1
|
Xu C, Tran QG, Liu D, Zhai C, Wojtas L, Liu W. Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water. Chem Sci 2024:d4sc05236f. [PMID: 39309075 PMCID: PMC11409225 DOI: 10.1039/d4sc05236f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Hydrogen bonding is prevalent in biological systems, dictating a myriad of life-sustaining functions in aqueous environments. Leveraging hydrogen bonding for molecular recognition in water encounters significant challenges in synthetic receptors on account of the hydration of their functional groups. Herein, we introduce a water-soluble hydrogen bonding cage, synthesized via a dynamic approach, exhibiting remarkable affinities and selectivities for strongly hydrated anions, including sulfate and oxalate, in water. We illustrate the use of charge-assisted hydrogen bonding in amide-type synthetic receptors, offering a general molecular design principle that applies to a wide range of amide receptors for molecular recognition in water. This strategy not only revalidates the functions of hydrogen bonding but also facilitates the effective recognition of hydrophilic anions in water. We further demonstrate an unconventional catalytic mechanism through the encapsulation of the anionic oxalate substrate by the cationic cage, which effectively inverts the charges associated with the substrate and overcomes electrostatic repulsions to facilitate its oxidation by the anionic MnO4 -. Technical applications using this receptor are envisioned across various technical applications, including anion sensing, separation, catalysis, medical interventions, and molecular nanotechnology.
Collapse
Affiliation(s)
- Chengkai Xu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Quy Gia Tran
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Dexin Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Canjia Zhai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| |
Collapse
|
2
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Kaur N, Kour R, Kaur S, Singh P. Perylene diimide-based sensors for multiple analyte sensing (Fe 2+/H 2S/ dopamine and Hg 2+/Fe 2+): cell imaging and INH, XOR, and encoder logic. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2391-2398. [PMID: 37139593 DOI: 10.1039/d3ay00290j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this report, we present our results on the recognition of multiple analytes using trisubstituted PDI-based chemosensors DNP and DNB in 50% HEPES buffered-CH3CN solution. Upon the addition of Hg2+, DNB showed a decrease and increase in absorbance intensity at 560 and 590 nm, respectively, with a detection limit of 7.17 μM and bleaching of the violet color (de-butynoxy). Similarly, the addition of Fe2+ or H2S to the solution of DNP or DNB resulted in ratiometric changes (A688nm/A560nm) with respective detection limits of 185 nM and 27.6 nM for Fe2+, respectively, and a color change from violet to green. However, the addition of >37 μM H2S caused a decrease in absorbance at 688 nm with a concomitant blue shift to 634 nm. Upon the addition of dopamine, the DNP + Fe2+ assay showed ratiometric (A560nm/A688nm) changes within 10 s along with a color change from green to violet. Moreover, DNP has been successfully used for the exogenous detection of Fe2+ in A549 cells. Further, the multiple outputs observed with DNP in the presence of H2S have been used to construct NOR, XOR, INH and 4-to-2 encoder logic gates and circuits.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001 (Pb.), India.
| | - Rasdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143001 (Pb.), India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143001 (Pb.), India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001 (Pb.), India.
| |
Collapse
|
4
|
|
5
|
Characterizing the Properties of Anion-Binding Bis(cyclopeptides) with Solvent-Independent Energy Increments. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The binding energies of 121 complexes between anions and bis(cyclopeptides) differing in the structure and the number of linking units between the two cyclopeptide rings were analyzed. These Gibbs free energies were obtained in earlier work for different anions, under different conditions, and with different methods. The multiparametric analysis of a subset of 42 binding energies afforded linear relationships that allowed the relatively reliable estimation of the iodide and sulfate affinity of three structurally related bis(cyclopeptides) in water/methanol and water/acetonitrile mixtures at different solvent compositions. Three parameters were required to achieve a satisfactory correlation, namely, the Gibbs free energy of transferring the respective anion from water into the solvent mixture in which complex stability was determined, and the Kamlet–Taft parameters α and β. Based on these relationships, the anion affinities of the other bis(cyclopeptides) were evaluated, giving rise to a set of energy increments that allow quantifying the effects of the linker structure or the nature of the anion on binding affinity relative to the reference system.
Collapse
|
6
|
Kubik S. Synthetic Receptors Based on Abiotic Cyclo(pseudo)peptides. Molecules 2022; 27:2821. [PMID: 35566168 PMCID: PMC9103335 DOI: 10.3390/molecules27092821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Work on the use of cyclic peptides or pseudopeptides as synthetic receptors started even before the field of supramolecular chemistry was firmly established. Research initially focused on the development of synthetic ionophores and involved the use of macrocycles with a repeating sequence of subunits along the ring to facilitate the correlation between structure, conformation, and binding properties. Later, nonnatural amino acids as building blocks were also considered. With growing research in this area, cyclopeptides and related macrocycles developed into an important and structurally diverse receptor family. This review provides an overview of these developments, starting from the early years. The presented systems are classified according to characteristic structural elements present along the ring. Wherever possible, structural aspects are correlated with binding properties to illustrate how natural or nonnatural amino acids affect binding properties.
Collapse
Affiliation(s)
- Stefan Kubik
- Fachbereich Chemie-Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|
8
|
Riel AMS, Decato DA, Sun J, Berryman OB. Halogen bonding organocatalysis enhanced through intramolecular hydrogen bonds. Chem Commun (Camb) 2022; 58:1378-1381. [PMID: 34989732 PMCID: PMC8919959 DOI: 10.1039/d1cc05475a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent results indicate a halogen bond donor is strengthened through direct interaction with a hydrogen bond to the electron-rich belt of the halogen. Here, this Hydrogen Bond enhanced Halogen Bond (HBeXB) plays a clear role in a catalyst. Our HBeXB catalyst improves product conversion in a halide abstraction reaction over a traditional halogen bonding derivative.
Collapse
Affiliation(s)
| | - Daniel A. Decato
- Address University of Montana, 32 Campus Drive, Missoula, MT, USA
| | - Jiyu Sun
- Address University of Montana, 32 Campus Drive, Missoula, MT, USA
| | | |
Collapse
|
9
|
Liu Y, Parks FC, Sheetz EG, Chen CH, Flood AH. Polarity-Tolerant Chloride Binding in Foldamer Capsules by Programmed Solvent-Exclusion. J Am Chem Soc 2021; 143:3191-3204. [PMID: 33596052 DOI: 10.1021/jacs.0c12562] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Persistent anion binding in a wide range of solution environments is a key challenge that continues to motivate and demand new strategies in synthetic receptor design. Though strong binding in low-polarity solvents has become routine, our ability to maintain high affinities in high-polarity solvents has not yet reached the standard set by nature. Anions are bound and transported regularly in aqueous environments by proteins that use secondary and tertiary structure to isolate anion binding sites from water. Inspired by this principle of solvent exclusion, we created a sequence-defined foldameric capsule whose global minimum conformation displays a helical folded state and is preorganized for 1:1 anion complexation. The high stability of the folded geometry and its ability to exclude solvent were supported by solid-state and solution phase studies. This capsule then withstood a 4-fold increase in solvent dielectric constant (εr) from dichloromethane (9) to acetonitrile (36) while maintaining a high and solvent-independent affinity of 105 M-1; ΔG ∼ 28 kJ mol-1. This behavior is unusual. More typical of solvent-dependent behavior, Cl- affinities were seen to plummet in control compounds, such as aryl-triazole macrocycles and pentads, with their solvent-exposed binding cavities susceptible to dielectric screening. Finally, dimethyl sulfoxide denatures the foldamer by putative solvent binding, which then lowers the foldamer's Cl- affinity to normal levels. The design of this capsule demonstrates a new prototype for the development of potent receptors that can operate in polar solvents and has the potential to help manage hydrophilic anions present in the hydrosphere and biosphere.
Collapse
Affiliation(s)
- Yun Liu
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Fred C Parks
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Shusterman-Krush R, Grimm L, Avram L, Biedermann F, Bar-Shir A. Elucidating dissociation activation energies in host-guest assemblies featuring fast exchange dynamics. Chem Sci 2020; 12:865-871. [PMID: 34163853 PMCID: PMC8179218 DOI: 10.1039/d0sc05666a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to mediate the kinetic properties and dissociation activation energies (E a) of bound guests by controlling the characteristics of "supramolecular lids" in host-guest molecular systems is essential for both their design and performance. While the synthesis of such systems is well advanced, the experimental quantification of their kinetic parameters, particularly in systems experiencing fast association and dissociation dynamics, has been very difficult or impossible with the established methods at hand. Here, we demonstrate the utility of the NMR-based guest exchange saturation transfer (GEST) approach for quantifying the dissociation exchange rates (k out) and activation energy (E a,out) in host-guest systems featuring fast dissociation dynamics. Our assessment of the effect of different monovalent cations on the extracted E a,out in cucurbit[7]uril:guest systems with very fast k out highlights their role as "supramolecular lids" in mediating a guest's dissociation E a. We envision that GEST could be further extended to study kinetic parameters in other supramolecular systems characterized by fast kinetic properties and to design novel switchable host-guest assemblies.
Collapse
Affiliation(s)
| | - Laura Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Amnon Bar-Shir
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
11
|
Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, Lam MK, Ho YC, Lim JW, Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020; 11:328-355. [PMID: 32138595 PMCID: PMC7161543 DOI: 10.1080/21655979.2020.1736240] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
Collapse
Affiliation(s)
- Khalisanni Khalid
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
- Dalian SEM Bio-Engineering Technology Co., Ltd, Dalian, PR China
| | - Hayyiratul Fatimah Mohd Zaid
- Fundamental and Applied Sciences Department, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chien Lye Chew
- Sime Darby Plantation Research (Formerly Known as Sime Darby Research), R&D Centre – Carey Island, Pulau Carey, Malaysia
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway
| | - Man Kee Lam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Univesiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Center for Urban Resource Sustainably, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia Lim
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Seo SB, Lee S, Jeon HG, Jeong KS. Dramatic Enhancement of Binding Affinities Between Foldamer-Based Receptors and Anions by Intra-Receptor π-Stacking. Angew Chem Int Ed Engl 2020; 59:10441-10445. [PMID: 32157775 DOI: 10.1002/anie.202002657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 01/01/2023]
Abstract
As a synthetic model for intra-protein interactions that reinforce binding affinities between proteins and ligands, the energetic interplay of binding and folding was investigated using foldamer-based receptors capable of adopting helical structures. The receptors were designed to have identical hydrogen-bonding sites for anion binding but different aryl appendages that simply provide additional π-stacking within the helical backbones without direct interactions with the bound anions. In particular, the presence of electron-deficient aryl appendages led to dramatic enhancements in the association constant between the receptor and chloride or nitrate ions, by up to three orders of magnitude. Extended stacking within the receptor contributes to the stabilization of the entire folding structure of complexes, thereby enhancing binding affinities.
Collapse
Affiliation(s)
- Sung Beom Seo
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hae-Geun Jeon
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Bartl J, Kubik S. Anion Binding of a Cyclopeptide-Derived Molecular Cage in Aqueous Solvent Mixtures. Chempluschem 2020; 85:963-969. [PMID: 32406613 DOI: 10.1002/cplu.202000255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Indexed: 11/06/2022]
Abstract
A molecular cage consisting of two cyclic hexapeptides with an alternating sequence of (2S,4S)-4-aminoproline and 6-aminopicolinic acid subunits, covalently linked via three diglycolic acid subunits, interacts with a variety of inorganic anions in acetonitrile/water. In the respective complexes, the anion resides in a cavity between the two cyclopeptide rings where it interacts with six converging NH groups. The cage binds sulfate anions in acetonitrile/water, 2 : 1 (v/v) with a log Ka of 6.7, ca. 2.5 orders of magnitude stronger than an analogous bis(cyclopeptide) with only one linker whose sulfate affinity log Ka amounts to 4.3. The preorganization induced by the three linking units is thus beneficial for sulfate binding. In addition, these linkers cause the dissociation of the sulfate complex to have a substantial Gibbs free energy of activation ΔG≠ of 68.9 kJ mol-1 and they also seem to affect anion selectivity as illustrated by the different effects some anions produce on the 1 H NMR spectra of the triply and singly-linked bis(cyclopeptides). Such anion binding cages represent promising scaffolds to mimic natural anion receptors such as the sulfate-binding protein.
Collapse
Affiliation(s)
- Julia Bartl
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| | - Stefan Kubik
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| |
Collapse
|
14
|
Seo SB, Lee S, Jeon H, Jeong K. Dramatic Enhancement of Binding Affinities Between Foldamer‐Based Receptors and Anions by Intra‐Receptor π‐Stacking. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sung Beom Seo
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Seungwon Lee
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Hae‐Geun Jeon
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Kyu‐Sung Jeong
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
15
|
Song JB, Wang P, Yan L, Hao L, Khan MA, Liu GL, Li H. Crystal structures, red-shifted luminescence and iodide-anion recognition properties of four novel D-A type Zn(ii) complexes. Dalton Trans 2020; 49:4358-4368. [PMID: 32163063 DOI: 10.1039/c9dt04840e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Four D-A type Zn(ii) coordination complexes, [Zn(C29H29N3O2)·(CH3OH)]·(CH3OH) (1), Zn2(C74H90N6O4)·(CH3OH) (2), [Zn(C30H28N4O2)·(CH3OH)]·(CH3OH) (3) and [Zn(C38H44N4O2)·(C2H5OH)]·(C2H5OH) (4), were designed, synthesized, and studied. Their fluorescence properties in the solid state and in THF solution were comprehensively analysed based on their single-crystal structures. The results showed that the red-shift of fluorescence emission from complexes 1 to 4 was successfully achieved via the strategy of enhancing intramolecular charge transfer (ICT) effects by increasing the number of electron-pulling and pushing groups gradually. Meanwhile, because of the fluorescence recognition abilities of these four complexes towards iodide anions in THF, they could be regarded as potential fluorescent sensors for I- in this organic solution in the future.
Collapse
Affiliation(s)
- Jian-Biao Song
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Pengfei Wang
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Li Yan
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Liang Hao
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Maroof Ahmad Khan
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Gui-Lei Liu
- National Research Center for Geoanalysis, Beijing 100037, P. R. China.
| | - Hui Li
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
16
|
Savastano M, García-Gallarín C, López de la Torre MD, Bazzicalupi C, Bianchi A, Melguizo M. Anion-π and lone pair-π interactions with s-tetrazine-based ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Borges A, Gillespie D, Nag A. Biological applications of amide and amino acid containing synthetic macrocycles. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1650178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ariane Borges
- Department of Chemistry, Clark University, Worcester, MA, USA
| | - Dylan Gillespie
- Department of Chemistry, Clark University, Worcester, MA, USA
| | - Arundhati Nag
- Department of Chemistry, Clark University, Worcester, MA, USA
| |
Collapse
|
18
|
Xing X, Zhao Y. Aromatically functionalized pseudo-crown ethers with unusual solvent response and enhanced binding properties. Org Biomol Chem 2019; 16:1627-1631. [PMID: 29446435 DOI: 10.1039/c8ob00100f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational flexibility in the host's structure is often considered detrimental to its binding. Flexible pseudo-crown ethers with aromatic donor/acceptor groups at the chain ends, however, displayed enhanced binding affinity and selectivity, particularly when the direct binding interactions were compromised by unfavorable solvents.
Collapse
Affiliation(s)
- Xiaoyu Xing
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|
19
|
Huang Z, Jia C, Wu B, Jansone-Popova S, Seipp CA, Custelcean R. Selective binding of (thio)sulfate and phosphate in water by quaternary ammonium functionalized oligo-ureas. Chem Commun (Camb) 2019; 55:1714-1717. [DOI: 10.1039/c8cc09550g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization of oligo-ureas with quaternary ammonium groups leads to water soluble receptors for selective binding of adenosine phosphates in water.
Collapse
Affiliation(s)
- Zhe Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | | | - Charles A. Seipp
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Radu Custelcean
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| |
Collapse
|
20
|
Suganya S, Naha S, Velmathi S. A Critical Review on Colorimetric and Fluorescent Probes for the Sensing of Analytes via Relay Recognition from the year 2012-17. ChemistrySelect 2018. [DOI: 10.1002/slct.201801222] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sivalingam Suganya
- Department of Chemistry; National Institute of Technology, Trichy, Tanjore, Thuvakudi, Trichy; Tamilnadu India Pin- 620015
| | - Sanay Naha
- Department of Chemistry; National Institute of Technology, Trichy, Tanjore, Thuvakudi, Trichy; Tamilnadu India Pin- 620015
| | - Sivan Velmathi
- Department of Chemistry; National Institute of Technology, Trichy, Tanjore, Thuvakudi, Trichy; Tamilnadu India Pin- 620015
| |
Collapse
|
21
|
Borges-González J, Martín T. Efficient synthesis of benzocyclotrimer analogues by Negishi cross-coupling and intramolecular nucleophilic substitution. Chem Commun (Camb) 2018; 54:362-365. [DOI: 10.1039/c7cc08616d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Negishi cross-coupling reaction and intramolecular O-alkylations provide flexible and functionalized benzocyclotrimers.
Collapse
Affiliation(s)
- Jorge Borges-González
- Instituto de Productos Naturales y Agrobiología-CSIC
- Avda. Astrofísico Francisco Sánchez
- 3
- 38206-La Laguna
- S/C de Tenerife
| | - Tomás Martín
- Instituto de Productos Naturales y Agrobiología-CSIC
- Avda. Astrofísico Francisco Sánchez
- 3
- 38206-La Laguna
- S/C de Tenerife
| |
Collapse
|
22
|
Xing X, Zhao Y. Intramolecularly enhanced molecular tweezers with unusually strong binding for aromatic guests in unfavorable solvents. Org Biomol Chem 2018; 16:3885-3888. [DOI: 10.1039/c8ob00786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular tweezers using aromatic interactions for binding normally work best in polar instead of nonpolar solvents due to the strong solvophobic effect in the binding.
Collapse
Affiliation(s)
- Xiaoyu Xing
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | - Yan Zhao
- Department of Chemistry
- Iowa State University
- Ames
- USA
| |
Collapse
|
23
|
Ma YL, Ke H, Valkonen A, Rissanen K, Jiang W. Achieving Strong Positive Cooperativity through Activating Weak Non-Covalent Interactions. Angew Chem Int Ed Engl 2017; 57:709-713. [PMID: 29139184 DOI: 10.1002/anie.201711077] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 01/09/2023]
Abstract
Positive cooperativity achieved through activating weak non-covalent interactions is common in biological assemblies but is rarely observed in synthetic complexes. Two new molecular tubes have been synthesized and the syn isomer binds DABCO-based organic cations with high orientational selectivity. Surprisingly, the ternary complex with two hosts and one guest shows a high cooperativity factor (α=580), which is the highest reported for synthetic systems without involving ion-pairing interactions. The X-ray single-crystal structure revealed that the strong positive cooperativity likely originates from eight C-H⋅⋅⋅O hydrogen bonds between the two head-to-head-arranged syn tube molecules. These relatively weak hydrogen bonds were not observed in the free hosts and only emerged in the complex. Furthermore, this complex was used as a basic motif to construct a robust [2+2] cyclic assembly, thus demonstrating its potential in molecular self-assembly.
Collapse
Affiliation(s)
- Yan-Long Ma
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, China.,Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Hua Ke
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Arto Valkonen
- Department of Chemistry, University of Jyvaskyla, Nanoscience Center, P. O. Box 35, 40014, Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, Nanoscience Center, P. O. Box 35, 40014, Jyvaskyla, Finland
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
24
|
Ma Y, Ke H, Valkonen A, Rissanen K, Jiang W. Achieving Strong Positive Cooperativity through Activating Weak Non‐Covalent Interactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Long Ma
- Department of ChemistrySouth University of Science and Technology of China Xueyuan Blvd 1088 Shenzhen 518055 China
- Institute of Chinese Medical ScienceUniversity of Macau Avenida da Universidade, Taipa Macau China
| | - Hua Ke
- Department of ChemistrySouth University of Science and Technology of China Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Arto Valkonen
- Department of ChemistryUniversity of Jyvaskyla, Nanoscience Center P. O. Box 35 40014 Jyvaskyla Finland
| | - Kari Rissanen
- Department of ChemistryUniversity of Jyvaskyla, Nanoscience Center P. O. Box 35 40014 Jyvaskyla Finland
| | - Wei Jiang
- Department of ChemistrySouth University of Science and Technology of China Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
25
|
Kubik S. Anion Recognition in Aqueous Media by Cyclopeptides and Other Synthetic Receptors. Acc Chem Res 2017; 50:2870-2878. [PMID: 29125287 DOI: 10.1021/acs.accounts.7b00458] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anion receptors often rely on coordinative or multiple ionic interactions to be active in water. In the absence of such strong interactions, anion binding in water can also be efficient, however, as demonstrated by a number of anion receptors developed in recent years. The cyclopeptide-derived receptors comprising an alternating sequence of l-proline and 6-aminopicolinic acid subunits are an example. These cyclopeptides are neutral and, at first sight, can only engage in hydrogen-bond formation with an anionic substrate. Nevertheless, they even interact with strongly solvated sulfate anions in water. The intrinsic anion affinity of these cyclopeptides can be related to structural aspects of their highly preorganized concave binding site, which comprises a wall of hydrophobic proline units arranged around the peptide NH groups at the cavity base. When anions are incorporated into this cavity they can engage in hydrogen-bonding interactions to the NH groups, and complex formation also benefits from cavity dehydration. Formation of 1:1 complexes, in which an anion binds to a single cyclopeptide ring, is associated with only small stability constants, however, whereas significantly more stable complexes are formed if the anion is buried between two cyclopeptide molecules. A major contribution to the formation of these sandwich complexes derives from the addition of the second ring to the initially formed 1:1 cyclopeptide-anion complex. This step brings the apolar proline residues of both cyclopeptides in close proximity, which causes the resulting structure to be stabilized to a large extent by hydrophobic effects. Solvent dependent binding studies provided an estimate to which degree these solvent effects contribute to the overall complex stability. In these studies, bis(cyclopeptides) were used, featuring two cyclopeptide rings covalently connected via linkers that enable both rings to simultaneously interact with the anion. Bis(cyclopeptides) with additional solubilizing groups allowed binding studies in a wide range of solvents, including in water. The systematic analysis of the solvent dependence of anion affinity yielded a quantitative correlation between complex stability and parameters relating to the solvation of the anions and solvent properties, confirming that solvent effects contribute to anion binding. Interestingly, the thermodynamic signature of complex formation in water mirrors that of sulfate binding to a protein complex but is opposite to that of other recently described anion receptors, which also do not engage in ionic or coordinative interactions with the substrate. These receptors not only differ in terms of the thermodynamics of binding from the cyclopeptides but also possess a characteristically different anion selectivity in that they prefer to bind weakly coordinating anions but fail to bind sulfate. Solvent effects likely control the anion binding of both receptors types but their impact on complex formation and anion selectivity seems to be profoundly different. Future work in the area of anion coordination chemistry will benefit from the deeper understanding of these effects and how they can be controlled.
Collapse
Affiliation(s)
- Stefan Kubik
- Fachbereich Chemie – Organische
Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| |
Collapse
|
26
|
|
27
|
Sommer F, Marcus Y, Kubik S. Effects of Solvent Properties on the Anion Binding of Neutral Water-Soluble Bis(cyclopeptides) in Water and Aqueous Solvent Mixtures. ACS OMEGA 2017; 2:3669-3680. [PMID: 31457681 PMCID: PMC6641638 DOI: 10.1021/acsomega.7b00867] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 05/31/2023]
Abstract
In this study, the anion-binding bis(cyclopeptide) 2 is introduced, which dissolves freely in water, affording up to 10 mM concentrations, thanks to triethylene glycol-derived substituents in the cyclopeptide subunits and the linker connecting them. Binding studies provided evidence that the anion affinity previously demonstrated for less-soluble analogs of this compound is retained under highly competitive aqueous conditions. The highest affinity in water was observed for iodide, closely followed by sulfate anions, whereas binding of soft and weakly coordinating anions could not be observed. The anion selectivity of 2 thus differs from that of other recently described receptors, which also do not require electrostatic or coordinative interactions for anion binding in water but typically fail to bind strongly coordinating sulfate anions. The ability of 2 to overcome sulfate hydration is attributed to the special mode of binding, combining direct N-H···A- interactions with the release of water molecules from the receptor cavity. The characterization of the anion binding of 2 and a related bis(cyclopeptide) in a variety of different solvents and aqueous solvent mixtures furthermore allowed the correlation of the binding properties with solvent parameters. These analyses provided qualitative and even quantitative insights into the solvent properties and solvation phenomena that mainly affect anion complexation.
Collapse
Affiliation(s)
- Fabian Sommer
- Fachbereich
Chemie—Organische Chemie, Technische
Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Yizhak Marcus
- Institute
of Chemistry, The Hebrew University, Edmund Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Stefan Kubik
- Fachbereich
Chemie—Organische Chemie, Technische
Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| |
Collapse
|
28
|
Gunasekara RW, Zhao Y. Intrinsic Hydrophobicity versus Intraguest Interactions in Hydrophobically Driven Molecular Recognition in Water. Org Lett 2017; 19:4159-4162. [DOI: 10.1021/acs.orglett.7b01535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roshan W. Gunasekara
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
29
|
Mungalpara D, Kelm H, Valkonen A, Rissanen K, Keller S, Kubik S. Oxoanion binding to a cyclic pseudopeptide containing 1,4-disubstituted 1,2,3-triazole moieties. Org Biomol Chem 2017; 15:102-113. [DOI: 10.1039/c6ob02172g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The converging arrangement of hydrogen bond donors from amide NH and 1,2,3-triazole CH groups enables the described cyclic pseudopeptide to interact with oxoanions in water/DMSO mixtures.
Collapse
Affiliation(s)
- Disha Mungalpara
- Technische Universität Kaiserslautern
- Fachbereich Chemie – Organische Chemie
- 67663 Kaiserslautern
- Germany
| | - Harald Kelm
- Technische Universität Kaiserslautern
- Fachbereich Chemie – Anorganische Chemie
- 67663 Kaiserslautern
- Germany
| | - Arto Valkonen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyvaskyla FI-40014
- Finland
| | - Kari Rissanen
- University of Jyvaskyla
- Department of Chemistry
- Nanoscience Center
- Jyvaskyla FI-40014
- Finland
| | - Sandro Keller
- University of Kaiserslautern
- Molecular Biophysics
- 67663 Kaiserslautern
- Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern
- Fachbereich Chemie – Organische Chemie
- 67663 Kaiserslautern
- Germany
| |
Collapse
|
30
|
Chung MK, White PS, Lee SJ, Gagné MR, Waters ML. Investigation of a Catenane with a Responsive Noncovalent Network: Mimicking Long-Range Responses in Proteins. J Am Chem Soc 2016; 138:13344-13352. [PMID: 27631725 PMCID: PMC5553285 DOI: 10.1021/jacs.6b07833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a functional synthetic model for studying the noncovalent networks (NCNs) required for complex protein functions. The model [2]-catenane is self-assembled from dipeptide building blocks and contains an extensive network of hydrogen bonds and aromatic interactions. Perturbations to the catenane cause compensating changes in the NCNs structure and dynamics, resulting in long-distance changes reminiscent of a protein. Key findings include the notion that NCNs require regions of negative cooperativity, or "frustrated" noncovalent interactions, as a source of potential energy for driving the response. We refer to this potential energy as latent free energy and describe a mechanistic and energetic model for responsive systems.
Collapse
Affiliation(s)
| | | | - Stephen J. Lee
- U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709, United States
| | | | | |
Collapse
|
31
|
Jin S, Kato SI, Nakamura Y. Synthesis, Self-association, and Anion Recognition of Conjugated Macrocycles Composed of Carbazole and Triazolium Moieties. CHEM LETT 2016. [DOI: 10.1246/cl.160400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
33
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
34
|
Gunasekara RW, Zhao Y. Enhancing binding affinity and selectivity through preorganization and cooperative enhancement of the receptor. Chem Commun (Camb) 2016; 52:4345-8. [DOI: 10.1039/c5cc10405j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When direct host–guest binding interactions are weakened by unfavorable solvent competition, guest-triggered intrareceptor interactions could be used to augment the binding.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry
- Iowa State University
- Ames
- USA
| |
Collapse
|
35
|
Kaur H, Singh J, Chopra S, Kaur N. Calix[4]arene based dipodal receptor nanohybrids for selective determination of chloride ions in aqueous media. Talanta 2016; 146:122-9. [DOI: 10.1016/j.talanta.2015.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
|
36
|
Lee S, Hirsch BE, Liu Y, Dobscha JR, Burke DW, Tait SL, Flood AH. Multifunctional Tricarbazolo Triazolophane Macrocycles: One-Pot Preparation, Anion Binding, and Hierarchical Self-Organization of Multilayers. Chemistry 2015; 22:560-9. [PMID: 26593327 DOI: 10.1002/chem.201503161] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 01/23/2023]
Abstract
Programming the synthesis and self-assembly of molecules is a compelling strategy for the bottom-up fabrication of ordered materials. To this end, shape-persistent macrocycles were designed with alternating carbazoles and triazoles to program a one-pot synthesis and to bind large anions. The macrocycles bind anions that were once considered too weak to be coordinated, such as PF6 (-) , with surprisingly high affinities (β2 =10(11) M(-2) in 80:20 chloroform/methanol) and positive cooperativity, α=(4 K2 /K1 )=1200. We also discovered that the macrocycles assemble into ultrathin films of hierarchically ordered tubes on graphite surfaces. The remarkable surface-templated self-assembly properties, as was observed by using scanning tunneling microscopy, are attributed to the complementary pairing of alternating triazoles and carbazoles inscribed into both the co-facial and edge-sharing seams that exist between shape-persistent macrocycles. The multilayer assembly is also consistent with the high degree of molecular self-association observed in solution, with self-association constants of K=300 000 M(-1) (chloroform/methanol 80:20). Scanning tunneling microscopy data also showed that surface assemblies readily sequester iodide anions from solution, modulating their assembly. This multifunctional macrocycle provides a foundation for materials composed of hierarchically organized and nanotubular self-assemblies.
Collapse
Affiliation(s)
- Semin Lee
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA).,Current Address: Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801 (USA)
| | - Brandon E Hirsch
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Yun Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - James R Dobscha
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - David W Burke
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Steven L Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| |
Collapse
|
37
|
|
38
|
Sommer F, Kubik S. Anion binding of a neutral bis(cyclopeptide) in water-methanol mixtures containing up to 95% water. Org Biomol Chem 2015; 12:8851-60. [PMID: 25254969 DOI: 10.1039/c4ob01497a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anion receptor 2b was designed and synthesized, which was structurally derived from a previously described bis(cyclopeptide) 2a comprising two covalently linked cyclic hexapeptide rings with alternating L-proline and 6-aminopicolinic acid subunits. Solubilizing groups attached to the aromatic cyclopeptide subunits of 2b cause a substantial improvement of water solubility with respect to 2a, but have negligible effects on anion binding properties. Thus, anion affinity of 2b could be evaluated in aqueous solvent mixtures in which 2a is not sufficiently soluble, namely in water–methanol with a water content of up to 95 vol%. The solvent-dependent characterization of anion binding showed that the logKa values of the iodide and sulfate complexes of 2b decrease linearly with increasing water content while the individual contributions of complexation enthalpy and entropy correlate with the solvent composition in a more complex manner. The obtained results provide insight into the factors that control anion affinity and selectivity of these neutral receptors in aqueous media. In addition, they show that substantial anion affinity can be expected even in 100% water.
Collapse
Affiliation(s)
- Fabian Sommer
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany.
| | | |
Collapse
|
39
|
Riddell IA, Ronson TK, Nitschke JR. Mutual stabilisation between M II4L 6 tetrahedra and M IIX 42- metallate guests. Chem Sci 2015; 6:3533-3537. [PMID: 28706711 PMCID: PMC5492872 DOI: 10.1039/c5sc01083g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/14/2015] [Indexed: 12/26/2022] Open
Abstract
A complex host-guest equilibrium employing metal ions incorporated into both the host and guest is discussed. MIIX42- metallate guests are shown to provide a good size and shape match for encapsulation within the M4L6 tetrahedral capsules, facilitating the generation of previously unreported Zn4L6 complexes. Displacement of the initial, primary template anion (ZnBr42-) by a secondary template anion (ClO4-) is shown to result in the formation of a pentagonal-prismatic Zn10L15 structure that incorporates both Br- and ClO4-. Furthermore, the formation of heterometallic complexes provides direct evidence for metal exchange between the guest and host complex.
Collapse
Affiliation(s)
- Imogen A Riddell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
40
|
Wu J, Kwon B, Liu W, Anslyn EV, Wang P, Kim JS. Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem Rev 2015; 115:7893-943. [DOI: 10.1021/cr500553d] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiasheng Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bomi Kwon
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| | - Weimin Liu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Eric V. Anslyn
- Department
of Chemistry, The University of Texas at Austin, 105 E. 24th,
Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Pengfei Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
41
|
Forte G, D’Urso A, Ballistreri FP, Toscano RM, Tomaselli GA, Trusso Sfrazzetto G, Pappalardo A. Enantiomeric recognition of α-amino acid derivatives by chiral uranyl–salen receptors. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Bothra S, Kumar R, Pati RK, Kuwar A, Choi HJ, Sahoo SK. Virgin silver nanoparticles as colorimetric nanoprobe for simultaneous detection of iodide and bromide ion in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:122-6. [PMID: 25950637 DOI: 10.1016/j.saa.2015.04.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 05/27/2023]
Abstract
A simple colorimetric nanoprobe based on virgin silver nanoparticles (AgNPs) was developed for the selective detection of iodide and bromide ions via aggregation and anti-aggregation mechanism. With addition of I(-) ions, virgin AgNPs, in presence of Fe(3+), showed perceptible color change from yellow to colorless along with disappearance of surface plasmon resonance (SPR) band of AgNPs at 400 nm. But in presence of Cr(3+), AgNPs turned yellow upon addition of I(-)and Br(-) anions. The developed virgin AgNPs probe showed high specificity and selectivity with the detection limits down to 0.32 μM and 1.32 μM for I(-) ions via two different mechanistic routes. Also, the designed probe detects Br(-) with a detection limit down to 1.67 μM.
Collapse
Affiliation(s)
- Shilpa Bothra
- Department of Applied Chemistry, SV National Institute of Technology (SVNIT), Surat 395007, India
| | - Rajender Kumar
- Department of Applied Chemistry, SV National Institute of Technology (SVNIT), Surat 395007, India
| | - Ranjan K Pati
- Department of Applied Chemistry, SV National Institute of Technology (SVNIT), Surat 395007, India
| | - Anil Kuwar
- School of Chemical Sciences, North Maharashtra University, Jalgaon (MS), India
| | - Heung-Jin Choi
- Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Suban K Sahoo
- Department of Applied Chemistry, SV National Institute of Technology (SVNIT), Surat 395007, India; Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
43
|
Sun H, Hunter CA, Llamas EM. The flexibility-complementarity dichotomy in receptor-ligand interactions. Chem Sci 2015; 6:1444-1453. [PMID: 29560233 PMCID: PMC5811160 DOI: 10.1039/c4sc03398a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022] Open
Abstract
Synthetic supramolecular complexes provide an opportunity for quantitative systematic exploration of the relationship between chemical structure and molecular recognition phenomena. A family of closely related zinc porphyrin-pyridine complexes was used to examine the interplay of conformational flexibility and geometric complementarity in determining the selectivity of molecular recognition events. The association constants of 48 zinc porphyrin-pyridine complexes were measured in two different solvents, toluene and 1,1,2,2-tetrachloroethane (TCE). These association constants were used to construct 32 chemical double mutant cycles to dissect the free energy contributions of intramolecular H-bonds between the phenol side arms of the porphyrins and the ester or amide side arms of the pyridine ligands. Effective molarities (EM) for the intramolecular interactions were determined by comparison with the corresponding intermolecular H-bonding interactions. The values of EM do not depend on the solvent and are practically identical for amide and ester H-bond acceptors located at the same site on the ligand framework. However, there are variations of an order of magnitude in EM depending on the flexibility of the linker used to connect the H-bond acceptors to the pyridine ligands. Rigid aromatic linkers give values of EM that are an order of magnitude higher than the values of EM for the corresponding ester linkers, which have one additional torsional degree of freedom. However, the most flexible ether linkers give values of EM that are also higher than the values of EM for the corresponding ester linkers, which have one less torsional degree of freedom. Although the penalty for conformational restriction on binding is higher for the more flexible ether linkers, this flexibility allows optimization of the geometric complementarity of the ligand for the receptor, so there is a trade off between preorganization and fit.
Collapse
Affiliation(s)
- Hongmei Sun
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , UK .
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Eva Marina Llamas
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , UK .
| |
Collapse
|
44
|
Gunasekara RW, Zhao Y. Rationally Designed Cooperatively Enhanced Receptors To Magnify Host–Guest Binding in Water. J Am Chem Soc 2015; 137:843-9. [DOI: 10.1021/ja510823h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Roshan W. Gunasekara
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
45
|
Kaur A, Raj T, Kaur S, Singh N, Kaur N. Fluorescent organic nanoparticles of dihydropyrimidone derivatives for selective recognition of iodide using a displacement assay: application of the sensors in water and biological fluids. Org Biomol Chem 2015; 13:1204-12. [DOI: 10.1039/c4ob02152e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescent organic nanoparticles (FON's) derived from dihydropyrimidone derivatives (1–4) were developed and evaluated for their sensor properties.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Tilak Raj
- Centre for Nanoscience and Nanotechnology (UIEAST)
- Panjab University
- Chandigarh
- India
| | - Simanpreet Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Narinder Singh
- Centre for Nanoscience and Nanotechnology (UIEAST)
- Panjab University
- Chandigarh
- India
| | - Navneet Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| |
Collapse
|
46
|
Kaur N, Dhaka G, Singh J. Hg2+-induced deprotonation of an anthracene-based chemosensor: set–reset flip-flop at the molecular level using Hg2+ and I− ions. NEW J CHEM 2015. [DOI: 10.1039/c5nj00683j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A simple chemosensor 1 shows a “turn-off” sensing of Hg2+ ions, whereas the in situ formed Hg2+ complex can be used for “turn-on” sensing with I− ions. These fluorescence changes have been used for the construction of a set–reset flip-flop circuit.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh 160014
- India
| | - Gargi Dhaka
- Department of Chemistry
- Panjab University
- Chandigarh 160014
- India
| | - Jasvinder Singh
- Department of Chemistry
- Panjab University
- Chandigarh 160014
- India
| |
Collapse
|
47
|
Saha I, Lee JH, Hwang H, Kim TS, Lee CH. Remarkably selective, non-linear allosteric regulation of anion binding by a tetracationic calix[4]pyrrole homodimer. Chem Commun (Camb) 2015; 51:5679-82. [DOI: 10.1039/c5cc00487j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A covalently coupled, dimeric tetra-cationic calix[4]pyrrole homodimer bearing anthracene linkers displayed distinctive cooperativity and fluoride selectivity with large positive allosterism.
Collapse
Affiliation(s)
- Indrajit Saha
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| | - Ji Hye Lee
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| | - Hyonseok Hwang
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| | - Tae Sun Kim
- Department of Chemistry Hallym University
- Chun Cheon
- 200-701 Korea
| | - Chang-Hee Lee
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| |
Collapse
|
48
|
Abstract
Cyclic peptides provide excellent scaffolds for anion recognition and improved binding affinity and selectivity has been achieved through peptide backbone rigidification and the introduction of side chains bearing anion recognition groups.
Collapse
|
49
|
Chen S, Wang P, Jia C, Lin Q, Yuan W. A mechanosynthesized, sequential, cyclic fluorescent probe for mercury and iodide ions in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 133:223-8. [PMID: 24945863 DOI: 10.1016/j.saa.2014.05.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/15/2014] [Accepted: 05/16/2014] [Indexed: 05/14/2023]
Abstract
A fluorescent Hg(2+)-selective chemosensor, 2,5-dimethoxybenzaldehyde thiosemicarbazone (1), was quantitatively prepared by grinding 2,5-dimethoxybenzaldehyde and thiosemicarbazide together in a ball mill for 15min. The excitation and emission maxima of compound 1 are 347 and 450nm, respectively. The reaction of this ligand with Hg(2+) was investigated by FT-IR, (1)H NMR, and fluorescence titration. Results show that the composition of the resulting Hg complex 1-Hg is 2:1 1:Hg, and that the S and imino N atoms serve as the binding sites of the ligand to the Hg(2+) ions. Coordination-assisted fluorescence quenching results show that compound 1 exhibits a highly selective fluorescence response to trace amounts of Hg(2+) in water. More importantly, the resulting complex 1-Hg can be used as a turn-on fluorescence probe for I(-) at a detection limit of 8.4×10(-8)M. Thus, compound 1 is a relatively stable, sequential, cyclic fluorescent probe for Hg(2+) and I(-).
Collapse
Affiliation(s)
- Shangwen Chen
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Chemical Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Pipi Wang
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Chemical Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Chunmei Jia
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Chemical Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Qiang Lin
- School of Chemistry and Chemical Engineering, Hainan Normal University, 99 Longkun South Road, Haikou 571158, China.
| | - Wenbing Yuan
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Chemical Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; School of Chemistry and Chemical Engineering, Hainan Normal University, 99 Longkun South Road, Haikou 571158, China.
| |
Collapse
|
50
|
Yang W, Shao J, Xu Y, Zhou W, Xie J. Fluorescence detection of iodide anion using a donor–acceptor (D–A) thiourea derivative. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|