial counterparts, which often contains stereoisomeric mixtures and other impurities. Here, stereochemically pure phytantriol (PT), (3,7,11,15-tetramethylhexadecane-1,2,3-triol) was synthesized from the natural trans-phytol and its thermotropic and lyotropic phase behavior in water investigated by small-angle X-ray scattering (SAXS), polarized optical microscopy (POM), and differential scanning calorimetry (DSC). These chemically pure lipids contain two chiral centers at the hydrophilic head group region and two chiral centers at the lipophilic tail region, allowing us to address the question of whether the molecular stereochemistry is related to the macroscopic phase behavior of phytantriol. In contrast to its commercial stereoisomeric mixtures, which form an isotropic micellar phase, neat (2S,3S,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (S,S-PT) shows a smectic lamellar phase at room temperature, whereas (2R,3R,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (R,R-PT) forms solid crystals. The lyotropic phase behavior of R,R-PT appears to be identical to that of the previously reported commercial stereoisomeric PT mixtures. In contrast, S,S-PT exhibits a different phase behavior. A lamellar crystalline phase (Lc) is formed instead of an isotropic micellar phase at a low water content, which also coexisted with other phases at low temperature. Subtle change in the shape of the diastereomers leads to variable steric interactions and subsequently affects the packing of the lipids at the molecular level, thereby influencing its self-assembling behavior. Finally, lipidic cubic phase crystallization of the membrane protein bacteriorhodopsin yielded a larger number of microcrystals with a higher average crystal length from S,S-PT than from commercial PT, suggesting faster nucleation.
Collapse
Affiliation(s)
- Jijo J Vallooran
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Duss
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Philipp Ansorge
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Cui C, Deng Y, Han L. Bicontinuous cubic phases in biological and artificial self-assembled systems. SCIENCE CHINA MATERIALS 2020; 63:686-702. [PMID: 32219007 PMCID: PMC7094945 DOI: 10.1007/s40843-019-1261-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Nature has created innumerable life forms with miraculous hierarchical structures and morphologies that are optimized for different life events through evolution over billions of years. Bicontinuous cubic structures, which are often described by triply periodic minimal surfaces (TPMSs) and their constant mean curvature (CMC)/parallel surface companions, are of special interest to various research fields because of their complex form with unique physical functionalities. This has prompted the scientific community to fully understand the formation, structure, and properties of these materials. In this review, we summarize and discuss the formation mechanism and relationships of the relevant biological structures and the artificial self-assembly systems. These structures can be formed through biological processes with amazing regulation across a great length scales; nevertheless, artificial construction normally produces the structure corresponding to the molecular size and shape. Notably, the block copolymeric system is considered to be an applicable and attractive model system for the study of biological systems due to their versatile design and rich phase behavior. Some of the phenomena found in these two systems are compared and discussed, and this information may provide new ideas for a comprehensive understanding of the relationship between molecular shape and resulting interface curvature and the self-assembly process in living organisms. We argue that the co-polymeric system may serve as a model to understand these biological systems and could encourage additional studies of artificial self-assembly and the creation of new functional materials.
Collapse
Affiliation(s)
- Congcong Cui
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
3
|
Radbeh Z, Asefi N, Hamishehkar H, Roufegarinejad L, Pezeshki A. Novel carriers ensuring enhanced anti-cancer activity of Cornus mas (cornelian cherry) bioactive compounds. Biomed Pharmacother 2020; 125:109906. [PMID: 32106382 DOI: 10.1016/j.biopha.2020.109906] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cornusmas' bioactive compounds are powerful antioxidants. In this study, we evaluated the antioxidant activity of the encapsulated bioactive compounds of Cornus mas extract (CME) and its release in semi digestive condition via enteric coated nanocarriers (NCs). The two forms of CME, encapsulated into enteric coated nanocarriers (CME-NCs) and free CME, were studied to determine the effect of encapsulation on the stability of antioxidants. Then, their effect on cell cycle, cell viability and apoptosis of cancer cells were studied. The characterization analysis reported the mean particle size and zeta potential value of NCs equal to 22.7 ± 6.58 nm and -16 ± 5 mV. The results showed that CME-NCs could improve IC50 value 1.33 and 1.47 times more than the free CME after 24 and 48 h of incubation. These findings confirmed that CME-NCs could stop the cells proliferation in G1 phase, and caused apoptosis in cancer cell line HT-29.
Collapse
Affiliation(s)
- Zarrin Radbeh
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Narmela Asefi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Akram Pezeshki
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Ivanović MT, Hermann MR, Wójcik M, Pérez J, Hub JS. Small-Angle X-ray Scattering Curves of Detergent Micelles: Effects of Asymmetry, Shape Fluctuations, Disorder, and Atomic Details. J Phys Chem Lett 2020; 11:945-951. [PMID: 31951134 DOI: 10.1021/acs.jpclett.9b03154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Small-angle X-ray scattering (SAXS) is a widely used experimental technique, providing structural and dynamic insight into soft-matter complexes and biomolecules under near-native conditions. However, interpreting the one-dimensional scattering profiles in terms of three-dimensional structures and ensembles remains challenging, partly because it is poorly understood how structural information is encoded along the measured scattering angle. We combined all-atom SAXS-restrained ensemble simulations, simplified continuum models, and SAXS experiments of a n-dodecyl-β-d-maltoside (DDM) micelle to decipher the effects of model asymmetry, shape fluctuations, atomic disorder, and atomic details on SAXS curves. Upon interpreting the small-angle regime, we find remarkable agreement between (i) a two-component triaxial ellipsoid model fitted against the data and (ii) a SAXS-refined all-atom ensemble. However, continuum models fail at wider angles, even if they account for shape fluctuations, disorder, and asymmetry of the micelle. We conclude that modeling atomic details is mandatory for explaining SAXS curves at wider angles.
Collapse
Affiliation(s)
- Miloš T Ivanović
- Saarland University , Theoretical Physics and Center for Biophysics , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Markus R Hermann
- Institute for Microbiology and Genetics , Georg-August-Universität Göttingen , Justus-von-Liebig Weg 11 , 37077 Göttingen , Germany
| | - Maciej Wójcik
- Saarland University , Theoretical Physics and Center for Biophysics , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Javier Pérez
- Synchrotron Soleil, Beamline SWING , Saint Aubin BP48 , F-91192 Gif Sur Yvette Cedex , France
| | - Jochen S Hub
- Saarland University , Theoretical Physics and Center for Biophysics , Campus E2 6 , 66123 Saarbrücken , Germany
| |
Collapse
|
5
|
Liu HK, Ren LJ, Wu H, Ma YL, Richter S, Godehardt M, Kübel C, Wang W. Unraveling the Self-Assembly of Heterocluster Janus Dumbbells into Hybrid Cubosomes with Internal Double-Diamond Structure. J Am Chem Soc 2018; 141:831-839. [DOI: 10.1021/jacs.8b08016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hong-Kai Liu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Li-Jun Ren
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Han Wu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Yong-Li Ma
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| | - Sven Richter
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
| | - Michael Godehardt
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
| | - Christian Kübel
- Karlsruhe Nano Micro Facility and Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People’s Republic of China
| |
Collapse
|
6
|
Mendozza M, Montis C, Caselli L, Wolf M, Baglioni P, Berti D. On the thermotropic and magnetotropic phase behavior of lipid liquid crystals containing magnetic nanoparticles. NANOSCALE 2018; 10:3480-3488. [PMID: 29404545 DOI: 10.1039/c7nr08478a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The inclusion of superparamagnetic iron oxide nanoparticles (SPIONs) in lipid mesophases is a promising strategy for drug-delivery applications, combining the innate biocompatibility of lipid architectures with SPIONs' response to external magnetic fields. Moreover, the organization of SPIONs within the lipid scaffold can lead to locally enhanced SPIONs concentration and improved magnetic response, which is key to overcome the current limitations of hyperthermic treatments. Here we present a Small-Angle X-ray Scattering (SAXS) structural investigation of the thermotropic and magnetotropic behavior of glyceryl monooleate (GMO)/water mesophases, loaded with hydrophobic SPIONs. We prove that even very low amounts of SPIONs deeply alter the phase behavior and thermotropic properties of the mesophases, promoting a cubic to hexagonal phase transition, which is similarly induced upon application of an Alternating Magnetic Field (AMF). Moreover, in the hexagonal phase SPIONs spontaneously self-assemble within the lipid scaffold into a linear supraparticle. This phase behavior is interpreted in the framework of the Helfrich's theory, which shows that SPIONs affect the mesophase both from a viscoelastic and from a structural standpoint. Finally, the dispersion of these cubic phases into stable magnetic colloidal particles, which retain their liquid crystalline internal structure, is addressed as a promising route towards magneto-responsive drug-delivery systems (DDS).
Collapse
Affiliation(s)
- Marco Mendozza
- Department of chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Sung B, Kim MH. Liquid-crystalline nanoarchitectures for tissue engineering. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:205-215. [PMID: 29441265 PMCID: PMC5789436 DOI: 10.3762/bjnano.9.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 05/03/2023]
Abstract
Hierarchical orders are found throughout all levels of biosystems, from simple biopolymers, subcellular organelles, single cells, and macroscopic tissues to bulky organs. Especially, biological tissues and cells have long been known to exhibit liquid crystal (LC) orders or their structural analogues. Inspired by those native architectures, there has recently been increased interest in research for engineering nanobiomaterials by incorporating LC templates and scaffolds. In this review, we introduce and correlate diverse LC nanoarchitectures with their biological functionalities, in the context of tissue engineering applications. In particular, the tissue-mimicking LC materials with different LC phases and the regenerative potential of hard and soft tissues are summarized. In addition, the multifaceted aspects of LC architectures for developing tissue-engineered products are envisaged. Lastly, a perspective on the opportunities and challenges for applying LC nanoarchitectures in tissue engineering fields is discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
8
|
Abstract
Freeze-fracture electron microscopy (FFEM) as a cryofixation, replica, and transmission electron microscopy technique is unique in membrane bilayer and lipid monolayer research because it enables us to excess and visualize pattern such as domains in the hydrophobic center of lipid bilayer as well as the lipid/gas interface of lipid monolayer. Since one of the preparation steps of this technique includes fracturing the frozen sample and since during this fracturing process the fracture plane follows the area of weakest forces, these areas are exposed allowing us to explore pattern built up by lipids and/or intrinsic proteins but also initiated by peptides, drugs, and toxins reaching into these normally hard to access areas. Furthermore, FFEM as a replica technique is applicable to objects of a large size range and combines detailed imaging of fine structures down to nano-resolution scale within images of larger biological or artificial objects up to several tens of micrometers in size.Biological membranes consist of a multitude of components which can self-organize into rafts or domains within the fluid bilayer characterized by lateral inhomogeneities in chemical composition and/or physical properties. These domains seem to play important roles in signal transduction and membrane traffic. Furthermore, lipid domains are important in health and disease and make an interesting target for pharmacological approaches in cure and prevention of diseases such as Alzheimer, Parkinson, cardiovascular and prion diseases, systemic lupus erythematosus, and HIV. As a cryofixation technique, FFEM is a very powerful tool to capture such domains in a probe-free mode and explore their dynamics on a nano-resolution scale.
Collapse
|
9
|
Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interface Sci 2017; 249:331-345. [PMID: 28477868 DOI: 10.1016/j.cis.2017.04.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids.
Collapse
|
10
|
Angelov B, Garamus VM, Drechsler M, Angelova A. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Deshpande S, Singh N. Influence of Cubosome Surface Architecture on Its Cellular Uptake Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3509-3516. [PMID: 28325047 DOI: 10.1021/acs.langmuir.6b04423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interaction of nanoparticles with biological systems is a key factor influencing their efficacy as a drug delivery vehicle. The inconsistency in defining the optimal design parameters across different nanoparticle types suggests that information gained from one model system need not apply to other systems. Therefore, selection of a versatile model system is critical for such studies. Cubosomes are one of the potential drug delivery vehicles due to their biocompatibility, stability, ability to carry hydrophobic, hydrophilic, and amphiphilic drugs, and ease of surface modification. Here we report the importance of surface architecture of cubosomes by comparing their cellular uptake mechanism with poly-ε-lysine (PεL)-coated cubosomes. Uncoated cubosomes entered cells by an energy-independent, cholesterol-dependent mechanism, whereas PεL-coated cubosomes relied on energy-dependent mechanisms to enter the endosomes. As endosomal entrapment was evaded by uncoated cubosomes, they can be preferably used for cytosolic delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sonal Deshpande
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi , Hauz Khas, New Delhi-110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology-Delhi , Hauz Khas, New Delhi-110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , Ansari Nagar, New Delhi-110029, India
| |
Collapse
|
12
|
Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery. Colloids Surf B Biointerfaces 2017; 153:310-319. [PMID: 28285062 DOI: 10.1016/j.colsurfb.2017.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/11/2017] [Accepted: 02/24/2017] [Indexed: 12/17/2022]
Abstract
Sponge-type nanocarriers (spongosomes) are produced upon dispersion of a liquid crystalline sponge phase formed by self-assembly of an amphiphilic lipid in excess aqueous phase. The inner organization of the spongosomes is built-up by randomly ordered bicontinuous lipid membranes and their surfaces are stabilized by alginate chains providing stealth properties and colloidal stability. The present study elaborates spongosomes for improved encapsulation of Brucea javanica oil (BJO), a traditional Chinese medicine that may strongly inhibit proliferation and metastasis of various cancers. The inner structural organization and the morphology characteristics of BJO-loaded nanocarriers at varying quantities of BJO were determined by cryogenic transmission electron microscopy (Cryo-TEM), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Additionally, the drug loading and drug release profiles for BJO-loaded spongosome systems also were determined. We found that the sponge-type liquid crystalline lipid membrane organization provides encapsulation efficiency rate of BJO as high as 90%. In vitro cytotoxicity and apoptosis study of BJO spongosome nanoparticles with A549 cells demonstrated enhanced anti-tumor efficiency. These results suggest potential clinical applications of the obtained safe spongosome formulations.
Collapse
|
13
|
Zerkoune L, Lesieur S, Putaux JL, Choisnard L, Gèze A, Wouessidjewe D, Angelov B, Vebert-Nardin C, Doutch J, Angelova A. Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. SOFT MATTER 2016; 12:7539-7550. [PMID: 27714323 DOI: 10.1039/c6sm00661b] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soft mesoporous hierarchically structured particles were created by the self-assembly of an amphiphilic deep cavitand cyclodextrin βCD-nC10 (degree of substitution n = 7.3), with a nanocavity grafted by multiple alkyl (C10) chains on the secondary face of the βCD macrocycle through enzymatic biotransesterification, and the nonlamellar lipid monoolein (MO). The effect of the non-ionic dispersing agent polysorbate 80 (P80) on the liquid crystalline organization of the nanocarriers and their stability was studied in the context of vesicle-to-cubosome transition. The coexistence of small vesicular and nanosponge membrane objects with bigger nanoparticles with inner multicompartment cubic lattice structures was established as a typical feature of the employed dispersion process. The cryogenic transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) structural analyses revealed the dependence of the internal organization of the self-assembled nanoparticles on the presence of embedded βCD-nC10 deep cavitands in the lipid bilayers. The obtained results indicated that the incorporated amphiphilic βCD-nC10 building blocks stabilize the cubic lattice packing in the lipid membrane particles, which displayed structural features beyond the traditional CD nanosponges. UV-Vis spectroscopy was employed to characterize the nanoencapsulation of a model hydrophobic dimethylphenylazo-naphthol guest compound (Oil red) in the created nanocarriers. In perspective, these dual porosity carriers should be suitable for co-encapsulation and sustained delivery of peptide, protein or siRNA biopharmaceuticals together with small molecular weight drug compounds or imaging agents.
Collapse
Affiliation(s)
- Leïla Zerkoune
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296 Châtenay-Malabry cedex, France.
| | - Sylviane Lesieur
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296 Châtenay-Malabry cedex, France.
| | - Jean-Luc Putaux
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000 Grenoble, France and CNRS, CERMAV, F-38000 Grenoble, France
| | - Luc Choisnard
- Université Grenoble Alpes, Département de Pharmacologie Moléculaire (DPM), F-38000 Grenoble, France and CNRS UMR 5063, DPM, F-38000 Grenoble, France
| | - Annabelle Gèze
- Université Grenoble Alpes, Département de Pharmacologie Moléculaire (DPM), F-38000 Grenoble, France and CNRS UMR 5063, DPM, F-38000 Grenoble, France
| | - Denis Wouessidjewe
- Université Grenoble Alpes, Département de Pharmacologie Moléculaire (DPM), F-38000 Grenoble, France and CNRS UMR 5063, DPM, F-38000 Grenoble, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | | | - James Doutch
- Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, UK
| | - Angelina Angelova
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
14
|
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016; 21:789-801. [PMID: 26780385 DOI: 10.1016/j.drudis.2016.01.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Cubosomes are nanostructured liquid crystalline particles, made of certain amphiphilic lipids in definite proportions, known as biocompatible carriers in drug delivery. Cubosomes comprise curved bicontinuous lipid bilayers that are organized in three dimensions as honeycombed structures and divided into two internal aqueous channels that can be exploited by various bioactive ingredients, such as chemical drugs, peptides and proteins. Owing to unique properties such as thermodynamic stability, bioadhesion, the ability of encapsulating hydrophilic, hydrophobic and amphiphilic substances, and the potential for controlled release through functionalization, cubosomes are regarded as promising vehicles for different routes of administration. Based on the most recent reports, this review introduces cubosomes focusing on their structure, preparation methods, mechanism of release and potential routes of administration.
Collapse
Affiliation(s)
- Zahra Karami
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| |
Collapse
|
15
|
Sun MH, Huang SZ, Chen LH, Li Y, Yang XY, Yuan ZY, Su BL. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 2016; 45:3479-563. [DOI: 10.1039/c6cs00135a] [Citation(s) in RCA: 964] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A comprehensive review of the recent progress in the applications of hierarchically structured porous materials is given.
Collapse
Affiliation(s)
- Ming-Hui Sun
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Shao-Zhuan Huang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Li-Hua Chen
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zhong-Yong Yuan
- Collaborat Innovat. Ctr. Chem. Sci. & Engn. Tianjin
- Key Lab. Adv. Energy Mat. Chem
- Minist. Educ
- Coll. Chem
- Nankai Univ
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Laboratory of Inorganic Materials Chemistry (CMI)
| |
Collapse
|
16
|
Che X, Wang Z, Liu Y, Sun Y, Liu H. Sustained release of nerve growth factor from highly homogenous cubosomes stabilized by β-casein with enhanced bioactivity and bioavailability. RSC Adv 2016. [DOI: 10.1039/c6ra19887b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bioactivity of NGF was improved when loaded in β-casein stabilized cubosomes and the cubosomes showed better transport through RWM as compared with free NGF.
Collapse
Affiliation(s)
- Xin Che
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Zhenjie Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yining Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yanhui Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Hongzhuo Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|
17
|
Góźdź WT. Cubosome Topologies at Various Particle Sizes and Crystallographic Symmetries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13321-13326. [PMID: 26587642 DOI: 10.1021/acs.langmuir.5b03799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nanoparticles built of bicontinuos lyotropic phases of cubic symmetry are studied within the framework of the Landau-Brazovskii functional that correctly predicts the structure of soft monocrystals and thin films of bicontinuos lyotropic phases. A detailed description of the geometry and topology of cubosomes is presented. This level of description of the internal structure of cubosomes is not easily accessible by experimental techniques. I show that the internal structure of the cubosomes may be extremely rich.
Collapse
Affiliation(s)
- W T Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Abstract
Nonlamellar liquid crystalline phases are attractive platforms for drug solubilization and targeted delivery. The attractiveness of this formulation principle is linked to the nanostructural versatility, compatiblity, digestiblity and bioadhesive properties of their lipid constituents, and the capability of solubilizing and sustaining the release of amphiphilic, hydrophobic and hydrophilic drugs. Nonlamellar liquid crystalline phases offer two distinct promising strategies in the development of drug delivery systems. These comprise formation of ISAsomes (internally self-assembled ‘somes’ or particles) such as cubosomes and hexosomes, and in situ formation of parenteral dosage forms with tunable nanostructures at the site of administration. This review outlines the unique features of cubosomes and hexosomes and their potential utilization as promising platforms for drug delivery.
Collapse
|
19
|
Gehlot PS, Rao KS, Bharmoria P, Damarla K, Gupta H, Drechsler M, Kumar A. Spontaneous Formation of Multiarchitecture Vesicles of [C8mim]Br + [Na]DBS in Aqueous Medium: Synergic Interplay of Electrostatic, Hydrophobic, and π–π Stacking Interactions. J Phys Chem B 2015; 119:15300-9. [DOI: 10.1021/acs.jpcb.5b09850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Praveen Singh Gehlot
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - K. Srinivasa Rao
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Pankaj Bharmoria
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Krishnaiah Damarla
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Hariom Gupta
- CSIR-Central Salt
and Marine Chemicals Research Institute, Council of Scientific and
Industrial Research (CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| | - Markus Drechsler
- Universität Bayreuth, BIMF − Soft Matter Electron Microscopy, Bayreuth, D-95447, Germany
| | - Arvind Kumar
- Academy of Scientific
and Innovative Research (AcSIR)-Central Salt and Marine Chemicals
Research Institute, Council of Scientific and Industrial Research
(CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
- CSIR-Central Salt
and Marine Chemicals Research Institute, Council of Scientific and
Industrial Research (CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat India
| |
Collapse
|
20
|
Demurtas D, Guichard P, Martiel I, Mezzenga R, Hébert C, Sagalowicz L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat Commun 2015; 6:8915. [PMID: 26573367 DOI: 10.1038/ncomms9915] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023] Open
Abstract
Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.
Collapse
Affiliation(s)
- Davide Demurtas
- Interdisciplinary Centre for Electron Microscopy, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland
| | - Paul Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland
| | - Isabelle Martiel
- Department of Health Science and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Cécile Hébert
- Interdisciplinary Centre for Electron Microscopy, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland
| | | |
Collapse
|
21
|
Abstract
RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems.
Collapse
Affiliation(s)
- Hojun Kim
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Kumar M, Kumaraswamy G. Phase behaviour of the ternary system: monoolein-water-branched polyethylenimine. SOFT MATTER 2015; 11:5705-5711. [PMID: 26081120 DOI: 10.1039/c5sm01082a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Addition of a branched polymer, polyethyleneimine, significantly alters the organization of a glycerol monooleate (GMO) lipid-water system. We present detailed data over a wide range of compositions (water content from 10 to 40%, relative to GMO and PEI fractions from 0 to 4%) and temperatures (25-80 °C). The PEI molecular weight effects are examined using polymers over a range from 0.8 to 25 kDa. Addition of PEI induces the formation of higher curvature reverse phases. In particular, PEI induces the formation of the Fd3m phase: a discontinuous phase comprising reverse micelles of two different sizes stacked in a cubic AB2 crystal. The formation of the Fd3m phase at room temperature, upon addition of polar, water soluble PEI is unusual, since such phases typically are formed only upon addition of apolar oils. The largest stability window for the Fd3m phase is observed for PEI with a molecular weight = 2 kDa. We discuss how PEI influences the formation and stability of high curvature phases.
Collapse
Affiliation(s)
- Manoj Kumar
- Complex Fluids and Polymer Engineering Group, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | | |
Collapse
|
23
|
Kumar M, Patil NG, Choudhury CK, Roy S, Ambade AV, Kumaraswamy G. Compact polar moieties induce lipid-water systems to form discontinuous reverse micellar phase. SOFT MATTER 2015; 11:5417-5424. [PMID: 26023767 DOI: 10.1039/c5sm00854a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The role of molecular interactions in governing lipid mesophase organization is of fundamental interest and has technological implications. Herein, we describe an unusual pathway for monoolein/water reorganization from a bicontinuous mesophase to a discontinuous reverse micellar assembly, directed by the inclusion of polar macromolecules. This pathway is very different from those reported earlier, wherein the Fd3m phase formed only upon addition of apolar oils. Experiments and molecular dynamics simulations indicate that hydrophilic ternary additives capable of inducing discontinuous phase formation must (i) interact strongly with the monoolein head group and (ii) have a compact molecular architecture. We present a detailed investigation that contrasts a monoolein-water system containing polyamidoamine (PAMAM) dendrons with one containing their linear analogs. The Fd3m phase forms only on the addition of PAMAM dendrons but not their linear analogs. Thus, the dendritic architecture of PAMAM plays an important role in determining lipid mesophase behavior. Both dendrons and their linear analogs interact strongly with monoolein through their amine groups. However, while linear polymers adsorb and spread on monoolein, dendrons form aggregates that interact with the lipid. Dendrons induce formation of an intermediate reverse hexagonal phase, which subsequently restructures into the Fd3m phase. Finally, we demonstrate that other additives with compact structures that are known to interact with monoolein, such as branched polyethylenimine and polyhedral silsesquioxane cages, also induce the formation of the Fd3m phase.
Collapse
Affiliation(s)
- Manoj Kumar
- Complex Fluids and Polymer Engineering, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | | | | | | | | | | |
Collapse
|
24
|
Angelov B, Angelova A, Drechsler M, Garamus VM, Mutafchieva R, Lesieur S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. SOFT MATTER 2015; 11:3686-92. [PMID: 25820228 DOI: 10.1039/c5sm00169b] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Extra-large nanochannel formation in the internal structure of cationic cubosome nanoparticles results from the interplay between charge repulsion and steric stabilization of the lipid membrane interfaces and is evidenced by cryogenic transmission electron microscopy (Cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The swollen cubic symmetry of the lipid nanoparticles emerges through a shaping transition of onion bilayer vesicle intermediates containing a fusogenic nonlamellar lipid. Cationic amphiphile cubosome particles, thanks to the advantages of their liquid crystalline soft porous nanoarchitecture and capability for multi-drug nanoencapsulation, appear to be of interest for the design of mitochondrial targeting devices in anti-cancer therapies and as siRNA nanocarriers for gene silencing.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Nam. 2, 16206 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
An TH, La Y, Cho A, Jeong MG, Shin TJ, Park C, Kim KT. Solution self-assembly of block copolymers containing a branched hydrophilic block into inverse bicontinuous cubic mesophases. ACS NANO 2015; 9:3084-3096. [PMID: 25731603 DOI: 10.1021/nn507338s] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solution self-assembly of amphiphilic block copolymers into inverse bicontinuous cubic mesophases is an emerging strategy for directly creating highly ordered triply periodic porous polymer nanostructures with large pore networks and desired surface functionalities. Although there have been recent reports on the formation of highly ordered triply periodic minimal surfaces of self-assembled block copolymer bilayers, the structural requirements for block copolymers in order to facilitate the preferential formation of such inverse mesophases in solution have not been fully investigated. In this study, we synthesized a series of model block copolymers, namely, branched poly(ethylene glycol)-block-polystyrene (bPEG-PS), to investigate the effect of the architecture of the block copolymers on their solution self-assembly into inverse mesophases consisting of the block copolymer bilayer. On the basis of the results, we suggest that the branched architecture of the hydrophilic block is a crucial structural requirement for the preferential self-assembly of the resulting block copolymers into inverse bicontinuous cubic phases. The internal crystalline lattice of the inverse bicontinuous cubic structure can be controlled via coassembly of branched and linear block copolymers. The results presented here provide design criteria for amphiphilic block copolymers to allow the formation of inverse bicontinuous cubic mesophases in solution. This may contribute to the direct synthesis of well-defined porous polymers with desired crystalline order in the porous networks and surface functionalities.
Collapse
Affiliation(s)
- Tae Hyun An
- †Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST Road, Ulsan 689-798, Korea
| | - Yunju La
- †Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST Road, Ulsan 689-798, Korea
| | - Arah Cho
- †Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST Road, Ulsan 689-798, Korea
| | - Moon Gon Jeong
- †Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST Road, Ulsan 689-798, Korea
| | - Tae Joo Shin
- ‡Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea
| | - Chiyoung Park
- †Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST Road, Ulsan 689-798, Korea
| | - Kyoung Taek Kim
- †Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST Road, Ulsan 689-798, Korea
- §KIST-UNIST-Ulsan Center for Convergence Materials, Ulsan 689-798, Korea
| |
Collapse
|
26
|
Hartnett TE, Ladewig K, O'Connor AJ, Hartley PG, McLean KM. Physicochemical and cytotoxicity analysis of glycerol monoolein-based nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra13890b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article demonstrates the importance of stabiliser selection and temperature control when producing cubosomes using the ‘salt-induced’ production technique.
Collapse
Affiliation(s)
- Terence E. Hartnett
- Department of Chemical and Biomolecular Engineering and Particulate Fluids Processing Centre (PFPC)
- The University of Melbourne
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
| | - Katharina Ladewig
- Department of Chemical and Biomolecular Engineering and Particulate Fluids Processing Centre (PFPC)
- The University of Melbourne
- Parkville
- Australia
| | - Andrea J. O'Connor
- Department of Chemical and Biomolecular Engineering and Particulate Fluids Processing Centre (PFPC)
- The University of Melbourne
- Parkville
- Australia
| | - Patrick G. Hartley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Materials Science and Engineering
- Clayton
- Australia
| | - Keith M. McLean
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Materials Science and Engineering
- Clayton
- Australia
| |
Collapse
|
27
|
Angelova A, Angelov B, Mutafchieva R, Lesieur S. Biocompatible Mesoporous and Soft Nanoarchitectures. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0143-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Cohen-Avrahami M, Shames AI, Ottaviani MF, Aserin A, Garti N. On the correlation between the structure of lyotropic carriers and the delivery profiles of two common NSAIDs. Colloids Surf B Biointerfaces 2014; 122:231-240. [DOI: 10.1016/j.colsurfb.2014.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/20/2023]
|
29
|
Hartnett TE, Ladewig K, O’Connor AJ, Hartley PG, McLean KM. Size and Phase Control of Cubic Lyotropic Liquid Crystal Nanoparticles. J Phys Chem B 2014; 118:7430-9. [DOI: 10.1021/jp502898a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Terence E. Hartnett
- Department
of Chemical and Biomolecular Engineering and Particulate Fluids Processing
Centre (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, VIC 3168, Australia
| | - Katharina Ladewig
- Department
of Chemical and Biomolecular Engineering and Particulate Fluids Processing
Centre (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J. O’Connor
- Department
of Chemical and Biomolecular Engineering and Particulate Fluids Processing
Centre (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia
| | - Patrick G. Hartley
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, VIC 3168, Australia
| | - Keith M. McLean
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, VIC 3168, Australia
| |
Collapse
|
30
|
Angelov B, Angelova A, Filippov SK, Drechsler M, Štěpánek P, Lesieur S. Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS NANO 2014; 8:5216-26. [PMID: 24742149 DOI: 10.1021/nn5012946] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Membrane shapes, produced by dynamically assembled lipid/protein architectures, are crucial for both physiological functions and the design of therapeutic nanotechnologies. Here we investigate the dynamics of lipid membrane-neurotrophic BDNF protein complexes formation and ordering in nanoparticles, with the purpose of innovation in nanostructure-based neuroprotection and biomimetic nanoarchitectonics. The kinetic pathway of membrane states associated with rapidly occurring nonequilibrium self-assembled lipid/protein nanoarchitectures was determined by millisecond time-resolved small-angle X-ray scattering (SAXS) at high resolution. The neurotrophin binding and millisecond trafficking along the flexible membranes induced an unusual overlay of channel-network architectures including two coexisting cubic lattices epitaxially connected to lamellar membrane stacks. These time-resolved membrane processes, involving intercalation of discrete stiff proteins in continuous soft membranes, evidence stepwise curvature control mechanisms. The obtained three-phase liquid-crystalline nanoparticles of neurotrophic composition put forward important advancements in multicompartment soft-matter nanostructure design.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, CZ-16206 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
31
|
Angelova A, Angelov B, Drechsler M, Garamus VM, Lesieur S. Protein entrapment in PEGylated lipid nanoparticles. Int J Pharm 2013; 454:625-32. [DOI: 10.1016/j.ijpharm.2013.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 12/20/2022]
|
32
|
Venugopal E, Aswal VK, Kumaraswamy G. Nanoparticle size controls aggregation in lamellar nonionic surfactant mesophase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9643-9650. [PMID: 23845138 DOI: 10.1021/la4021977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We show that the size of silica nanoparticles influences the nature of their aggregation in an aqueous solution of a relatively hydrophobic nonionic surfactant, C12E4. We present results for dispersions of silica nanoparticles with sizes varying from 8 to 26 nm, in a 75: 25 C12E4/water system, that forms a lamellar phase, Lα, at room temperature. Addition of silica particles does not affect the formation of the Lα phase. Nanoparticles smaller than about 11 nm aggregate irreversibly in the C12E4/water system. However, nanoparticles larger than about 15 nm aggregate in the Lα phase, but are dispersed at temperatures above the Lα order-disorder temperature. Thus, in contrast to the smaller particles, aggregation of silica nanoparticles larger than about 15 nm is reversible with temperature. We use small-angle neutron scattering (SANS) to demonstrate that these results can be explained by the size-dependent wrapping of nanoparticles by surfactant bilayers. Larger particles, above 15 nm in size, are sterically stabilized by the formation of an adsorbed surfactant bilayer. The cost of bilayer bending inhibits adsorption onto the highly curved surfaces of smaller particles, and these "bare" particles aggregate irreversibly.
Collapse
Affiliation(s)
- Edakkal Venugopal
- Complex Fluids and Polymer Engineering, Polymer Science & Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | | |
Collapse
|
33
|
Angelova A, Angelov B, Drechsler M, Lesieur S. Neurotrophin delivery using nanotechnology. Drug Discov Today 2013; 18:1263-71. [PMID: 23891881 DOI: 10.1016/j.drudis.2013.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Deficits or overexpression of neurotrophins cause neurodegenerative diseases and psychiatric disorders. These proteins are required for the maintenance of the function, plasticity and survival of neurons in the central (CNS) and peripheral nervous systems. Significant efforts have been devoted to developing therapeutic delivery systems that enable control of neurotrophin dosage in the brain. Here, we suggest that nanoparticulate carriers favoring targeted delivery in specific brain areas and minimizing biodistribution to the systemic circulation should be developed toward clinical benefits of neuroregeneration. We also provide examples of improved targeted neurotrophin delivery to localized areas in the CNS.
Collapse
Affiliation(s)
- Angelina Angelova
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.B. Clément, F-92296 Châtenay-Malabry cedex, France; University Paris Sud 11, Faculté de Pharmacie, LabEx LERMIT, Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
34
|
Jin X, Zhang ZH, Sun E, Tan XB, Li SL, Cheng XD, You M, Jia XB. Enhanced oral absorption of 20(S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies. Int J Nanomedicine 2013; 8:641-52. [PMID: 23426652 PMCID: PMC3576041 DOI: 10.2147/ijn.s38203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background 20(S)-protopanaxadiol (PPD), similar to several other anticancer agents, has low oral absorption and is extensively metabolized. These factors limit the use of PPD for treatment of human diseases. Methods In this study, we used cubic nanoparticles containing piperine to improve the oral bioavailability of PPD and to enhance its absorption and inhibit its metabolism. Cubic nanoparticles loaded with PPD and piperine were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel and verified using transmission electron microscopy and differential scanning calorimetry. We evaluated the in vitro release of PPD from these nanoparticles and its absorption across the Caco-2 cell monolayer model, and subsequently, we examined the bioavailability and metabolism of PPD and its nanoparticles in vivo. Results The in vitro release of PPD from these nanoparticles was less than 5% at 12 hours. PPD-cubosome and PPD-cubosome loaded with piperine (molar ratio PPD/piperine, 1:3) increased the apical to basolateral permeability values of PPD across the Caco-2 cell monolayer from 53% to 64%, respectively. In addition, the results of a pharmacokinetic study in rats showed that the relative bioavailabilities of PPD-cubosome [area under concentration–time curve (AUC)0–∞] and PPD-cubosome containing piperine (AUC0–∞) compared to that of raw PPD (AUC0–∞) were 166% and 248%, respectively. Conclusion The increased bioavailability of PPD-cubosome loaded with piperine is due to an increase in absorption and inhibition of metabolism of PPD by cubic nanoparticles containing piperine rather than because of improved release of PPD. The cubic nanoparticles containing piperine may be a promising oral carrier for anticancer drugs with poor oral absorption and that undergo extensive metabolism by cytochrome P450.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Géral C, Angelova A, Lesieur S. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 2013; 5:127-67. [PMID: 24300402 PMCID: PMC3834942 DOI: 10.3390/pharmaceutics5010127] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 01/01/2023] Open
Abstract
Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted.
Collapse
Affiliation(s)
- Claire Géral
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Angelina Angelova
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Sylviane Lesieur
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
36
|
Angelov B, Angelova A, Garamus VM, Drechsler M, Willumeit R, Mutafchieva R, Štěpánek P, Lesieur S. Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16647-55. [PMID: 23148665 DOI: 10.1021/la302721n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies of nonequilibrium lipid polymorphism at the nanoscale contribute to the in-depth understanding of the structural pathways for formation of aqueous channels and emerging of channels-network ordering in liquid-crystalline (LC) nanovehicles. We present experimental structural evidence for the smallest tetrahedral-type lipid membrane aggregate, which involves completely formed nanochannels and occurs as an early intermediate state during the bilayer vesicle-to-cubosome particle transition. Nanovehicles are generated from a self-assembled lipid mixture and studied by means of high-resolution cryogenic transmission electron microscopy (cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The investigated lipid membrane composition allows for the stabilization of long-lived intermediates throughout the unilamellar vesicle-to-cubosome nanoparticle (NP) transformation at ambient temperature. The observed small cubosomic particles, with well-defined water channels, appear to be precursors of larger cubic membrane structures, thus confirming the theoretical modeling of nanochannel-network growth in diamond-type cubic lipid particles. The reported structural findings, highlighting that bilayer vesicle membrane packing and fusion are required for nanochanneled cubosome particle formation, are anticipated to advance the engineering of small lipid NPs with controllable channels for biomolecular loading and release.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, CZ-16206 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Angelov B, Angelova A, Papahadjopoulos-Sternberg B, Hoffmann SV, Nicolas V, Lesieur S. Protein-Containing PEGylated Cubosomic Particles: Freeze-Fracture Electron Microscopy and Synchrotron Radiation Circular Dichroism Study. J Phys Chem B 2012; 116:7676-86. [DOI: 10.1021/jp303863q] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Borislav Angelov
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nam. 1888/2, Praha 6, Czech Republic
| | - Angelina Angelova
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie,
Univ Paris Sud 11, LabEx LERMIT, 92296
Châtenay-Malabry, France
| | | | - Søren V. Hoffmann
- Institute for Storage Ring Facilities
(ISA), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Valérie Nicolas
- Imaging platform, IFR141, Institut
Paris-Sud d’Innovation Thérapeutique (IPSIT), Univ Paris Sud 11, 92290 Châtenay-Malabry, France
| | - Sylviane Lesieur
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie,
Univ Paris Sud 11, LabEx LERMIT, 92296
Châtenay-Malabry, France
| |
Collapse
|
38
|
Angelov B, Angelova A, Filippov S, Karlsson G, Terrill N, Lesieur S, Štěpánek P. SAXS Study of Sterically Stabilized Lipid Nanocarriers Functionalized by DNA. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/351/1/012004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Angelova A, Angelov B, Garamus VM, Couvreur P, Lesieur S. Small-Angle X-ray Scattering Investigations of Biomolecular Confinement, Loading, and Release from Liquid-Crystalline Nanochannel Assemblies. J Phys Chem Lett 2012; 3:445-457. [PMID: 26285865 DOI: 10.1021/jz2014727] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Perspective explores the recent progress made by means of small-angle scattering methods in structural studies of phase transitions in amphiphilic liquid-crystalline systems with nanochannel architectures and outlines some future directions in the area of hierarchically organized and stimuli-responsive nanochanneled assemblies involving biomolecules. Time-resolved small-angle X-ray scattering investigations using synchrotron radiation enable monitoring of the structural dynamics, the modulation of the nanochannel hydration, as well as the key changes in the soft matter liquid-crystalline organization upon stimuli-induced phase transitions. They permit establishing of the inner nanostructure transformation kinetics and determination of the precise sizes of the hydrophobic membraneous compartments and the aqueous channel diameters in self-assembled network architectures. Time-resolved structural studies accelerate novel biomedical, pharmaceutical, and nanotechnology applications of nanochannel soft materials by providing better control of DNA, peptide and protein nanoconfinement, and release from diverse stimuli-responsive nanocarrier systems.
Collapse
Affiliation(s)
- Angelina Angelova
- †CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud 11, Châtenay-Malabry, F-92296 France
| | - Borislav Angelov
- ‡Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16206 Prague, Czech Republic
| | - Vasil M Garamus
- §Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, 21502 Geesthacht, Germany
| | - Patrick Couvreur
- †CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud 11, Châtenay-Malabry, F-92296 France
| | - Sylviane Lesieur
- †CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud 11, Châtenay-Malabry, F-92296 France
| |
Collapse
|
40
|
Venugopal E, Bhat SK, Vallooran JJ, Mezzenga R. Phase behavior of lipid-based lyotropic liquid crystals in presence of colloidal nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9792-9800. [PMID: 21749073 DOI: 10.1021/la201767p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have investigated the microstructure and phase behavior of monoglyceride-based lyotropic liquid crystals in the presence of hydrophilic silica colloidal particles of size comparable to or slightly exceeding the repeat units of the different liquid crystalline phases. Using small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC), we compare the structural properties of the neat mesophases with those of the systems containing silica colloidal particles. It is found that the colloidal particles always macrophase separate in inverse bicontinuous cubic phases of gyroid (Ia3d) and double diamond (Pn3m) symmetries. SAXS data for the inverse columnar hexagonal phase (H(II)) and lamellar phase (L(α)) suggest that a low volume fraction of the nanoparticles can be accommodated within the mesophases, but that at concentrations above a given threshold, the particles do macrophase separate also in these systems. The behavior is interpreted in terms of the enthalpic and entropic interactions of the nanoparticles with the lamellar and hexagonal phases, and we propose that, in the low concentration limit, the nanoparticles are acting as point defects within the mesophases and, upon further increase in concentration, initiate nucleation of nanoparticles clusters, leading to a macroscopic phase separation.
Collapse
Affiliation(s)
- Edakkal Venugopal
- Complex Fluids and Polymer Engineering, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
41
|
Bei D, Meng J, Youan BBC. Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine (Lond) 2011; 5:1385-99. [PMID: 21128721 DOI: 10.2217/nnm.10.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Once metastatic, melanoma remains one of the most aggressive and morbid malignancies. Moreover, in past decades, the overall survival for advanced unresectable melanoma exhibited a constancy of poor prognosis. Low response rates and serious adverse effects have been characteristic of standard therapy based on a combination of chemotherapeutic agents or immunotherapy with IL-2. For example, the chemotherapy including dacarbazine, carmustin, cisplatin and tamoxifen is known as 'Dartmouth regimen' while the CVD regimen comprises carmustine, vinblastine and dacarbazine. Thus, there is an urgent and critical need to reformulate these bioactive agents using nanoscience and nanotechnology as alternative strategies. This article overviews current design and evaluation of nanomedicine undertaken to address this unmet medical need. The nanomedicines studied include polymeric nanoparticles, liposomes, polymersomes, dendrimers, cubosomes, niosomes and nanodiamonds. In this preclinical article, nanotechnology provides hope for effective treatment of this aggressive and largely treatment-resistant disease.
Collapse
Affiliation(s)
- Di Bei
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, MO 64110, USA
| | | | | |
Collapse
|
42
|
Angelova A, Angelov B, Mutafchieva R, Lesieur S, Couvreur P. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc Chem Res 2011; 44:147-56. [PMID: 21189042 DOI: 10.1021/ar100120v] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network. With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.
Collapse
Affiliation(s)
- Angelina Angelova
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud, Châtenay-Malabry, F-92296 France
| | - Borislav Angelov
- Department of Chemistry and iNANO, Aarhus University, Denmark
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Czech Republic
- Institute of Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria
| | - Rada Mutafchieva
- Institute of Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria
| | - Sylviane Lesieur
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud, Châtenay-Malabry, F-92296 France
| | - Patrick Couvreur
- CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud, Châtenay-Malabry, F-92296 France
| |
Collapse
|
43
|
Andreozzi P, Funari SS, La Mesa C, Mariani P, Ortore MG, Sinibaldi R, Spinozzi F. Multi- to Unilamellar Transitions in Catanionic Vesicles. J Phys Chem B 2010; 114:8056-60. [DOI: 10.1021/jp100437v] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrizia Andreozzi
- Department of Chemistry, Università La Sapienza, Rome, Italy, HASYLAB, Hamburg, Germany, SOFT-INFM, Università La Sapienza, Rome, Italy, and Department of SAIFET & CNISM, Università Politecnica delle Marche, Ancona, Italy
| | - Sergio S. Funari
- Department of Chemistry, Università La Sapienza, Rome, Italy, HASYLAB, Hamburg, Germany, SOFT-INFM, Università La Sapienza, Rome, Italy, and Department of SAIFET & CNISM, Università Politecnica delle Marche, Ancona, Italy
| | - Camillo La Mesa
- Department of Chemistry, Università La Sapienza, Rome, Italy, HASYLAB, Hamburg, Germany, SOFT-INFM, Università La Sapienza, Rome, Italy, and Department of SAIFET & CNISM, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Mariani
- Department of Chemistry, Università La Sapienza, Rome, Italy, HASYLAB, Hamburg, Germany, SOFT-INFM, Università La Sapienza, Rome, Italy, and Department of SAIFET & CNISM, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Grazia Ortore
- Department of Chemistry, Università La Sapienza, Rome, Italy, HASYLAB, Hamburg, Germany, SOFT-INFM, Università La Sapienza, Rome, Italy, and Department of SAIFET & CNISM, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaele Sinibaldi
- Department of Chemistry, Università La Sapienza, Rome, Italy, HASYLAB, Hamburg, Germany, SOFT-INFM, Università La Sapienza, Rome, Italy, and Department of SAIFET & CNISM, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Spinozzi
- Department of Chemistry, Università La Sapienza, Rome, Italy, HASYLAB, Hamburg, Germany, SOFT-INFM, Università La Sapienza, Rome, Italy, and Department of SAIFET & CNISM, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
44
|
Papahadjopoulos-Sternberg B. Freeze-fracture electron microscopy on domains in lipid mono- and bilayer on nano-resolution scale. Methods Mol Biol 2010; 606:333-349. [PMID: 20013406 DOI: 10.1007/978-1-60761-447-0_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Freeze-fracture electron microscopy (FFEM) as a cryo-fixation, replica, and transmission electron microscopy technique is unique in membrane bilayer and lipid monolayer research because it enables us, to excess and visualize pattern such as domains in the hydrophobic center of lipid bilayer as well as the lipid/gas interface of the lipid monolayer. Since one of the preparatory steps of this technique includes fracturing the frozen sample and, since during this fracturing process the fracture plane follows the area of weakest forces, these areas are exposed allowing us to explore the pattern built up by lipids and/or intrinsic proteins and which are also initiated by peptides, drugs, and toxins reaching into these normally hard to access areas. Furthermore, FFEM as a replica technique is applicable to objects of a large size range and combines detailed imaging of fine structures down to nano-resolution scale within images of larger biological or artificial objects up to several ten's of micrometers in size.Biological membranes consist of a multitude of components which can self-organize into rafts or domains within the fluid bilayer characterized by lateral inhomogeneities in chemical composition and/or physical properties. These domains seem to play important roles in signal transduction and membrane traffic. Furthermore, lipid domains are important in health and disease and make an interesting target for pharmacological approaches in cure and prevention of diseases such as Alzheimer, Parkinson, cardiovascular and prion diseases, systemic lupus erythematosus and HIV. As a cryofixation technique FFEM is a very powerful tool to capture such domains in a probe-free mode and explore their dynamics on a nano-resolution scale.
Collapse
|
45
|
Cashion MP, Long TE. Biomimetic design and performance of polymerizable lipids. Acc Chem Res 2009; 42:1016-25. [PMID: 19453103 DOI: 10.1021/ar800191s] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bilayer lipid membranes (BLMs) have received significant attention over the past several decades because of their applications in biological and material sciences. BLMs consist of two amphiphilic lipid layers arranged with their hydrophilic head region exposed to the surrounding aqueous environment and hydrophobic domains in the core. In biology, lipid membranes confine and support the cell structure while selectively controlling the diffusion of ions and proteins between the intra- and extracellular matrix (ECM). Naturally derived lipid monomers spontaneously self-assemble to develop smart gateways that recognize and incorporate desired protein transporters or ion channels. BLMs are useful research models of lamellar lipid assemblies and associated protein receptors in cell membranes. The transport properties of lipid membranes can be tuned through careful consideration of the solution medium, transporter functionality, and pH, as well as other environmental conditions. BLMs are of particular interest in the design of biofunctional coatings, controlled release technologies, and biosensors; however, high-performance applications require lipid membranes to remain stable under harsh denaturing conditions. Accordingly, synthetic strategies are often proposed to increase the chemical and mechanical stability of lipid assemblies. The polymerization of self-assembled lipid structures is a strategy that results in robust biocompatible architectures, and diverse reactive functional groups are available for the synthesis of monomeric lipids. The selection of the polymerizable functionality and its precise location within the lipid assembly influences the ultimate supramolecular microstructure and polymerization efficiency. The biomimetic potential of polymerized lipids depends on the stability and robustness of the self-assembled membranes, and it is essential that the polymerizable functionality not disturb the amphiphilic nature of the lipid to maintain biocompatibility. Innovative applications are the motivational force for the development of durable polylipid compositions. Surface modification with biocompatible polylipids provides the opportunity for specific binding of biological molecules for applications as sensors or controlled release delivery vehicles. The ability to create stable lipid assemblies requires a comprehensive understanding of the mechanism of lipid polymerization in confined supramolecular geometries. The future is exciting as researchers begin to fully understand the morphology of polylipids in an effort to successfully produce naturally derived sustainable materials. In this Account, we highlight recent efforts to covalently stabilize lipid membranes and discuss emerging applications of mechanically robust self-assembled lipid architectures.
Collapse
Affiliation(s)
- Matthew P. Cashion
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Tech (0212), Blacksburg, Virginia 24061
| | - Timothy E. Long
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Tech (0212), Blacksburg, Virginia 24061
| |
Collapse
|
46
|
Angelov B, Angelova A, Vainio U, Garamus VM, Lesieur S, Willumeit R, Couvreur P. Long-living intermediates during a lamellar to a diamond-cubic lipid phase transition: a small-angle X-ray scattering investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3734-3742. [PMID: 19708151 DOI: 10.1021/la804225j] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To generate nanostructured vehicles with tunable internal organization, the structural phase behavior of a self-assembled amphiphilic mixture involving poly(ethylene glycol) monooleate (MO-PEG) and glycerol monooleate (MO) is studied in excess aqueous medium by time-resolved small-angle X-ray scattering (SAXS) in the temperature range from 1 to 68 degrees C. The SAXS data indicate miscibility of the two components in lamellar and nonlamellar soft-matter nanostructures. The functionalization of the MO assemblies by a MO-PEG amphiphile, which has a flexible large hydrophilic moiety, appears to hinder the epitaxial growth of a double diamond (D) cubic lattice from the lamellar (L) bilayer structure during the thermal phase transition. The incorporated MO-PEG additive is found to facilitate the formation of structural intermediates. They exhibit greater characteristic spacings and large diffusive scattering in broad temperature and time intervals. Their features are compared with those of swollen long-living intermediates in MO/octylglucoside assemblies. A conclusion can be drawn that long-living intermediate states can be equilibrium stabilized in two- or multicomponent amphiphilic systems. Their role as cubic phase precursors is to smooth the structural distortions arising from curvature mismatch between flat and curved regions. The considered MO-PEG functionalized assemblies may be useful for preparation of sterically stabilized liquid-crystalline nanovehicles for confinement of therapeutic biomolecules.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Biophysics, Bulgarian Academy of Sciences, BG-1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
47
|
Boyd BJ, Dong YD, Rades T. Nonlamellar liquid crystalline nanostructured particles: advances in materials and structure determination. J Liposome Res 2009; 19:12-28. [DOI: 10.1080/08982100802691983] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Hales K, Chen Z, Wooley KL, Pochan DJ. Nanoparticles with tunable internal structure from triblock copolymers of PAA-b-PMA-b-PS. NANO LETTERS 2008; 8:2023-2026. [PMID: 18547123 DOI: 10.1021/nl8013082] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polymer nanoparticles containing their own inherent nanostructure (lamellar, bicontinuous-like, or porous) were formed via the self-assembly of a triblock copolymer complexed with a multiamine counterion in mixed solvents. The internal nanostructure is due to local phase separation of the block copolymers and can be tuned by varying the solvent composition, the relative block composition, and the valency of the organic counterion.
Collapse
Affiliation(s)
- Kelly Hales
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
49
|
Angelova A, Angelov B, Lesieur S, Mutafchieva R, M.Ollivon, Bourgaux C, Willumeit R, Couvreur P. Dynamic control of nanofluidic channels in protein drug delivery vehicles. J Drug Deliv Sci Technol 2008. [DOI: 10.1016/s1773-2247(08)50005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Ye J, Liu AL. Chapter 6 Functionalization of Carbon Nanotubes and Nanoparticles with Lipid. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1554-4516(08)00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|