1
|
Bates A, Miller I, Travis EM, Sahu ID, Morris A, McCarrick RM, Dabney-Smith C, Lorigan GA. The Expression, Purification, Spectroscopic Characterization, and Membrane Topology Classification of KCNE4 from Recombinant E. coli. J Phys Chem B 2025; 129:228-237. [PMID: 39780724 DOI: 10.1021/acs.jpcb.4c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein. In this study, an alternative expression and purification protocol has been developed and validated to obtain overexpressed KCNE4 for in vitro studies. This protocol was validated through SDS-PAGE, CW-EPR, CW-EPR power saturation, and CD experiments. The SDS-PAGE and CD data reveal that this protocol produces relatively pure and properly folded KCNE4 in large quantities at a lower cost. The CW-EPR and EPR power saturation spectra show that KCNE4 consists of extracellular, transmembrane, and intracellular regions. Together, these techniques indicate that this alternative protocol produces structurally and dynamically native KCNE4 without the need for mammalian cell lines. This study provides guidance for characterizing the structure and dynamics of KCNE4 in a lipid bilayer environment.
Collapse
Affiliation(s)
- Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Ilsa Miller
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Elizabeth M Travis
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
- Division of Natural Sciences, Campbellsville University, 1 University Drive, Campbellsville, Kentucky 42718, United States
| | - Andrew Morris
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
2
|
Khan RH, Ahammad T, Sahu ID, Rotich NC, Daufel A, Lorigan GA. Determining the helical tilt angle and dynamic properties of the transmembrane domains of pinholin S 2168 using mechanical alignment EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184154. [PMID: 37023970 DOI: 10.1016/j.bbamem.2023.184154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
The lytic cycle of bacteriophage φ21 for the infected E. coli is initiated by pinholin S21, which determines the timing of host cell lysis through the function of pinholin (S2168) and antipinholin (S2171). The activity of pinholin or antipinholin directly depends on the function of two transmembrane domains (TMDs) within the membrane. For active pinholin, TMD1 externalizes and lies on the surface while TMD2 remains incorporated inside the membrane forming the lining of the small pinhole. In this study, spin labeled pinholin TMDs were incorporated separately into mechanically aligned POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) lipid bilayers and investigated with electron paramagnetic resonance (EPR) spectroscopy to determine the topology of both TMD1 and TMD2 with respect to the lipid bilayer; the TOAC (2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid) spin label was used here because it attaches to the backbone of a peptide and is very rigid. TMD2 was found to be nearly colinear with the bilayer normal (n) with a helical tilt angle of 16 ± 4° while TMD1 lies on or near the surface with a helical tilt angle of 84 ± 4°. The order parameters (~0.6 for both TMDs) obtained from our alignment study were reasonable, which indicates the samples incorporated inside the membrane were well aligned with respect to the magnetic field (B0). The data obtained from this study supports previous findings on pinholin: TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. In this study, the helical tilt angle of TMD1 was measured for the first time. For TMD2 our experimental data corroborates the findings of the previously reported helical tilt angle by the Ulrich group.
Collapse
Affiliation(s)
- Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Nancy C Rotich
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Andrew Daufel
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
3
|
Aryal CM, Bui NN, Song L, Pan J. The N-terminal helices of amphiphysin and endophilin have different capabilities of membrane remodeling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183907. [PMID: 35247332 DOI: 10.1016/j.bbamem.2022.183907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Amphiphysin and endophilin are two members of the N-BAR protein family. We have reported membrane interactions of the helix 0 of endophilin (H0-Endo). Here we investigate membrane modulations caused by the helix 0 of amphiphysin (H0-Amph). Electron paramagnetic resonance (EPR) spectroscopy was used to explore membrane properties. H0-Amph was found to reduce lipid mobility, make the membrane interior more polar, and decrease lipid chain orientational order. The EPR data also showed that for anionic membranes, H0-Endo acted as a more potent modulator. For instance, at peptide-to-lipid (P/L) ratio of 1/20, the peak-to-peak splitting was increased by 0.27 G and 1.89 G by H0-Amph and H0-Endo, respectively. Similarly, H0-Endo caused a larger change in the bilayer polarity than H0-Amph (30% versus 12% at P/L = 1/20). At P/L = 1/50, the chain orientational order was decreased by 26% and 66% by H0-Amph and H0-Endo, respectively. The different capabilities were explained by considering hydrophobicity score distributions. We employed atomic force microscopy to investigate membrane structural changes. Both peptides caused the formation of micron-sized holes. Interestingly, only H0-Amph induced membrane fusion as evidenced by the formation of high-rise regions. Lastly, experiments of giant unilamellar vesicles showed that H0-Amph and H0-Endo generated thin tubules and miniscule vesicles, respectively. Together, our studies showed that both helices are effective in altering membrane properties; the observed changes might be important for membrane curvature induction. Importantly, comparisons between the two peptides revealed that the degree of membrane remodeling is dependent on the sequence of the N-terminal helix of the N-BAR protein family.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America; MED-Cancer & Cell Biology, University of Cincinnati, Cincinnati, OH 45267
| | - Nhat Nguyen Bui
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America.
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
4
|
Hong C, Liang J, Xia J, Zhu Y, Guo Y, Wang A, Lu C, Ren H, Chen C, Li S, Wang D, Zhan H, Wang J. One Stone Four Birds: A Novel Liposomal Delivery System Multi-functionalized with Ginsenoside Rh2 for Tumor Targeting Therapy. NANO-MICRO LETTERS 2020; 12:129. [PMID: 34138128 PMCID: PMC7770862 DOI: 10.1007/s40820-020-00472-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 05/08/2023]
Abstract
Liposomes hold great potential in anti-cancer drug delivery and the targeting treatment of tumors. However, the clinical therapeutic efficacy of liposomes is still limited by the complexity of tumor microenvironment (TME) and the insufficient accumulation in tumor sites. Meanwhile, the application of cholesterol and polyethylene glycol (PEG), which are usually used to prolong the blood circulation and stabilize the structure of liposomes respectively, has been questioned due to various disadvantages. Herein, we developed a ginsenoside Rh2-based multifunctional liposome system (Rh2-lipo) to effectively address these challenges once for all. Different with the conventional 'wooden' liposomes, Rh2-lipo is a much more brilliant carrier with multiple functions. In Rh2-lipo, both cholesterol and PEG were substituted by Rh2, which works as membrane stabilizer, long-circulating stealther, active targeting ligand, and chemotherapy adjuvant at the same time. Firstly, Rh2 could keep the stability of liposomes and avoid the shortcomings caused by cholesterol. Secondly, Rh2-lipo showed a specifically prolonged circulation behavior in the blood. Thirdly, the accumulation of the liposomes in the tumor was significantly enhanced by the interaction of glucose transporter of tumor cells with Rh2. Fourth, Rh2-lipo could remodel the structure and reverse the immunosuppressive environment in TME. When tested in a 4T1 breast carcinoma xenograft model, the paclitaxel-loaded Rh2-lipo realized high efficient tumor growth suppression. Therefore, Rh2-lipo not only innovatively challenges the position of cholesterol as a liposome component, but also provides another innovative potential system with multiple functions for anti-cancer drug delivery.
Collapse
Affiliation(s)
- Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Ying Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yizhen Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Anni Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Chunyi Lu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongwei Ren
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Chen Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Shiyi Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai, 201600, People's Republic of China
| | - Huaxing Zhan
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai, 201600, People's Republic of China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
5
|
Aryal CM, Bui NN, Khadka NK, Song L, Pan J. The helix 0 of endophilin modifies membrane material properties and induces local curvature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183397. [PMID: 32533976 DOI: 10.1016/j.bbamem.2020.183397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 11/26/2022]
Abstract
The amphipathic helix 0 of endophilin (i.e., H0-Endo) is important to membrane binding, but its function of curvature generation remains controversial. We used electron paramagnetic resonance (EPR) spectroscopy to study effects of H0-Endo on membrane material properties. We found that H0-Endo reduced lipid chain mobility and increased bilayer polarity, i.e., making the bilayer interior more polar. Lipid-dependent examination revealed that anionic lipids augmented the effect of H0-Endo, while cholesterol had a minimal impact. Our EPR spectroscopy of magnetically aligned bicelles showed that as the peptide-to-lipid ratio increased, the lipid chain orientational order decreased gradually, followed by a sudden loss. We discuss an interfacial-bound model of the amphipathic H0-Endo to account for all EPR data. We used atomic force microscopy and fluorescence microscopy to explore membrane morphological changes. We found that H0-Endo caused the formation of micron-sized holes in mica-supported planar bilayers. Hole formation is likely caused by two competing forces - the adhesion force exerted by the substrate represses bilayer budging, whereas the line tension originating from peptide clustering has a tendency of destabilizing bilayer organization. In the absence of substrate influences, membrane curvature induction was manifested by generating small vesicles surrounding giant unilamellar vesicles. Our results of membrane perforation and vesiculation suggest that the functionality of H0-Endo is more than just coordinating membrane binding of endophilin.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Nhat Nguyen Bui
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America
| | - Nawal K Khadka
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America.
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
6
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
7
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
8
|
Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJK, Sener M, Kleinekathöfer U, Vant JW, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler DE, Stone JE, Phillips JC, Pogorelov TV, Mallus MI, Chipot C, Luthey-Schulten Z, Tieleman DP, Hunter CN, Tajkhorshid E, Aksimentiev A, Schulten K. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019; 179:1098-1111.e23. [PMID: 31730852 PMCID: PMC7075482 DOI: 10.1016/j.cell.2019.10.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA.
| | - Christopher Maffeo
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karelia H Delgado-Magnero
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - John W Vant
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Barry Isralewitz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle E Chandler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James C Phillips
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - M Ilaria Mallus
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Christophe Chipot
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Laboratoire International Associé CNRS-UIUC, UMR 7019, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Zaida Luthey-Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Biochemistry, Chemistry, Bioengineering, and Pharmacology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Aleksei Aksimentiev
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Klaus Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Brodrecht M, Herr K, Bothe S, de Oliveira M, Gutmann T, Buntkowsky G. Efficient Building Blocks for Solid-Phase Peptide Synthesis of Spin Labeled Peptides for Electron Paramagnetic Resonance and Dynamic Nuclear Polarization Applications. Chemphyschem 2019; 20:1475-1487. [PMID: 30950574 DOI: 10.1002/cphc.201900211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Indexed: 11/11/2022]
Abstract
Specific spin labeling allows the site-selective investigation of biomolecules by EPR and DNP enhanced NMR spectroscopy. A novel spin labeling strategy for commercially available Fmoc-amino acids is developed. In this approach, the PROXYL spin label is covalently attached to the hydroxyl side chain of three amino acids hydroxyproline (Hyp), serine (Ser) and tyrosine (Tyr) by a simple three-step synthesis route. The obtained PROXYL containing building-blocks are N-terminally protected by the Fmoc-protection group, which makes them applicable for the use in solid-phase peptide synthesis (SPPS). This approach allows the insertion of the spin label at any desired position during SPPS, which makes it more versatile than the widely used post synthetic spin labeling strategies. For the final building-blocks, the radical activity is proven by EPR. DNP enhanced solid-state NMR experiments employing these building-blocks in a TCE solution show enhancement factors of up to 26 for 1 H and 13 C (1 H→13 C cross-polarization). To proof the viability of the presented building-blocks for insertion of the spin label during SPPS the penta-peptide Acetyl-Gly-Ser(PROXYL)-Gly-Gly-Gly was synthesized employing the spin labeled Ser building-block. This peptide could successfully be isolated and the spin label activity proved by EPR and DNP NMR measurements, showing enhancement factors of 12.1±0.1 for 1 H and 13.9±0.5 for 13 C (direct polarization).
Collapse
Affiliation(s)
- Martin Brodrecht
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Kevin Herr
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Sarah Bothe
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Marcos de Oliveira
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.,University Kassel, Institute for Chemistry, Heinrich-Plett-Straße 40, D-34132, Kassel
| | - Gerd Buntkowsky
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
10
|
Mayo DJ, Sahu ID, Lorigan GA. Assessing topology and surface orientation of an antimicrobial peptide magainin 2 using mechanically aligned bilayers and electron paramagnetic resonance spectroscopy. Chem Phys Lipids 2018; 213:124-130. [DOI: 10.1016/j.chemphyslip.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
|
11
|
Liu L, Sahu ID, Bottorf L, McCarrick RM, Lorigan GA. Investigating the Secondary Structure of Membrane Peptides Utilizing Multiple 2H-Labeled Hydrophobic Amino Acids via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. J Phys Chem B 2018; 122:4388-4396. [PMID: 29614227 DOI: 10.1021/acs.jpcb.7b11890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electron spin echo envelope modulation (ESEEM) approach was used to probe local secondary structures of membrane proteins and peptides. This ESEEM method detects dipolar couplings between 2H-labeled nuclei on the side chains of an amino acid (Leu or Val) and a strategically placed nitroxide spin-label in the proximity up to 8 Å. ESEEM spectra patterns for different samples correlate directly to the periodic structural feature of different secondary structures. Since this pattern can be affected by the side chain length and flexibility of the 2H-labeled amino acid used in the experiment, it is important to examine several different hydrophobic amino acids (d3 Ala, d8 Val, d8 Phe) utilizing this ESEEM approach. In this work, a series of ESEEM data were collected on the AChR M2δ membrane peptide to build a reference for the future application of this approach for various biological systems. The results indicate that, despite the relative intensity and signal-to-noise level, all amino acids share a similar ESEEM modulation pattern for α-helical structures. Thus, all commercially available 2H-labeled hydrophobic amino acids can be utilized as probes for the further application of this ESEEM approach. Also, the ESEEM signal intensities increase as the side chain length gets longer or less rigid. In addition, longer side chain amino acids had a larger 2H ESEEM FT peak centered at the 2H Larmor frequency for the i ± 4 sample when compared to the corresponding i ± 3 sample. For shorter side chain amino acids, the 2H ESEEM FT peak intensity ratio between i ± 4 and i ± 3 was not well-defined.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Lauren Bottorf
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
12
|
Sahu ID, Lorigan GA. Site-Directed Spin Labeling EPR for Studying Membrane Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3248289. [PMID: 29607317 PMCID: PMC5828257 DOI: 10.1155/2018/3248289] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/13/2023]
Abstract
Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible for the survival of living organisms. In this review, a brief introduction of the most popular SDSL EPR techniques and illustrations of recent applications for studying pertinent structural and dynamic properties on membrane proteins will be discussed.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
13
|
Biondi B, Peggion C, De Zotti M, Pignaffo C, Dalzini A, Bortolus M, Oancea S, Hilma G, Bortolotti A, Stella L, Pedersen JZ, Syryamina VN, Tsvetkov YD, Dzuba SA, Toniolo C, Formaggio F. Conformational properties, membrane interaction, and antibacterial activity of the peptaibiotic chalciporin A: Multitechnique spectroscopic and biophysical investigations on the natural compound and labeled analogs. Biopolymers 2017; 110. [PMID: 29127716 DOI: 10.1002/bip.23083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 02/28/2024]
Abstract
In this work, an extensive set of spectroscopic and biophysical techniques (including FT-IR absorption, CD, 2D-NMR, fluorescence, and CW/PELDOR EPR) was used to study the conformational preferences, membrane interaction, and bioactivity properties of the naturally occurring synthetic 14-mer peptaibiotic chalciporin A, characterized by a relatively low (≈20%), uncommon proportion of the strongly helicogenic Aib residue. In addition to the unlabeled peptide, we gained in-depth information from the study of two labeled analogs, characterized by one or two residues of the helicogenic, nitroxyl radical-containing TOAC. All three compounds were prepared using the SPPS methodology, which was carefully modified in the course of the syntheses of TOAC-labeled analogs in view of the poorly reactive α-amino function of this very bulky residue and the specific requirements of its free-radical side chain. Despite its potentially high flexibility, our results point to a predominant, partly amphiphilic, α-helical conformation for this peptaibiotic. Therefore, not surprisingly, we found an effective membrane affinity and a remarkable penetration propensity. However, chalciporin A exhibits a selectivity in its antibacterial activity not in agreement with that typical of the other members of this peptide class.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Chiara Pignaffo
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Annalisa Dalzini
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Geta Hilma
- Department of Medicine, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Jens Z Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Yuri D Tsvetkov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Claudio Toniolo
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| |
Collapse
|
14
|
Sahu ID, Mayo DJ, Subbaraman N, Inbaraj JJ, McCarrick RM, Lorigan GA. Probing topology and dynamics of the second transmembrane domain (M2δ) of the acetyl choline receptor using magnetically aligned lipid bilayers (bicelles) and EPR spectroscopy. Chem Phys Lipids 2017; 206:9-15. [PMID: 28571787 DOI: 10.1016/j.chemphyslip.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Characterizing membrane protein structure and dynamics in the lipid bilayer membrane is very important but experimentally challenging. EPR spectroscopy offers a unique set of techniques to investigate a membrane protein structure, dynamics, topology, and distance constraints in lipid bilayers. Previously our lab demonstrated the use of magnetically aligned phospholipid bilayers (bicelles) for probing topology and dynamics of the membrane peptide M2δ of the acetyl choline receptor (AchR) as a proof of concept. In this study, magnetically aligned phospholipid bilayers and rigid spin labels were further utilized to provide improved dynamic information and topology of M2δ peptide. Seven TOAC-labeled AchR M2δ peptides were synthesized to demonstrate the utility of a multi-labeling amino acid substitution alignment strategy. Our data revealed the helical tilts to be 11°, 17°, 9°, 17°, 16°, 11°, 9°±4° for residues I7TOAC, Q13TOAC, A14TOAC, V15TOAC, C16TOAC, L17TOAC, and L18TOAC, respectively. The average helical tilt of the M2δ peptide was determined to be ∼13°. This study also revealed that the TOAC labels were attached to the M2δ peptide with different dynamics suggesting that the sites towards the C-terminal end are more rigid when compared to the sites towards the N-terminus. The dynamics of the TOAC labeled sites were more resolved in the aligned samples when compared to the randomly disordered samples. This study highlights the use of magnetically aligned lipid bilayer EPR technique to determine a more accurate helical tilt and more resolved local dynamics of AchR M2δ peptide.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Daniel J Mayo
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Nidhi Subbaraman
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Johnson J Inbaraj
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
15
|
Pan J, Sahoo PK, Dalzini A, Hayati Z, Aryal CM, Teng P, Cai J, Gutierrez HR, Song L. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2017; 121:5058-5071. [PMID: 28459565 PMCID: PMC5770145 DOI: 10.1021/acs.jpcb.7b02772] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Prasana K. Sahoo
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Annalisa Dalzini
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Chinta M. Aryal
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
16
|
Bortolus M, Dalzini A, Maniero AL, Panighel G, Siano A, Toniolo C, De Zotti M, Formaggio F. Insights into peptide-membrane interactions of newly synthesized, nitroxide-containing analogs of the peptaibiotic trichogin GAIV using EPR. Biopolymers 2017; 108. [DOI: 10.1002/bip.22913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Marco Bortolus
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Annalisa Dalzini
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | | | - Giacomo Panighel
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Alvaro Siano
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Departamento de Química Orgánica; Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL); 3000 Santa Fe Argentina
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| |
Collapse
|
17
|
Teixeira LGD, Malavolta L, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Paramagnetic bradykinin analogues as substrates for angiotensin I-converting enzyme: Pharmacological and conformation studies. Bioorg Chem 2016; 69:159-166. [PMID: 27837711 DOI: 10.1016/j.bioorg.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 11/27/2022]
Abstract
This study uses EPR, CD, and fluorescence spectroscopy to examine the structure of bradykinin (BK) analogues attaching the paramagnetic amino acid-type Toac (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 3, 7, and 9. The data were correlated with the potencies in muscle contractile experiments and the substrate properties towards the angiotensin I-converting enzyme (ACE). A study of the biological activities in guinea pig ileum and rat uterus indicated that only Toac0-BK partially maintained its native biological potency among the tested peptides. This and its counterpart, Toac3-BK, maintained the ability to act as ACE substrates. These results indicate that peptides bearing Toac probe far from the ACE cleavage sites were more susceptible to hydrolysis by ACE. The results also emphasize the existence of a finer control for BK-receptor interaction than for BK binding at the catalytic site of this metallodipetidase. The kinetic kcat/Km values decreased from 202.7 to 38.9μM-1min-1 for BK and Toac3-BK, respectively. EPR, CD, and fluorescence experiments reveal a direct relationship between the structure and activity of these paramagnetic peptides. In contrast to the turn-folded structures of the Toac-internally labeled peptides, more extended conformations were displayed by N- or C-terminally Toac-labeled analogues. Lastly, this work supports the feasibility of monitoring the progress of the ACE-hydrolytic process of Toac-attached peptides by examining time-dependent EPR spectral variations.
Collapse
Affiliation(s)
- Luis Gustavo Deus Teixeira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo, School of Medical Sciences, 01221-020 Sao Paulo, SP, Brazil
| | | | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, Universidade de Sao Paulo, 05513-970 Sao Paulo, SP, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil.
| |
Collapse
|
18
|
Halbmair K, Wegner J, Diederichsen U, Bennati M. Pulse EPR Measurements of Intramolecular Distances in a TOPP-Labeled Transmembrane Peptide in Lipids. Biophys J 2016; 111:2345-2348. [PMID: 27836102 PMCID: PMC5153538 DOI: 10.1016/j.bpj.2016.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 11/15/2022] Open
Abstract
We present the performance of nanometer-range pulse electron paramagnetic resonance distance measurements (pulsed electron-electron double resonance/double electron-electron resonance, PELDOR/DEER) on a transmembrane WALP24 peptide labeled with the semirigid unnatural amino acid 4-(3,3,5,5-tetra-methyl-2,6-dioxo-4-oxylpiperazin-1-yl)-l-phenylglycine (TOPP). Distances reported by the TOPP label are compared to the ones reported by the more standard MTSSL spin label, commonly employed in protein studies. Using high-power pulse electron paramagnetic resonance spectroscopy at Q-band frequencies (34 GHz), we show that in contrast to MTSSL, our label reports one-peak, sharp (Δr ≤ 0.4 nm) intramolecular distances. Orientational selectivity is not observed. When spin-labeled WALP24 was inserted in two representative lipid bilayers with different bilayer thickness, i.e., DMPC and POPC, the intramolecular distance reported by TOPP did not change with the bilayer environment. In contrast, the distance measured with MTSSL was strongly affected by the hydrophobic thickness of the lipid. The results demonstrate that the TOPP label is well suited to study the intrinsic structure of peptides immersed in lipids.
Collapse
Affiliation(s)
- Karin Halbmair
- Electron Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Janine Wegner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany
| | - Marina Bennati
- Electron Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
19
|
Dalzini A, Bergamini C, Biondi B, De Zotti M, Panighel G, Fato R, Peggion C, Bortolus M, Maniero AL. The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach. Sci Rep 2016; 6:24000. [PMID: 27039838 PMCID: PMC4819177 DOI: 10.1038/srep24000] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Christian Bergamini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Barbara Biondi
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marta De Zotti
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giacomo Panighel
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Romana Fato
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Cristina Peggion
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marco Bortolus
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy.,Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, 20126, Milano, Italy
| | - Anna Lisa Maniero
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
20
|
McCaffrey JE, James ZM, Svensson B, Binder BP, Thomas DD. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 262:50-56. [PMID: 26720587 PMCID: PMC4716873 DOI: 10.1016/j.jmr.2015.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.
Collapse
Affiliation(s)
- Jesse E McCaffrey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary M James
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Bortolus M, Dalzini A, Formaggio F, Toniolo C, Gobbo M, Maniero AL. An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles. Phys Chem Chem Phys 2016; 18:749-60. [DOI: 10.1039/c5cp04136h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
EPR/CD spectroscopies reveal that the peptaibol ampullosporin A changes the orientation and conformation depending on its concentration and bilayer thickness.
Collapse
Affiliation(s)
- Marco Bortolus
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
- Dipartimento di Scienza dei Materiali
| | - Annalisa Dalzini
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Fernando Formaggio
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Claudio Toniolo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Marina Gobbo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Anna Lisa Maniero
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
22
|
Abstract
Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States of America
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States of America
| |
Collapse
|
23
|
Mobbili G, Crucianelli E, Barbon A, Marcaccio M, Pisani M, Dalzini A, Ussano E, Bortolus M, Stipa P, Astolfi P. Liponitroxides: EPR study and their efficacy as antioxidants in lipid membranes. RSC Adv 2015. [DOI: 10.1039/c5ra18963b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fighting lipid peroxidation on its own ground: the antioxidant activity of new synthesized lipid-functionalized nitroxides is maximized in the PUFA region and correlates with the nitroxide location within the lipid bilayer as found by EPR spectroscopy.
Collapse
Affiliation(s)
- Giovanna Mobbili
- Department of Life and Environmental Sciences
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Emanuela Crucianelli
- Department of Life and Environmental Sciences
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Antonio Barbon
- Department of Chemical Sciences
- Università di Padova
- I-35131 Padova
- Italy
| | - Massimo Marcaccio
- Department of Chemistry “G. Ciamician”
- Università di Bologna
- I-40126 Bologna
- Italy
| | - Michela Pisani
- Department of Materials
- Environmental Sciences and Urban Planning
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Annalisa Dalzini
- Department of Chemical Sciences
- Università di Padova
- I-35131 Padova
- Italy
| | - Eleonora Ussano
- Department of Chemistry “G. Ciamician”
- Università di Bologna
- I-40126 Bologna
- Italy
| | - Marco Bortolus
- Department of Chemical Sciences
- Università di Padova
- I-35131 Padova
- Italy
- Department of Material Sciences
| | - Pierluigi Stipa
- Department of Materials
- Environmental Sciences and Urban Planning
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Paola Astolfi
- Department of Materials
- Environmental Sciences and Urban Planning
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| |
Collapse
|
24
|
McCaffrey JE, James ZM, Thomas DD. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:71-75. [PMID: 25514061 PMCID: PMC4286475 DOI: 10.1016/j.jmr.2014.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below.
Collapse
Affiliation(s)
- Jesse E McCaffrey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary M James
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Sahu ID, Hustedt EJ, Ghimire H, Inbaraj JJ, McCarrick RM, Lorigan GA. CW dipolar broadening EPR spectroscopy and mechanically aligned bilayers used to measure distance and relative orientation between two TOAC spin labels on an antimicrobial peptide. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 249:72-79. [PMID: 25462949 PMCID: PMC4406775 DOI: 10.1016/j.jmr.2014.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 15.3Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, United States
| | - Harishchandra Ghimire
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Johnson J Inbaraj
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
26
|
Bortolus M, Dalzini A, Toniolo C, Hahm KS, Maniero AL. Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles. J Pept Sci 2014; 20:517-25. [PMID: 24863176 DOI: 10.1002/psc.2645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 02/03/2023]
Abstract
Bicelles are model membrane systems that can be macroscopically oriented in a magnetic field at physiological temperature. The macroscopic orientation of bicelles allows to detect, by means of magnetic resonance spectroscopies, small changes in the order of the bilayer caused by solutes interacting with the membrane. These changes would be hardly detectable in isotropic systems such as vesicles or micelles. The aim of this work is to show that bicelles represent a convenient tool to investigate the behavior of antimicrobial peptides (AMPs) interacting with membranes, using electron paramagnetic resonance (EPR) spectroscopy. We performed the EPR experiments on spin-labeled bicelles using various AMPs of different length, charge, and amphipathicity: alamethicin, trichogin GA IV, magainin 2, HP(2-20), and HPA3. We evaluated the changes in the order parameter of the spin-labeled lipids as a function of the peptide-to-lipid ratio. We show that bicelles labeled at position 5 of the lipid chains are very sensitive to the perturbation induced by the AMPs even at low peptide concentrations. Our study indicates that peptides that are known to disrupt the membrane by different mechanisms (i.e., alamethicin vs magainin 2) show very distinct trends of the order parameter as a function of peptide concentration. Therefore, spin-labeled bicelles proved to be a good system to evaluate the membrane disruption mechanism of new AMPs.
Collapse
Affiliation(s)
- Marco Bortolus
- Department of Chemistry, University of Padova, via Marzolo 1, Padova, 35131, Italy
| | | | | | | | | |
Collapse
|
27
|
Bortolus M, De Zotti M, Formaggio F, Maniero AL. Alamethicin in bicelles: Orientation, aggregation, and bilayer modification as a function of peptide concentration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2620-7. [DOI: 10.1016/j.bbamem.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
28
|
Peptide-lipid interactions: experiments and applications. Int J Mol Sci 2013; 14:18758-89. [PMID: 24036440 PMCID: PMC3794806 DOI: 10.3390/ijms140918758] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.
Collapse
|
29
|
Sahu ID, McCarrick RM, Lorigan GA. Use of electron paramagnetic resonance to solve biochemical problems. Biochemistry 2013; 52:5967-84. [PMID: 23961941 PMCID: PMC3839053 DOI: 10.1021/bi400834a] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information about a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers of the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin-labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems that are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | | | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| |
Collapse
|
30
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
31
|
Tanimoto E, Karasawa S, Ueki S, Nitta N, Aoki I, Koga N. Unexpectedly large water-proton relaxivity of TEMPO incorporated into micelle-oligonucleotides. RSC Adv 2013. [DOI: 10.1039/c3ra22372h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
32
|
Yoshitomi T, Nagasaki Y. Design and Preparation of a Nanoprobe for Imaging Inflammation Sites. Biointerphases 2012; 7:7. [DOI: 10.1007/s13758-011-0007-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022] Open
|
33
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
34
|
Zhou A, Abu-Baker S, Sahu ID, Liu L, McCarrick RM, Dabney-Smith C, Lorigan GA. Determining α-helical and β-sheet secondary structures via pulsed electron spin resonance spectroscopy. Biochemistry 2012; 51:7417-9. [PMID: 22966895 DOI: 10.1021/bi3010736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new method has been developed to determine α-helical and β-sheet secondary structural components of aqueous and membrane-bound proteins using pulsed electron paramagnetic resonance (EPR) spectroscopy. The three-pulse electron spin echo envelope modulation (ESEEM) technique was used to detect weakly coupled (2)H-labeled nuclei on side chains in the proximity of a strategically placed nitroxide spin-label up to 8 Å away. Changes in the ESEEM spectra for different samples correlate directly to periodic structural differences between α-helical and β-sheet motifs. These distinct trends were demonstrated with α-helical (M2δ subunit of the acetylcholine receptor) and β-sheet (ubiquitin) peptides in biologically relevant sample environments.
Collapse
Affiliation(s)
- Andy Zhou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu L, Sahu ID, Mayo DJ, McCarrick RM, Troxel K, Zhou A, Shockley E, Lorigan GA. Enhancement of electron spin echo envelope modulation spectroscopic methods to investigate the secondary structure of membrane proteins. J Phys Chem B 2012; 116:11041-5. [PMID: 22908896 DOI: 10.1021/jp304669b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper reports on a significant improvement of a new structural biology approach designed to probe the secondary structure of membrane proteins using the pulsed EPR technique of electron spin echo envelope modulation (ESEEM) spectroscopy. Previously, we showed that we could characterize an α-helical secondary structure with ESEEM spectroscopy using a (2)H-labeled Val side chain coupled with site-directed spin-labeling (SDSL). In order to further develop this new approach, molecular dynamic (MD) simulations were conducted on several different hydrophobic residues that are commonly found in membrane proteins. (2)H-SL distance distributions from the MD results indicated that (2)H-labeled Leu was a very strong candidate to significantly improve this ESEEM approach. In order to test this hypothesis, the secondary structure of the α-helical M2δ peptide of the acetylcholine receptor (AChR) incorporated into a bicelle was investigated with (2)H-labeled Leu d(10) at position 10 (i) and nitroxide spin labels positioned 1, 2, 3, and 4 residues away (denoted i+1 to i+4) with ESEEM spectroscopy. The ESEEM data reveal a unique pattern that is characteristic of an α-helix (3.6 residues per turn). Strong (2)H modulation was detected for the i+3 and i+4 samples, but not for the i+2 sample. The (2)H modulation depth observed for (2)H-labeled d(10) Leu was significantly enhanced (×4) when compared to previous ESEEM measurements that used (2)H-labeled d(8) Val. Computational studies indicate that deuterium nuclei on the Leu side chain are closer to the spin label when compared to Val. The enhancement of (2)H modulation and the corresponding Fourier Transform (FT) peak intensity for (2)H-labeled Leu significantly reduces the ESEEM data acquisition time for Leu when compared to Val. This research demonstrates that a different (2)H-labeled amino acid residue can be used as an efficient ESEEM probe further substantiating this important biophysical technique. Finally, this new method can provide pertinent qualitative structural information on membrane proteins in a short time (few minutes) at low sample concentrations (~50 μM).
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hohlweg W, Kosol S, Zangger K. Determining the orientation and localization of membrane-bound peptides. Curr Protein Pept Sci 2012; 13:267-79. [PMID: 22044140 PMCID: PMC3394173 DOI: 10.2174/138920312800785049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance.
Collapse
Affiliation(s)
| | | | - Klaus Zangger
- Institute of Chemistry / Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
37
|
Ghimire H, Hustedt EJ, Sahu ID, Inbaraj JJ, McCarrick R, Mayo DJ, Benedikt MR, Lee RT, Grosser SM, Lorigan GA. Distance measurements on a dual-labeled TOAC AChR M2δ peptide in mechanically aligned DMPC bilayers via dipolar broadening CW-EPR spectroscopy. J Phys Chem B 2012; 116:3866-73. [PMID: 22379959 DOI: 10.1021/jp212272d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A membrane alignment technique has been used to measure the distance between two TOAC nitroxide spin labels on the membrane-spanning M2δ, peptide of the nicotinic acetylcholine receptor (AChR), via CW-EPR spectroscopy. The TOAC-labeled M2δ peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 14.6 Å from a dual TOAC-labeled AChR M2δ peptide at positions 7 and 13 that closely matches with the 14.5 Å distance obtained from a model of the labeled AChR M2δ peptide. In addition, the angles determining the relative orientation of the two nitroxides have been determined, and the results compare favorably with molecular modeling. The global analysis of the data from the aligned samples gives much more precise estimates of the parameters defining the geometry of the two labels than can be obtained from a randomly dispersed sample.
Collapse
Affiliation(s)
- Harishchandra Ghimire
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects. Biophys Rev 2012; 4:45-66. [PMID: 22347893 PMCID: PMC3271205 DOI: 10.1007/s12551-011-0064-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023] Open
Abstract
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.
Collapse
|
39
|
Ghimire H, Abu-Baker S, Sahu ID, Zhou A, Mayo DJ, Lee RT, Lorigan GA. Probing the helical tilt and dynamic properties of membrane-bound phospholamban in magnetically aligned bicelles using electron paramagnetic resonance spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:645-50. [PMID: 22172806 DOI: 10.1016/j.bbamem.2011.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Wild-type phospholamban (WT-PLB), a Ca(2+)-ATPase (SERCA) regulator in the sarcoplasmic reticulum membrane, was studied using TOAC nitroxide spin labeling, magnetically aligned bicelles, and electron paramagnetic resonance (EPR) spectroscopy to ascertain structural and dynamic information. Different structural domains of PLB (transmembrane segment: positions 42 and 45, loop region: position 20, and cytoplasmic domain: position 10) were probed with rigid TOAC spin labels to extract the transmembrane helical tilt and structural dynamic information, which is crucial for understanding the regulatory function of PLB in modulating Ca(2+)-ATPase activity. Aligned experiments indicate that the transmembrane domain of wild-type PLB has a helical tilt of 13°±4° in DMPC/DHPC bicelles. TOAC spin labels placed on the WT-PLB transmembrane domain showed highly restricted motion with more than 100ns rotational correlation time (τ(c)); whereas the loop, and the cytoplasmic regions each consists of two distinct motional dynamics: one fast component in the sub-nanosecond scale and the other component is slower dynamics in the nanosecond range.
Collapse
|
40
|
Yamamoto K, Vivekanandan S, Ramamoorthy A. Fast NMR data acquisition from bicelles containing a membrane-associated peptide at natural-abundance. J Phys Chem B 2011; 115:12448-55. [PMID: 21939237 DOI: 10.1021/jp2076098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In spite of recent technological advances in NMR spectroscopy, its low sensitivity continues to be a major limitation particularly for the structural studies of membrane proteins. The need for a large quantity of a membrane protein and acquisition of NMR data for a long duration are not desirable. Therefore, there is considerable interest in the development of methods to speed up the NMR data acquisition from model membrane samples. In this study, we demonstrate the feasibility of acquiring two-dimensional spectra of an antimicrobial peptide (MSI-78; also known as pexiganan) embedded in isotropic bicelles using natural-abundance (15)N nuclei. A copper-chelated lipid embedded in bicelles is used to speed-up the spin-lattice relaxation of protons without affecting the spectral resolution and thus enabling fast data acquisition. Our results suggest that even a 2D SOFAST-HMQC spectrum can be obtained four times faster using a very small amount (∼3 mM) of a copper-chelated lipid. These results demonstrate that this approach will be useful in the structural studies of membrane-associated peptides and proteins without the need for isotopic enrichment for solution NMR studies.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
41
|
Mayo D, Zhou A, Sahu I, McCarrick R, Walton P, Ring A, Troxel K, Coey A, Hawn J, Emwas AH, Lorigan GA. Probing the structure of membrane proteins with electron spin echo envelope modulation spectroscopy. Protein Sci 2011; 20:1100-4. [PMID: 21563228 DOI: 10.1002/pro.656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 11/09/2022]
Abstract
A new approach has been developed to probe the structural properties of membrane peptides and proteins using the pulsed electron paramagnetic resonance technique of electron spin echo envelope modulation (ESEEM) spectroscopy and the α-helical M2δ subunit of the acetylcholine receptor incorporated into phospholipid bicelles. To demonstrate the practicality of this method, a cysteine-mutated nitroxide spin label (SL) is positioned 1, 2, 3, and 4 residues away from a fully deuterated Val side chain (denoted i + 1 to i + 4). The characteristic periodicity of the α-helical structure gives rise to a unique pattern in the ESEEM spectra. In the i + 1 and i + 2 samples, the ²H nuclei are too far away to be detected. However, with the 3.6 residue per turn pattern of an α-helix, the i + 3 and i + 4 samples reveal a strong signal from the ²H nuclei of the Val side chain. Modeling studies verify these data suggesting that the closest ²H-labeled Val to SL distance would in fact be expected in the i + 3 and i + 4 samples. This technique is very advantageous, because it provides pertinent qualitative structural information on an inherently difficult system like membrane proteins in a short period of time (minutes) with small amounts of protein (μg).
Collapse
Affiliation(s)
- Daniel Mayo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu J, Smith PES, Soong R, Ramamoorthy A. A proton spin diffusion based solid-state NMR approach for structural studies on aligned samples. J Phys Chem B 2011; 115:4863-71. [PMID: 21466219 PMCID: PMC3085961 DOI: 10.1021/jp201501q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapidly expanding research on nonsoluble and noncrystalline chemical and biological materials necessitates sophisticated techniques to image these materials at atomic-level resolution. Although their study poses a formidable challenge, solid-state NMR is a powerful tool that has demonstrated application to the investigation of their molecular architecture and functioning. In particular, 2D separated-local-field (SLF) spectroscopy is increasingly applied to obtain high-resolution molecular images of these materials. However, despite the common use of SLF experiments in the structural studies of a variety of aligned molecules, the lack of a resonance assignment approach has been a major disadvantage. As a result, solid-state NMR studies have mostly been limited to aligned systems that are labeled with an isotope at a single site. Here, we demonstrate an approach for resonance assignment through a controlled reintroduction of proton spin diffusion in the 2D proton-evolved-local-field (PELF) pulse sequence. Experimental results and simulations suggest that the use of spin diffusion also enables the measurement of long-range heteronuclear dipolar couplings that can be used as additional constraints in the structural and dynamical studies of aligned molecules. The new method is used to determine the de novo atomic-level resolution structure of a liquid crystalline material, N-(4-methoxybenzylidene)-4-butylaniline, and its use on magnetically aligned bicelles is also demonstrated. We expect this technique to also be valuable in the structural studies of functional molecules like columnar liquid crystals and other biomaterials.
Collapse
Affiliation(s)
- Jiadi Xu
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Pieter E. S. Smith
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Ronald Soong
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
43
|
Chu S, Maltsev S, Emwas AH, Lorigan GA. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:89-94. [PMID: 20851650 PMCID: PMC2978330 DOI: 10.1016/j.jmr.2010.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 05/20/2023]
Abstract
A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T₁) times of ³¹P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The ³¹P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τ(c), the r⁻⁶-weighted, time-averaged distances between the spin-labels and the ³¹P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - A-H Emwas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA 45056
| |
Collapse
|
44
|
Zhuang X, Xiao C, Oyaizu K, Chikushi N, Chen X, Nishide H. Synthesis of amphiphilic block copolymers bearing stable nitroxyl radicals. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24345] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Yamamoto K, Xu J, Kawulka KE, Vederas JC, Ramamoorthy A. Use of a copper-chelated lipid speeds up NMR measurements from membrane proteins. J Am Chem Soc 2010; 132:6929-31. [PMID: 20433169 DOI: 10.1021/ja102103n] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated the abilities of solid-state NMR techniques to solve atomic-level-resolution structures and dynamics of membrane-associated proteins and peptides. However, high-throughput applications of solid-state NMR spectroscopy are hampered by long acquisition times due to the low sensitivity of the technique. In this study, we demonstrate the use of a paramagnetic copper-chelated lipid to enhance the spin-lattice relaxation and thereby speed up solid-state NMR measurements. Fluid lamellar-phase bicelles composed of a lipid, detergent, and the copper-chelated lipid and containing a uniformly (15)N-labeled antimicrobial peptide, subtilosin A, were used at room temperature. The use of a chelating lipid reduces the concentration of free copper and limits RF-induced heating, a major problem for fluid samples. Our results demonstrate a 6.2-fold speed increase and a 2.7-fold improvement in signal-to-noise ratio for solid-state NMR experiments under magic-angle spinning and static conditions, respectively. Furthermore, solid-state NMR measurements are shown to be feasible even for nanomole concentrations of a membrane-associated peptide.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | |
Collapse
|
46
|
Esteban-Martín S, Giménez D, Fuertes G, Salgado J. Orientational Landscapes of Peptides in Membranes: Prediction of 2H NMR Couplings in a Dynamic Context. Biochemistry 2009; 48:11441-8. [DOI: 10.1021/bi901017y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santi Esteban-Martín
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
| | - Diana Giménez
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
| | - Gustavo Fuertes
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
| | - Jesús Salgado
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
47
|
Vieira RFF, Casallanovo F, Marín N, Paiva ACM, Schreier S, Nakaie CR. Conformational properties of angiotensin II and its active and inactive TOAC-labeled analogs in the presence of micelles. Electron paramagnetic resonance, fluorescence, and circular dichroism studies. Biopolymers 2009; 92:525-37. [DOI: 10.1002/bip.21295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Ghimire H, McCarrick RM, Budil DE, Lorigan GA. Significantly improved sensitivity of Q-band PELDOR/DEER experiments relative to X-band is observed in measuring the intercoil distance of a leucine zipper motif peptide (GCN4-LZ). Biochemistry 2009; 48:5782-4. [PMID: 19476379 DOI: 10.1021/bi900781u] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulsed electron double resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy is a very powerful structural biology tool in which the dipolar coupling between two unpaired electron spins (site-directed nitroxide spin-labels) is measured. These measurements are typically conducted at X-band (9.4 GHz) microwave excitation using the four-pulse DEER sequence and can often require up to 12 h of signal averaging for biological samples (depending on the spin-label concentration). In this work, we present for the first time a substantial increase in DEER sensitivity obtained by collecting DEER spectra at Q-band (34 GHz), when compared to X-band. The huge boost in sensitivity (factor of 13) demonstrated at Q-band represents a 169-fold decrease in data collection time, reveals a greatly improved frequency spectrum and higher-quality distance data, and significantly increases sample throughput. Thus, the availability of Q-band DEER spectroscopy should have a major impact on structural biology studies using site-directed spin labeling EPR techniques.
Collapse
|
49
|
Esteban-Martín S, Strandberg E, Fuertes G, Ulrich AS, Salgado J. Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane proteins: a theoretical analysis. Biophys J 2009; 96:3233-41. [PMID: 19383467 DOI: 10.1016/j.bpj.2008.12.3950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/12/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022] Open
Abstract
Membrane proteins and peptides exhibit a preferred orientation in the lipid bilayer while fluctuating in an anisotropic manner. Both the orientation and the dynamics have direct functional implications, but motions are usually not accessible, and structural descriptions are generally static. Using simulated data, we analyze systematically the impact of whole-body motions on the peptide orientations calculated from two-dimensional polarization inversion spin exchange at the magic angle (PISEMA) NMR. Fluctuations are found to have a significant effect on the observed spectra. Nevertheless, wheel-like patterns are still preserved, and it is possible to determine the average peptide tilt and azimuthal rotation angles using simple static models for the spectral fitting. For helical peptides undergoing large-amplitude fluctuations, as in the case of transmembrane monomers, improved fits can be achieved using an explicit dynamics model that includes Gaussian distributions of the orientational parameters. This method allows extracting the amplitudes of fluctuations of the tilt and azimuthal rotation angles. The analysis is further demonstrated by generating first a virtual PISEMA spectrum from a molecular dynamics trajectory of the model peptide, WLP23, in a lipid membrane. That way, the dynamics of the system from which the input spectrum originates is completely known at atomic detail and can thus be directly compared with the dynamic output obtained from the fit. We find that fitting our dynamics model to the polar index slant angles wheel gives an accurate description of the amplitude of underlying motions, together with the average peptide orientation.
Collapse
Affiliation(s)
- Santi Esteban-Martín
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna (Valencia), Spain
| | | | | | | | | |
Collapse
|
50
|
Newstadt JP, Mayo DJ, Inbaraj JJ, Subbaraman N, Lorigan GA. Determining the helical tilt of membrane peptides using electron paramagnetic resonance spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:1-7. [PMID: 19254856 PMCID: PMC2666113 DOI: 10.1016/j.jmr.2008.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 05/26/2023]
Abstract
Theoretical calculations of hyperfine splitting values derived from the EPR spectra of TOAC spin-labeled rigid aligned alpha-helical membrane peptides reveal a unique periodic variation. In the absence of helical motion, a plot of the corresponding hyperfine splitting values as a function of residue number results in a sinusoidal curve that depends on the helical tilt angle that the peptide makes with respect to the magnetic field. Motion about the long helical axis reduces the amplitude of the curve and averages out the corresponding hyperfine splitting values. The corresponding spectra can be used to determine the director axis tilt angle from the TOAC spin label, which can be used to calculate the helical tilt angle due to the rigidity of the TOAC spin label. Additionally, this paper describes a method to experimentally determine this helical tilt angle from the hyperfine splitting values of three consecutive residues.
Collapse
Affiliation(s)
- Justin P Newstadt
- Department of Chemistry and Biochemistry, Miami University of Ohio, Room 137, Hughes Laboratories, Oxford, OH 45056-1465, USA
| | | | | | | | | |
Collapse
|