1
|
Zhang P, Yin Y, Tong X, Chen P, He Z, Li Z, Xu B, Wang C, Kang X, Han B. Bio-based hydrogels induced by salts. Chem Commun (Camb) 2024; 60:11960-11963. [PMID: 39352228 DOI: 10.1039/d4cc04162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
In this study, we introduce a salt-responsive hydrogel system utilizing a sugar-derived surfactant featuring a polyhydroxy spacer in its headgroup. The inclusion of salts enhances and organizes the intermolecular hydrogen bonding within the hydrophilic region of the polyhydroxy spacer, promoting cross-linking among surfactant molecules.
Collapse
Affiliation(s)
- Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuosen He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Zhihong Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Baocai Xu
- Beijing Technology and Business University, School of Light Industry Science and Engineering, 100048, China
| | - Ce Wang
- Beijing Technology and Business University, School of Light Industry Science and Engineering, 100048, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai, 200062, China
| |
Collapse
|
2
|
Holey S, Nayak RR. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review. ACS OMEGA 2024; 9:25513-25538. [PMID: 38911776 PMCID: PMC11190938 DOI: 10.1021/acsomega.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.
Collapse
Affiliation(s)
- Snehal
Ashokrao Holey
- Department
of Oils, Lipid Science and Technology, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rati Ranjan Nayak
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
3
|
Wang M, Yan L, Guo X, Xing X, Liang F, Han C, Liu L. Design and Properties of Novel Hydrophobic Natural Tea Saponin and Its Organogels. Gels 2024; 10:225. [PMID: 38667644 PMCID: PMC11049091 DOI: 10.3390/gels10040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
It was first discovered that the excellent gelation ability of tea saponin can be obtained by introducing long-chain alkyl groups of dodecanoyl chloride into the glycosyl portion with direct esterification. The modified dodecanoyl chloride-tea saponin (DC-TS) was successfully synthesized and characterized with NMR, MS, and FT-IR. The tests showed that the long-chain alkyl group was successfully introduced. Combined with SEM and X-ray diffraction patterns, we found that the stable lamellar shape gels of DC-TS were formed in a variety of solvents. More interestingly, organogel was also obtained by adjusting good solvent and poor solvent as mixed solvent. It is worth noting that the driving force of organogels is the combination of hydrogen bonding and the hydrophobic interaction of the introduced alkyl chains with the rigid backbone of pentacyclic triterpenes. The modified tea saponin, a natural green surfactant, was discovered to have gelation properties, which has broadened tea saponin's scope of application and made it more promising.
Collapse
Affiliation(s)
- Maogong Wang
- CNPC Engineering Technology R&D Company Limited, Beijing 102206, China;
| | - Liuxin Yan
- MOE Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; (L.Y.); (X.G.); (X.X.); (F.L.); (L.L.)
| | - Xuying Guo
- MOE Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; (L.Y.); (X.G.); (X.X.); (F.L.); (L.L.)
| | - Xinwei Xing
- MOE Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; (L.Y.); (X.G.); (X.X.); (F.L.); (L.L.)
| | - Fengqian Liang
- MOE Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; (L.Y.); (X.G.); (X.X.); (F.L.); (L.L.)
| | - Chunrui Han
- MOE Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; (L.Y.); (X.G.); (X.X.); (F.L.); (L.L.)
| | - Liujun Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China; (L.Y.); (X.G.); (X.X.); (F.L.); (L.L.)
| |
Collapse
|
4
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Zhang J, Zhao D, Lu K. Mechanisms and influencing factors of peptide hydrogel formation and biomedicine applications of hydrogels. SOFT MATTER 2023; 19:7479-7493. [PMID: 37756117 DOI: 10.1039/d3sm01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Self-assembled peptide-based hydrogels have shown great potential in bio-related applications due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization. Herein, the structure and characteristics of hydrogels and the mechanism of action of several regular secondary structures during gelation are investigated. The factors influencing the formation of peptide hydrogels, especially the pH responsiveness and salt ion induction are analyzed and summarized. Finally, the biomedical applications of peptide hydrogels, such as bone tissue engineering, cell culture, antigen presentation, antibacterial materials, and drug delivery are reviewed.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Yingcai Road 18, Zhengzhou, 450044, Henan Province, China.
| |
Collapse
|
6
|
Hydrogelation behaviour of methoxy terpyridine ligand induced by transition metal ions. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
7
|
Saharan Y, Singh J, Goyat R, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Novel supramolecular organo-oil gelators for fast and effective oil trapping: Mechanism and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129977. [PMID: 36193609 DOI: 10.1016/j.jhazmat.2022.129977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In this paper, for the sorption of oil from oil polluted soil/water systems, nine new supramolecular organo-oil gelators were synthesized using three distinct diisocyanates and alcohols. The manufactured gelators were characterized using various techniques. The Fourier transform infrared (FTIR) and mass spectra confirmed the successful formation of the oil gelators. The synthesis of the proposed gelators was confirmed by the 1H NMR, which exhibited three singlets that were attributed to an aliphatic side chain containing 29 protons. The scanning electron microscopy (SEM) analysis exhibited porous, sheets, prisms, and fibrous structures for the supramolecular oil gelators. The oil uptake data analysis was subjected to the Langmuir and Freundlich isotherm models which showed the R2 value of 0.99 and a maximum adsorption capacity (qmax) of 45 mLg-1. From the mechanistic point of view, it was proposed that the organo-oil gel initially leads to self-assembly and further entanglements forming the fibers, which finally make a trap for the oil molecules. Among all the nine gelators and different combinations used, the combination of ditetradecyl (TDI 14: DMI14: HMI 14) gelators in the ratio of 1:2:1 exhibited maximum oil uptake of ∼58% initially which further boosted to ∼99% using gasoline as the co-congealed solvent. Interestingly, the complete gelation of the oil from the oil-water mixture was achieved within 30 min of application with high oil recovery. The presented study confirmed that the oil removal by organo-oil gelator is a simple, novel, and facile technique, which could be employed for treating oil-contaminated soil/water mixture.
Collapse
Affiliation(s)
- Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133203, Haryana, India.
| | - Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Kingdom of Saudi Arabia
| | | |
Collapse
|
8
|
Sutradhar S, Das D, Ghosh BN. Copper(II) and Cadmium(II) triggered hydrogelation of a simple trimethoxy terpyridine ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022; 14:pharmaceutics14081733. [PMID: 36015356 PMCID: PMC9412871 DOI: 10.3390/pharmaceutics14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Zhang J, Zhang M, Dong Y, Gu W, Liu T, Xing X, Song J, Wang M, Han C. Molecular Design, Supramolecular Assembly, and Excellent Dye Adsorption Capacity of Natural Rigid Dehydroabietic Acid-Tailored Amide Organogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8918-8927. [PMID: 35819938 DOI: 10.1021/acs.langmuir.2c01068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is very appealing to synthesize functional soft materials from natural and abundant plant diterpenes because they have conformationally rigid and chiral properties. Herein, dehydroabietic-based monoamide (DA-1) and diamide (DA-2) were designed by introducing device interactions, π-π stacking and hydrogen bonding, with an aromatic group, C═O, and N-H. DA-1 and DA-2 can be gelled in a mixed solvent and a single solvent, respectively. Several novel supramolecular organic gels including highly entangled three-dimensional networks composed of rods or fibers were constructed. Interestingly, DA-2 forms a helical structure that is right-handed under the cooperative control of the solvent and the rigid structure of rosin. Gel formation was primarily driven by hydrogen bonding, π-π stacking, and van der Waals force. Combined with Gaussian calculation and X-ray diffraction (XRD), we established pack patterns for each system, revealing the roles played by rosin and amide groups. Moreover, the carbon tetrachloride gel of DA-2 can effectively remove Congo red in an aqueous solution, and the removal rate can reach 98.4%. This research explores an efficient organic gel for adsorbing Congo red dye with the secretions of pine trees.
Collapse
Affiliation(s)
- Junjie Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ming Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Dong
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wanting Gu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tong Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinwei Xing
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jie Song
- Department of Natural Sciences, University of Michigan-Flint, 303 E. Kearsley Street, Flint, Michigan 48502, United States
| | - Maogong Wang
- CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
| | - Chunrui Han
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Sukul PK, Das P, Dhakar GL, Das L, Malik S. Effect of Tricarboxylic Acids on the Formation of Hydrogels with Melem or Melamine: Morphological, Structural and Rheological Investigations. Gels 2022; 8:gels8010051. [PMID: 35049586 PMCID: PMC8774776 DOI: 10.3390/gels8010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, aggregation behaviors of melem or melamine in the presence of three symmetric carboxylic acids (1,3,5-tris(4-carboxyphenyl)benzene (TPCA), 1,3,5-benzene-tri-carboxylic acid (BTA) and 1,3,5-cyclohexane-tri-carboxylic acid (CHTA)) have been performed to check the influence of acid on the formation of aggregated structures which have been investigated by optical microscopy, FESEM, FTIR, XRD and viscoelastic properties have been explored with rheological studies. Interestingly, melem, that has limited solubility in aqueous medium, forms aggregation that leads to the formation of hydrogels with TPCA. More significantly, hydrogel is formed here by matching the size selectivity. Melem forms hydrogel with only large tricarboxylic acid, whereas melamine produces hydrogel with any kind of its counterpart from small to large tricarboxylic acid derivatives. Present investigations and results provide the strategy of design of organic self-assembled materials having two component systems.
Collapse
Affiliation(s)
- Pradip Kumar Sukul
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, Action Area-II, Kolkata 700135, India;
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Puspendu Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Gopal Lal Dhakar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Lalmohan Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Sudip Malik
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
- Correspondence:
| |
Collapse
|
12
|
Singh SK, Dey S, Schneider MP, Nandi S. d-Mannitol based surfactants for cosmetic and food applications and hydrogels to produce stabilized Ag nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic approach for lipid modification of mannitol for hydrogelation, cosmetic and food application.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Swapan Dey
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Manfred P. Schneider
- FB C - Organische Chemie, Bergische Universitat Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Sukhendu Nandi
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
13
|
Zhang Y, Ding Y, Li X, Zhang Z, Zhang X, Chen Y, Yang Z, Shi Y, Hu ZW. Enzyme-instructed self-assembly enabled fluorescence light-up for alkaline phosphatase detection. Talanta 2021; 239:123078. [PMID: 34823863 DOI: 10.1016/j.talanta.2021.123078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022]
Abstract
Alkaline phosphatase (ALP) exists in both normal and pathological tissues. Spatiotemporal variations in ALP levels can reveal its potential physiological functions and changes that occur during pathological conditions. However, it is still challenging to exploit fluorescent probes that can measure ALP activity under good spatial and temporal resolutions. Herein, enzyme-instructed self-assembly (EISA) was used to construct a high-performing analytical tool (MN-pY) to probe ALP activity. MN-pY alone (free state) showed negligible fluorescence but presented an almost 13-fold increase in fluorescence intensity in the presence of ALP (assembly state). Mechanism study indicated the increase in fluorescence intensity was due to hydrogelation and formation of supramolecular fibrils, mainly consisting of dephosphorylated MN-Y. The dephosphorylation and further fibrillation of MN-pY could induce the formation of a "hydrophobic pocket", leading to a further increase in fluorescence intensity. Moreover, MN-pY could selectively illuminate HeLa cells with a higher ALP expression but not LO2 cells with lower ALP levels, promising a potential application in cancer diagnosis.
Collapse
Affiliation(s)
- Yiming Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xinxin Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Zhenghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yumiao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Zhi-Wen Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
|
15
|
Skopinska-Wisniewska J, De la Flor S, Kozlowska J. From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances. Int J Mol Sci 2021; 22:7402. [PMID: 34299020 PMCID: PMC8307912 DOI: 10.3390/ijms22147402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
Supramolecular hydrogels are 3D, elastic, water-swelled materials that are held together by reversible, non-covalent interactions, such as hydrogen bonds, hydrophobic, ionic, host-guest interactions, and metal-ligand coordination. These interactions determine the hydrogels' unique properties: mechanical strength; stretchability; injectability; ability to self-heal; shear-thinning; and sensitivity to stimuli, e.g., pH, temperature, the presence of ions, and other chemical substances. For this reason, supramolecular hydrogels have attracted considerable attention as carriers for active substance delivery systems. In this paper, we focused on the various types of non-covalent interactions. The hydrogen bonds, hydrophobic, ionic, coordination, and host-guest interactions between hydrogel components have been described. We also provided an overview of the recent studies on supramolecular hydrogel applications, such as cancer therapy, anti-inflammatory gels, antimicrobial activity, controlled gene drug delivery, and tissue engineering.
Collapse
Affiliation(s)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland;
| |
Collapse
|
16
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
17
|
Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110494] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Ma H, Yu J, Liu L, Fan Y. An optimized preparation of nanofiber hydrogels derived from natural carbohydrate polymers and their drug release capacity under different pH surroundings. Carbohydr Polym 2021; 265:118008. [PMID: 33966853 DOI: 10.1016/j.carbpol.2021.118008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/01/2022]
Abstract
Cellulose and chitin, as the two important natural carbohydrate polymers, have possibility to disassemble to biomass derived polysaccharide nanofibers. The 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidized nanocellulose and nanochitin based hydrogel was fabricated via acid gas phase coagulation. It was observed that hydrogels began to form when the pH was lower than 3. When 0.1 mL of acetic acid coagulation bath was provided, 10 h were enough to form sufficient physical crosslinking. Moreover, the release time of amygdalin loaded in the hydrogel could be more than 60 h with a release amount of 80 % due to the uniform network and water-bearing structure. Meanwhile, the release capacity of hydrogels showed diversity at different pH surroundings, which was attributed to the existence of carboxyl groups on the oxidized nanofiber. The results suggested the possible application of the produced nanofiber hydrogels in some specific areas, such as drug delivery, wound dressing, and food packaging.
Collapse
Affiliation(s)
- Huazhong Ma
- Nanjing Forestry University, Longpan Road 159, Nanjing, China.
| | - Juan Yu
- Nanjing Forestry University, Longpan Road 159, Nanjing, China.
| | - Liang Liu
- Nanjing Forestry University, Longpan Road 159, Nanjing, China.
| | - Yimin Fan
- Nanjing Forestry University, Longpan Road 159, Nanjing, China.
| |
Collapse
|
19
|
Kimura S, Yokoya M, Yamanaka M. Biological-stimuli-responsive Supramolecular Hydrogels toward Medicinal and Pharmaceutical Applications. CHEM LETT 2021. [DOI: 10.1246/cl.200765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shinya Kimura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masashi Yokoya
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
20
|
Tsutsumi N, Ito A, Ishigamori A, Ikeda M, Izumi M, Ochi R. Synthesis and Self-Assembly Properties of Bola-Amphiphilic Glycosylated Lipopeptide-Type Supramolecular Hydrogels Showing Colour Changes Along with Gel-Sol Transition. Int J Mol Sci 2021; 22:1860. [PMID: 33668410 PMCID: PMC7917936 DOI: 10.3390/ijms22041860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Supramolecular hydrogels formed by self-assembly of low-molecular-weight amphiphiles (hydrogelators) have attracted significant attention, as smart and soft materials. However, most of the observed stimuli-responsive behaviour of these supramolecular hydrogels are limited to gel-sol transitions. In this study, we present bola-amphiphilic glycosylated lipopeptide-type supramolecular hydrogelators that exhibit reversible thermochromism along with a gel-sol transition. The bola-amphiphiles have mono-, di-, tri- or tetra-phenylalanine (F) as a short peptide moiety. We investigate and discuss the effects of the number of F residues on the gelation ability and the morphology of the self-assembled nanostructures.
Collapse
Affiliation(s)
- Naoki Tsutsumi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan; (N.T.); (M.I.)
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan;
- Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Azumi Ishigamori
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan;
| | - Masato Ikeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masayuki Izumi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan; (N.T.); (M.I.)
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan;
- Interdisciplinary Science Unit, Multidisciplinary Sciences Cluster, Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Rika Ochi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan; (N.T.); (M.I.)
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan;
- Interdisciplinary Science Unit, Multidisciplinary Sciences Cluster, Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
21
|
Yang YS, Shang Q, Zhang YP, Niu WY, Xue JJ. Synthesis and self-assembly of Salen type Schiff based on o-phenylenediamine organogels in response to Zn2+. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Samateh M, Sagiri SS, Sanni R, Chee CA, Satapathy S, John G. Tuning Aesthetic and Mechanical Properties of Oleogels via Formulation of Enzyme-Enabled Stereoisomeric Molecular Gelators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13282-13290. [PMID: 32991807 DOI: 10.1021/acs.jafc.0c00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanistic resemblance of oil-based molecular gels (oleogels) to solid fats (trans and saturated) makes molecular gelation an ideal alternative in developing fat-based food and cosmetic products. The recent upsurge in the preference for oleogels (structured oils) is due to them being healthier than conventional solid fats. The present study reveals a simple means of modulating the mechanical and aesthetic properties of oleogels by physically mixing two isomeric low-molecular-weight gelators, mannitol dioctanoate (M8) and sorbitol dioctanoate (S8), which have contrasting oil-structuring behaviors; while M8 formed oleogels with a higher gel strength, the S8 gels were more aesthetic, translucent, and appealing. The gelators were synthesized by enzyme catalysis (a generally regarded as safe protocol). The M8/S8 gels were systematically and thoroughly characterized using a suite of analytical techniques, including minimum gelation concentration, gel melting point, rheological storage modulus, oil binding capacity, light transmittance, and optical microscopy. The results showed that the percentage of light transmittance, which is associated with aesthetics, increased from about 40 to 95% with an increasing fraction of S8 from 0 to 1. Parameters associated with mechanical strength, such as rheology, were also quite responsive to varying proportions of the gelators. The storage modulus (G', a rheological property) increased from about 3300 to about 12 500 Pa with an increasing fraction of M8. As the fraction of M8 increased, the solid fat content (SFC) changed from about 3.51 to 2.08%, while the oil binding capacity changed from about 70.2 to 100.0. This work enables the modulation of the aesthetic and organoleptic properties of a gel via a simple formulation of stereoisomeric molecular gelators.
Collapse
Affiliation(s)
- Malick Samateh
- Department of Chemistry & Biochemistry and Center for Discovery and Innovation, The City College of New York, New York City, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| | - Sai Sateesh Sagiri
- Department of Chemistry & Biochemistry and Center for Discovery and Innovation, The City College of New York, New York City, New York 10031, United States
| | - Riliwan Sanni
- Department of Chemistry & Biochemistry and Center for Discovery and Innovation, The City College of New York, New York City, New York 10031, United States
| | - Cindy A Chee
- Department of Chemistry & Biochemistry and Center for Discovery and Innovation, The City College of New York, New York City, New York 10031, United States
| | - Sitakanta Satapathy
- Department of Chemistry & Biochemistry and Center for Discovery and Innovation, The City College of New York, New York City, New York 10031, United States
| | - George John
- Department of Chemistry & Biochemistry and Center for Discovery and Innovation, The City College of New York, New York City, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| |
Collapse
|
23
|
Wang D, Chen H, Song B, Yan T, Zhai Z, Pei X, Cui Z. Supramolecular Hydrogels with Chiral Nanofibril Structures Formed from β-Cyclodextrin and a Rosin-Based Amino Acid Surfactant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10056-10062. [PMID: 32816467 DOI: 10.1021/acs.jafc.0c03748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational combination of natural molecules is expected to provide new soft material building blocks. Herein, a rosin-based amino acid surfactant was synthesized using dehydroabietic acid and l-serine as the starting materials (denoted as R-6-Ser). Supramolecular hydrogels were formed when β-cyclodextrin (β-CD) was mixed with R-6-Ser at molar ratios of over 0.5:1 and above certain concentrations. The hydrogels were investigated using rheometry, small-angle X-ray scattering, CD spectroscopy, and cryo-transmission electron microscopy (cryo-TEM). The β-CD associated with the isopropyl benzyl group of the dehydroabietic acid unit in R-6-Ser and formed R-6-Ser@β-CD complexes. The complexes and R-6-Ser self-assembled to form elongated right-handed rigid fibers with a diameter of approximately 7-8 nm, which were responsible for the elasticity of the hydrogels. This work demonstrated the feasibility of preparing supramolecular hydrogels from a diterpenoid-based surfactant and β-CD and provides a new means of utilizing the secretions of pine trees.
Collapse
Affiliation(s)
- Danping Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Tingting Yan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Zhaolan Zhai
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, P.R. China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
24
|
Amygdalin based G-6-P synthase inhibitors as novel preservatives for food and pharmaceutical products. Sci Rep 2020; 10:13903. [PMID: 32807915 PMCID: PMC7431536 DOI: 10.1038/s41598-020-70895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
G-6-P synthase enzyme has been involved in the synthesis of the microbial cell wall, and its inhibition may lead to the antimicrobial effect. In the present study, we designed a library of amygdalin derivatives, and two most active derivatives selected on the basis of various parameters viz. dock score, binding energy, and ADMET data using molecular docking software (Schrodinger’s Maestro). The selected derivatives were synthesized and evaluated for their antioxidant and antimicrobial potential against several Gram (+ ve), Gram (−ve), as well as fungal strains. The results indicated that synthesized compounds exhibited good antioxidant, antimicrobial, and better preservative efficacy in food preparation as compared to the standard compounds. No significant differences were observed in different parameters as confirmed by Kruskal–Wallis test (p < 0.05). Docking results have been found in good correlation with experimental wet-lab data. Moreover, the mechanistic insight into the docking poses has also been explored by binding interactions of amygdalin derivative inside the dynamic site of G-6-P synthase.
Collapse
|
25
|
Oosumi R, Ikeda M, Ito A, Izumi M, Ochi R. Structural diversification of bola-amphiphilic glycolipid-type supramolecular hydrogelators exhibiting colour changes along with the gel-sol transition. SOFT MATTER 2020; 16:7274-7278. [PMID: 32658225 DOI: 10.1039/d0sm01068e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We diversified the structures of bola-amphiphilic glycolipid-type supramolecular hydrogelators that exhibited reversible thermochromism along with a gel-sol transition. The hydrogelators were designed and synthesized to have homo- or hetero-saccharides on each end of their molecules. Herein, the effects of the saccharides' structure on the gelation ability are discussed.
Collapse
Affiliation(s)
- Ryoya Oosumi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan and United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan and Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Masayuki Izumi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan. and Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Rika Ochi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan. and Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
26
|
Quaternary ammonium poly (amidoamine) dendrimeric encapsulated nanocurcumin efficiently prevents cataract of rat pups through regulation of pro-inflammatory gene expression. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Ouyang Y, Chen L, Qian L, Lin X, Fan X, Teng H, Cao H. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside. Food Chem 2020; 317:126418. [DOI: 10.1016/j.foodchem.2020.126418] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 11/15/2022]
|
28
|
Meng FB, Zhang Q, Li YC, Li JJ, Liu DY, Peng LX. Konjac glucomannan octenyl succinate as a novel encapsulation wall material to improve curcumin stability and bioavailability. Carbohydr Polym 2020; 238:116193. [DOI: 10.1016/j.carbpol.2020.116193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
|
29
|
Ma S, Moser D, Han F, Leonhard M, Schneider-Stickler B, Tan Y. Preparation and antibiofilm studies of curcumin loaded chitosan nanoparticles against polymicrobial biofilms of Candida albicans and Staphylococcus aureus. Carbohydr Polym 2020; 241:116254. [PMID: 32507182 DOI: 10.1016/j.carbpol.2020.116254] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023]
Abstract
Polymicrobial biofilms related infections are an important clinical problem with classical antibiotics being not sufficient in therapy. Here, curcumin (Cur) was loaded on positively charged chitosan nanoparticles (CSNP). The antibiofilm activities against mono- and polymicrobial biofilms of Candida albicans and Staphylococcus aureus were evaluated. The average diameter of CSNP-Cur was 134.37 ± 1.99 nm and its surface charge was +18.10 ± 0.82 mV. Cur released from NPs was slower at pH 7.4 than at pH 5.4. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to observe biofilm architecture and live/dead organisms within biofilm on medical silicone surface. CSNP-Cur exhibited excellent antibiofilm activity against planktonic bacteria or fungi, mono- and polymicrobial biofilm formations and preformed biofilms. SEM and CLSM showed that CSNP-Cur was able to reduce biofilm thickness as well as kill microbial cells embedded in biofilm on silicone surfaces.
Collapse
Affiliation(s)
- Su Ma
- Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Feng Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Matthias Leonhard
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Berit Schneider-Stickler
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Yulong Tan
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
|
31
|
Sekhar KPC, Swain DK, Holey SA, Bojja S, Nayak RR. Unsaturation and Polar Head Effect on Gelation, Bioactive Release, and Cr/Cu Removal Ability of Glycolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3080-3088. [PMID: 32134673 DOI: 10.1021/acs.langmuir.0c00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing of multifunctional soft and smart materials from natural sources is a useful strategy for producing safer chemicals having potential applications in biomedical research and pharmaceutical industries. Herein, eight glycolipids with variation in unsaturation of hydrophobic tail and polar headgroup size were designed. The effect of unsaturation in the tail group and headgroup size on gelation ability, and mechanical and thermal stability of glycolipid hydro/organogels was studied to understand structure and property relationship. Glycolipids are functional amphiphilic molecules having potential applications in the field of drug delivery and metal removal. The encapsulation capacity and kinetic release behavior of hydrophobic/hydrophilic bioactives like curcumin/riboflavin from the hydrophobic/hydrophilic pockets of glycolipids hydro/organogels was examined. A significant observation was that the glucamine moiety of the glycolipid headgroup plays a vital role in removal of Cr and Cu from oil/water biphasic systems. Typical functions of the glycolipid hydrogels are metal chelation and enzyme-triggered release behavior, enabled them as promising material for Cr, Cu removal from edible oils and controlled release of water soluble/insoluble bioactives.
Collapse
Affiliation(s)
- Kanaparedu P C Sekhar
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Kumar Swain
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Snehal Ashokrao Holey
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreedhar Bojja
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Rati Ranjan Nayak
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
32
|
Dodangeh M, Grabchev I, Gharanjig K, Staneva D, Tang RC, Sheridan M. Modified PAMAM dendrimers as a matrix for the photostabilization of curcumin. NEW J CHEM 2020. [DOI: 10.1039/d0nj02737e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Six recently synthesised PAMAM dendrimers from zero, first and second generations curcumin and 2,4-dihydroxybenzophenone have been investigated in water/dioxane (4 : 1) (v/v) solution by absorption and fluorescence spectroscopy in order to determine their photostability.
Collapse
Affiliation(s)
- Mohammad Dodangeh
- Department of Organic Colorants
- Institute for Color Science and Technology
- Tehran 16765-654
- Iran
- National Engineering Laboratory for Modern Silk
| | - Ivo Grabchev
- Sofia University “St. Kliment Ohridski”
- Faculty of Medicine
- Sofia 1407
- Bulgaria
| | - Kamaladin Gharanjig
- Department of Organic Colorants
- Institute for Color Science and Technology
- Tehran 16765-654
- Iran
- Center of Excellence for Color Science and Technology
| | | | - Ren-Cheng Tang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | | |
Collapse
|
33
|
Bindu H, Palanisamy A. Polyethylene‐Glycol‐Based Thermoreversible Biscarbamate Hydrogels and Metallogels Synthesized through Non‐Isocyanate Route. ChemistrySelect 2019. [DOI: 10.1002/slct.201903108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hima Bindu
- Polymers and Functional Materials DivisionCSIR-Indian Institute of Chemical Technology, Hyderabad Telangana 500007 India
| | - Aruna Palanisamy
- Polymers and Functional Materials DivisionCSIR-Indian Institute of Chemical Technology, Hyderabad Telangana 500007 India
| |
Collapse
|
34
|
Dhayani A, Kalita S, Mahato M, Srinath P, Vemula PK. Biomaterials for topical and transdermal drug delivery in reconstructive transplantation. Nanomedicine (Lond) 2019; 14:2713-2733. [DOI: 10.2217/nnm-2019-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lifelong systemic immunosuppression remains the biggest challenge in vascularized composite allotransplantation (VCA) due to the adverse effects it causes. Since VCA is a life-enhancing procedure as compared with solid organ transplant which is life-saving; one needs to weigh the benefits and risks carefully. Thus, there is a huge unmet clinical need to design biomaterial-based vehicles that can deliver drugs more efficiently, topically and locally to eliminate adverse effects of systemic immune suppression. This review discusses several biomaterial-based systems that have been carefully designed, conceived and attempted to make VCA a more patient compliant approach. Variety of promising preclinical studies has shown the feasibility of the approaches, and clinical trials are required to bridge the gap. Several challenges for the future and new approaches have been discussed.
Collapse
Affiliation(s)
- Ashish Dhayani
- Institute for Stem Cell Science & Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bengaluru 560065, Karnataka, India
- School of Chemical & Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Sanjeeb Kalita
- Institute for Stem Cell Science & Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bengaluru 560065, Karnataka, India
| | - Manohar Mahato
- Institute for Stem Cell Science & Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bengaluru 560065, Karnataka, India
| | - Preethem Srinath
- Institute for Stem Cell Science & Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bengaluru 560065, Karnataka, India
| | - Praveen K Vemula
- Institute for Stem Cell Science & Regenerative Medicine (inStem), UAS-GKVK Campus, Bellary Road, Bengaluru 560065, Karnataka, India
| |
Collapse
|
35
|
Zhang YP, Wang BX, Yang YS, Liang C, Yang C, Chai HL. Synthesis and self-assembly of chalcone-based organogels. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Xi Y, Jiang T, Yu Y, Yu J, Xue M, Xu N, Wen J, Wang W, He H, Shen Y, Chen D, Ye X, Webster TJ. Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy. Int J Nanomedicine 2019; 14:6425-6437. [PMID: 31496695 PMCID: PMC6691947 DOI: 10.2147/ijn.s211981] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Curcumin (CUR) is a general ingredient of traditional Chinese medicine, which has potential antitumor effects. However, its use clinically has been limited due to its low aqueous solubility and bioavailability. In order to improve the therapeutic effect of CUR on osteosarcoma (i.e., bone cancer), a multifunctional micelle was developed here by combining active bone accumulating ability with tumor CD44 targeting capacity. METHODS The CUR loaded micelles were self-assembled by using alendronate-hyaluronic acid-octadecanoic acid (ALN-HA-C18) as an amphiphilic material. The obtained micelles were characterized for size and drug loading. In addition, the in vitro release behavior of CUR was investigated under PBS (pH 5.7) medium containing 1% Tween 80 at 37℃. Furthermore, an hydroxyapatite (the major inorganic component of bone) affinity experiment was studied. In vitro antitumor activity was evaluated. Finally, the anti-tumor efficiency was studied. RESULTS The size and drug loading of the CUR loaded ALN-HA-C18 micelles were about 118 ± 3.6 nm and 6 ± 1.2%, respectively. CUR was released from the ALN-HA-C18 micelles in a sustained manner after 12 h. The hydroxyapatite affinity experiment indicated that CUR loaded ALN-HA-C18 micelles exhibited a high affinity to bone. CUR loaded ALN-HA-C18 micelles exhibited much higher cytotoxic activity against MG-63 cells compared to free CUR. Finally, CUR loaded ALN-HA-C18 micelles effectively delayed anti-tumor growth properties in osteosarcoma bearing mice as compared with free CUR. CONCLUSION The present study suggested that ALN-HA-C18 is a novel promising micelle for osteosarcoma targeting and delivery of the hydrophobic anticancer drug CUR.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu215500, Jiangsu, People’s Republic of China
| | - Yinglan Yu
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Mintao Xue
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Ning Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Weiheng Wang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Hailong He
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daquan Chen
- Department of Pharmaceutics, School of Pharmacy, Yantai University, Yantai264005, People’s Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
37
|
Soundarajan K, Mohan Das T. Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water. Carbohydr Res 2019; 481:60-66. [PMID: 31252336 DOI: 10.1016/j.carres.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 11/15/2022]
Abstract
The synthesis of 3,4,5-tri-O-benzohydrazide based N-glycosylamines were characterized using NMR (1H and 13C) and mass spectral analysis. Gelation properties of the synthesized molecules in different solvents and oils were studied and gelation was observed with minimum Critical Gelator Concentration (CGC) of 0.8% (w/v) in benzene. The free hydroxyl group of the sugar moiety, benzohydrazide and three alkyl chains present in all these compounds afford the collective driving forces for gelation. Phase-Selective Organo-Gelators (PSOGs) are molecules that can gel the oil selectively from the biphasic combination of oil and water and it is one of the good candidates for recovering oil in case of oil spill. It is observed that these gelators can be used as solid particles on a biphasic system consist of oil and water. It solidifies the oil selectively which can be taken out by means of the physical process. FT-IR and UV-Vis spectroscopy suggest that the driving forces for the gelation are hydrogen-bonding, π-π stacking and van der Waals interaction. The gels were studied using FE-SEM, DSC and rheological techniques. FE-SEM analysis shows that the formation of thin fibers and large wrinkle like aggregate structure in the gel state is due to the presence of different weak molecular interactions. The phase selection and gel-sol transition properties of these molecules confer their ability to absorb and release dyes with high efficiency.
Collapse
Affiliation(s)
- Kamalakannan Soundarajan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Thangamuthu Mohan Das
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India.
| |
Collapse
|
38
|
Caravieri BB, de Jesus NAM, de Oliveira LK, Araujo MD, Andrade GP, Molina EF. Ureasil Organic–Inorganic Hybrid as a Potential Carrier for Combined Delivery of Anti-Inflammatory and Anticancer Drugs. ACS APPLIED BIO MATERIALS 2019; 2:1875-1883. [DOI: 10.1021/acsabm.8b00798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beatriz B. Caravieri
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Natana A. M. de Jesus
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Lilian K. de Oliveira
- UEMG − Universidade do Estado de Minas Gerais, Unidade de Passos, Av. Juca Stockler 1130, Passos, MG, Brazil
| | - Marina D. Araujo
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Gabriele P. Andrade
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Eduardo F. Molina
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| |
Collapse
|
39
|
Zhong J, Fu H, Jia X, Lou H, Wan T, Luo H, Liu H, Zhong D, Luo X. A pH-/thermo-responsive hydrogel formed from N, N'-dibenzoyl-l-cystine: properties, self-assembly structure and release behavior of SA. RSC Adv 2019; 9:11824-11832. [PMID: 35517010 PMCID: PMC9063318 DOI: 10.1039/c8ra09058k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/09/2019] [Indexed: 01/27/2023] Open
Abstract
In this study, we report a pH-/thermo-responsive hydrogel formed by N,N'-dibenzoyl-l-cystine (DBC). It is difficult to dissolve DBC in water even on heating, and it exhibits no gelation ability. Interestingly, DBC is readily soluble in NaOH solution at room temperature and the self-assembled hydrogels are obtained by adjusting the basic DBC aqueous solution with HCl to achieve a given pH value (<3.5). When NaOH is added to the hydrogel (pH > 9.4), it becomes a sol again. This small-molecule hydrogel is characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, rheological measurement and differential scanning calorimetry. The results indicate that the DBC hydrogel exhibits excellent mechanical properties, thermo-reversibility, and pH-responsive properties. Fortunately, the single crystal of DBC is obtained by volatilizing its acid aqueous solution. It crystallizes in the monoclinic space group P21 (Z = 2) with lattice parameters a = 10.8180 (11) Å, b = 9.0405 (9) Å, c = 10.9871 (11) Å and β = 90.798 (3)°. By comparing the X-ray diffraction result of the DBC single crystal with that of its xerogel, the self-assembled structure of DBC in hydrogel has been ascertained. The gelators are self-assembled via strong intermolecular hydrogen bonds linking neighboring amide and carboxyl groups, π-π stacking interactions for aromatic rings, and hydrogen bonds between water molecules. In addition, the release behavior of salicylic acid (SA) molecules from the DBC gel is also investigated taking into account the DBC concentration, phosphate buffer solution (PBS) pH and SA concentration. When the concentrations of DBC and SA are 3.0 g L-1 and 200 mg L-1, respectively, the release ratio in PBS (pH = 4.0) reaches 58.02%. The diffusion-controlled mechanism is in accordance with Fickian diffusion control within the given time range.
Collapse
Affiliation(s)
- Jinlian Zhong
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Hongyu Fu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Xinjian Jia
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Haoxiang Lou
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Tiantian Wan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Haiqing Luo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Huijin Liu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Dichang Zhong
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Xuzhong Luo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
40
|
Thamizhanban A, Lalitha K, Sarvepalli GP, Maheswari CU, Sridharan V, Rayappan JBB, Nagarajan S. Smart supramolecular gels of enolizable amphiphilic glycosylfuran. J Mater Chem B 2019; 7:6238-6246. [DOI: 10.1039/c9tb01480b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this report, bio-based amphiphilic glycosylfurans were synthesized using a biocatalyst. For the first time, we are reporting on hydrogelation via in situ molecular tuning of amphiphilic glycosylfurans followed by a self-sorting mechanism.
Collapse
Affiliation(s)
- Ayyapillai Thamizhanban
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Krishnamoorthy Lalitha
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Guru Prasanth Sarvepalli
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - C. Uma Maheswari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Rahya-Suchani (Bagla)
- Jammu – 181143
- India
| | | | - Subbiah Nagarajan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| |
Collapse
|
41
|
Kumar BA, Nayak RR. Supramolecular phenoxy-alkyl maleate-based hydrogels and their enzyme/pH-responsive curcumin release. NEW J CHEM 2019. [DOI: 10.1039/c8nj05796f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low molecular-weight hydrogelators as stimuli-responsive drug carrier agents in the pharmaceutical field.
Collapse
Affiliation(s)
- Bijari Anil Kumar
- Centre for Lipid Science and Technology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- Academy of Scientific and Innovative Research
| | - Rati Ranjan Nayak
- Centre for Lipid Science and Technology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
42
|
Morita-Imura C, Sakurai Y, Uchiumi A, Shindo H. Ion-selective molecular inclusion of organic dyes into pH-responsive gel assemblies of zwitterionic surfactants. NEW J CHEM 2019. [DOI: 10.1039/c9nj01335k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pH-Responsive sol–gel transition of a surfactant gel took place along with ion-selective capture and release of dye molecules.
Collapse
Affiliation(s)
- Clara Morita-Imura
- Department of Chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo
- Japan
| | - Yuka Sakurai
- Department of Chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo
- Japan
| | - Anna Uchiumi
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| | - Hitoshi Shindo
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| |
Collapse
|
43
|
Prasad YS, Saritha B, Tamizhanban A, Lalitha K, Kabilan S, Maheswari CU, Sridharan V, Nagarajan S. Enzymatic synthesis and self-assembly of glycolipids: robust self-healing and wound closure performance of assembled soft materials. RSC Adv 2018; 8:37136-37145. [PMID: 35557831 PMCID: PMC9089313 DOI: 10.1039/c8ra07703g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
In developing countries, wounds are a major health concern and pose a significant problem. Hence, the development of new materials that can act as scaffolds for in situ tissue regeneration and regrowth is necessary. In this report, we present a new class of injectable oleogel and composite gel derived from glycolipids that provide reversible interlinked 3D fiberous network architecture for effective wound closure by tissue regrowth and regeneration. Glycolipids were derived from α-chloralose and various vinyl esters using Novozyme 435, an immobilized lipase B from Candida antarctica as a catalyst, in good yield. These glycolipids undergo spontaneous self-assembly in paraffin oil to form an oleogel, in which curcumin was successfully incorporated to generate a composite gel. Morphological analysis of the oleogel and composite gel clearly revealed the formation of a 3D fiberous network. Rheological investigation revealed the thermal and mechanical processability of the oleogel and composite gel under various experimental conditions. Interestingly, the developed injectable oleogel and composite gel are able to accelerate the wound healing process by regulating the overlapping phases of inflammation, cell proliferation and extracellular matrix remodelling. Since chloralose displays anesthetic properties, this study will establish a new strategy to develop anesthetic wound healing oleogels in the future.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Balasubramani Saritha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Ayyapillai Tamizhanban
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Krishnamoorthy Lalitha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Sakthivel Kabilan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla) District-Samba Jammu-181143 Jammu and Kashmir India
| | - Subbiah Nagarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur - 613401 Tamil Nadu India
- Department of Chemistry, National Institute of Technology Warangal Warangal-506004 Telangana India +91-9940430715
| |
Collapse
|
44
|
Nag A, Chakraborty P, Natarajan G, Baksi A, Mudedla SK, Subramanian V, Pradeep T. Bent Keto Form of Curcumin, Preferential Stabilization of Enol by Piperine, and Isomers of Curcumin∩Cyclodextrin Complexes: Insights from Ion Mobility Mass Spectrometry. Anal Chem 2018; 90:8776-8784. [PMID: 29996050 DOI: 10.1021/acs.analchem.7b05231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A detailed examination of collision cross sections (CCSs) coupled with computational methods has revealed new insights into some of the key questions centered around curcumin, one of the most intensively studied natural therapeutic agents. In this study, we have distinguished the structures and conformers of the well-known enol and the far more elusive keto form of curcumin by using ion mobility mass spectrometry (IM MS). The values of the theoretically predicted isomers were compared with the experimental CCS values to confirm their structures. We have identified a bent structure for the keto form and the degree of bending was estimated. Using IM MS, we have also shown that ESI MS reflects the solution phase structures and their relative populations, in this case. Piperine, a naturally occurring heterocyclic compound, is known to increase the bioavailability of curcumin. However, it is still not clearly understood which tautomeric form of curcumin is better stabilized by it. We have identified preferential stabilization of the enol form in the presence of piperine using IM MS. Cyclodextrins (CDs) are used as well-known carriers in the pharmaceutical industry for increasing the stability, solubility, bioavailability, and tolerability of curcumin. However, the crystal structures of supramolecular complexes of curcumin∩CD are unknown. We have determined the structures of different isomers of curcumin∩CD (α- and β-CD) complexes by comparing the CCSs of theoretically predicted structures with the experimentally obtained CCSs, which will further help in understanding the specific role of the structures involved in different biological activities.
Collapse
Affiliation(s)
- Abhijit Nag
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Papri Chakraborty
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Ganapati Natarajan
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Ananya Baksi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Sathish Kumar Mudedla
- Chemical Laboratory , CSIR-Central Leather Research Institute , Adyar, Chennai 600020 , India
| | - Venkatesan Subramanian
- Chemical Laboratory , CSIR-Central Leather Research Institute , Adyar, Chennai 600020 , India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| |
Collapse
|
45
|
The Positive Role of Curcumin-Loaded Salmon Nanoliposomes on the Culture of Primary Cortical Neurons. Mar Drugs 2018; 16:md16070218. [PMID: 29941790 PMCID: PMC6070829 DOI: 10.3390/md16070218] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Curcumin (diferuloylmethane) is a natural bioactive compound with many health-promoting benefits. However, its poor water solubility and bioavailability has limited curcumin’s biomedical application. In the present study, we encapsulated curcumin into liposomes, formed from natural sources (salmon lecithin), and characterized its encapsulation efficiency and release profile. The proposed natural carriers increased the solubility and the bioavailability of curcumin. In addition, various physico-chemical properties of the developed soft nanocarriers with and without curcumin were studied. Nanoliposome-encapsulated curcumin increased the viability and network formation in the culture of primary cortical neurons and decreased the rate of apoptosis.
Collapse
|
46
|
Basu N, Chakraborty A, Ghosh R. Carbohydrate Derived Organogelators and the Corresponding Functional Gels Developed in Recent Time. Gels 2018; 4:E52. [PMID: 30674828 PMCID: PMC6209255 DOI: 10.3390/gels4020052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to their multifarious applicability, studies of molecular and supramolecular gelators and their corresponding gels have gained momentum, particularly in the last two decades. Hydrophobic⁻hydrophilic balance, different solvent parameters, gelator⁻gelator and gelator⁻solvent interactions, including different noncovalent intermolecular interactive forces like H-bonding, ionic interactions, π⁻π interactions, van der Waals interactions, etc., cause the supramolecular gel assembly of micro and nano scales with different types of morphologies, depending on the gelator, solvent, and condition of gelation. These gel structures can be utilized for making template inorganic superstructures for potential application in separation, generation of nanocomposite materials, and other applications like self-healing, controlled drug encapsulation, release and delivery, as structuring agents, oil-spill recovery, for preparation of semi-conducting fabrics, and in many other fields. Sugars, being easily available, inexpensive, and nontoxic natural resources with multi functionality and well-defined chirality are attractive starting materials for the preparation of sugar-based gelators. This review will focus on compilation of sugar derived organogelators and the corresponding gels, along with the potential applications that have been developed and published recently between January 2015 and March 2018.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, West Bengal 712246, India.
| | - Arijit Chakraborty
- Department of Chemistry, Acharya B. N. Seal College, Cooch Behar, West Bengal 736101, India.
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
47
|
Samateh M, Pottackal N, Manafirasi S, Vidyasagar A, Maldarelli C, John G. Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation. Sci Rep 2018; 8:7315. [PMID: 29743527 PMCID: PMC5943253 DOI: 10.1038/s41598-018-25691-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022] Open
Abstract
Chia (Salvia hispanica) and basil (Ocimum basilicum) seeds have the intrinsic ability to form a hydrogel concomitant with moisture-retention, slow releasing capability and proposed health benefits such as curbing diabetes and obesity by delaying digestion process. However, the underlying mode of gelation at nanoscopic level is not clearly explained or explored. The present study elucidates and corroborates the hypothesis that the gelling behavior of such seeds is due to their nanoscale 3D-network formation. The preliminary study revealed the influence of several conditions like polarity, pH and hydrophilicity/hydrophobicity on fiber extrusion from the seeds which leads to gelation. Optical microscopic analysis clearly demonstrated bundles of fibers emanating from the seed coat while in contact with water, and live growth of fibers to form 3D network. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies confirmed 3D network formation with fiber diameters ranging from 20 to 50 nm.
Collapse
Affiliation(s)
- Malick Samateh
- Department of Chemistry and Biochemistry & Center for Discovery and Innovation (CDI), The City College of New York, New York, NY, 10031, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Neethu Pottackal
- Department of Chemistry and Biochemistry & Center for Discovery and Innovation (CDI), The City College of New York, New York, NY, 10031, USA
| | - Setareh Manafirasi
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Adiyala Vidyasagar
- Department of Chemistry and Biochemistry & Center for Discovery and Innovation (CDI), The City College of New York, New York, NY, 10031, USA
| | - Charles Maldarelli
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - George John
- Department of Chemistry and Biochemistry & Center for Discovery and Innovation (CDI), The City College of New York, New York, NY, 10031, USA. .,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
48
|
Wang L, Shi X, Wu Y, Zhang J, Zhu Y, Wang J. A multifunctional supramolecular hydrogel: preparation, properties and molecular assembly. SOFT MATTER 2018; 14:566-573. [PMID: 29334109 DOI: 10.1039/c7sm02358h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A novel supramolecular hydrogel was designed and constructed by molecular self-assembly of a cationic gemini surfactant, 1,3-bis(N,N-dimethyl-N-cetylammonium)-2-propylacrylate dibromide (AGC16), and an anionic aromatic compound, trisodium 1,3,6-naphthalenetrisulfonate (NTS). Owing to its unique structure, the hydrogel (abbreviated as AGC16/NTS) has the potential to be used as a multifunctional drug delivery system. The structure and properties of AGC16/NTS were characterized by rheological measurements, differential scanning calorimetry, variable-temperature 1H nuclear magnetic resonance, ultraviolet-visible spectroscopy, variable-temperature fluorescence emission spectroscopy, cryogenic scanning electron microscopy, transmission electron microscopy and X-ray diffraction methods. The rheological and DSC analysis results revealed that the gel AGC16/NTS was formed below 57 °C. It was found from UV-vis, fluorescence and 1H NMR spectroscopy characterization that aromatic π-π stacking and hydrophobic forces were indispensable to the formation of AGC16/NTS. The Cryo-SEM and TEM observation results indicated that gelators AGC16 and NTS self-assembled into one-dimensional fibers which further tightly intertwined to form a three-dimensional network structure. Based on the spectroscopic data and X-ray diffraction measurement results, a self-assembly model was proposed, helping to further understand the molecular self-assembly mechanism of AGC16/NTS. It was also found that the electrostatic force, hydrophobic force and π-π interaction were the three main driving forces for the gelation. The multiple non-covalent interactions between AGC16 and NTS endowed the hydrogel with excellent performance when the hydrogel was used as a carrier for drug delivery, due to multiple micro-domains within the same gel system. We further investigated the encapsulation and releasing properties of the hydrogel, using the hydrophobic model drug curcumin (Cur) and the model drug naproxen sodium (Npx) with aromatic ring structure. The fluorescence spectroscopy analysis confirmed that Npx was carried through aromatic π-π stacking and the 1H NMR measurement result revealed that Cur was encapsulated within the hydrophobic cavities of AGC16/NTS through hydrophobic interaction. Moreover, the drug release study results showed a sustained release of drugs from the hydrogel, indicating good application prospects in exploring new multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | |
Collapse
|
49
|
Mayr J, Saldías C, Díaz Díaz D. Release of small bioactive molecules from physical gels. Chem Soc Rev 2018; 47:1484-1515. [PMID: 29354818 DOI: 10.1039/c7cs00515f] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pharmaceutical drugs with low water solubility have always received great attention within the scientific community. The reduced bioavailability and the need of frequent administrations have motivated the investigation of new drug delivery systems. Within this context, drug carriers that release their payload in a sustained way and hence reduce the administration rate are highly demanded. One interesting strategy to meet these requirements is the entrapment of the drugs into gels. So far, the most investigated materials for such drug-loaded gels are derived from polymers and based on covalent linkages. However, over the last decade the use of physical (or supramolecular) gels derived from low molecular weight compounds has experienced strong growth in this field, mainly due to important properties such as injectability, stimuli responsiveness and ease of synthesis. This review summarizes the use of supramolecular gels for the encapsulation and controlled release of small therapeutic molecules.
Collapse
Affiliation(s)
- Judith Mayr
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| | - César Saldías
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casella 302, Correo 22, Santiago, Chile
| | - David Díaz Díaz
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany. and Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
50
|
Lalitha K, Gayathri K, Prasad YS, Saritha R, Thamizhanban A, Maheswari CU, Sridharan V, Nagarajan S. Supramolecular Gel Formation Based on Glycolipids Derived from Renewable Resources. Gels 2017; 4:E1. [PMID: 30674777 PMCID: PMC6318777 DOI: 10.3390/gels4010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The potential applications of self-assembled supramolecular gels based on natural molecules encouraged the researchers to develop a versatile synthetic method for their structural analogues. Herein, we report a facile synthesis of glycolipid from renewable resources, cashew nut shell liquid,d and d-glucose in good yield. Gelation behavior of these glycolipids were studied in a wide range of solvents and oils. To our delight, compound 5b formed a hydrogel with Critical gelator concentration (CGC) of 0.29% w/v. Morphological analysis of the hydrogel depicts the formation of twisted fibers with an entangled network. Formation of a twisted fibrous structure was further identified by CD spectral studies with respect to temperature. The molecular self-assembly assisted by hydrogen bonding, hydrophobic, and π⁻π stacking interactions were identified by X-ray diffraction (XRD) and FTIR studies. Rheological analysis depicted the mechanical strength and stability of the hydrogel, which is crucial in predicting the practical applications of supramolecular soft materials.
Collapse
Affiliation(s)
- Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Kandasamy Gayathri
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Yadavali Siva Prasad
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Rajendhiran Saritha
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - A Thamizhanban
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - C Uma Maheswari
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Vellaisamy Sridharan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, Jammu and Kashmir, India.
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and CeNTAB, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| |
Collapse
|