1
|
Wu R, Yang C, Wang L, Zhong D. Ultrafast Dynamics of Fatty Acid Photodecarboxylase in Anionic Semiquinone State. J Phys Chem Lett 2022; 13:11023-11028. [PMID: 36413431 PMCID: PMC9747331 DOI: 10.1021/acs.jpclett.2c02183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fatty acid photodecarboxylase is a newly identified blue-light driven photoenzyme that catalyzes decarboxylation of fatty acids. The catalytic reaction involves a transient anionic semiquinone of flavin cofactor (FAD•-) as an intermediate, but photochemical properties of this anionic radical are largely unknown. Here, we have anaerobically produced the wild-type FAP in the FAD•- state and conducted femtosecond-resolved fluorescence and absorption measurements. We have observed the multiphasic deactivation dynamics of excited states on multiple time scales from a few picoseconds even to a few nanoseconds through conical intersections between various electronic states. Interestingly, the nanosecond components can only be observed from higher electronic excited states. Our results show the complexity of the energy landscapes of various excited states and rule out the occurrence of electron or proton transfer with nearby residue(s) in the active site.
Collapse
Affiliation(s)
| | | | | | - Dongping Zhong
- Corresponding Author : Dongping Zhong − Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus Ohio, 43210, USA;
| |
Collapse
|
2
|
Iacobucci C, Schäfer M, Sinz A. Free radical-initiated peptide sequencing (FRIPS)-based cross-linkers for improved peptide and protein structure analysis. MASS SPECTROMETRY REVIEWS 2019; 38:187-201. [PMID: 29660147 DOI: 10.1002/mas.21568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Free radical-initiated peptide sequencing (FRIPS) has recently been introduced as an analytical strategy to create peptide radical ions in a predictable and effective way by collisional activation of specifically modified peptides ions. FRIPS is based on the unimolecular dissociation of open-shell ions and yields fragments that resemble those obtained by electron capture dissociation (ECD) or electron transfer dissociation (ETD). In this review article, we describe the fundamentals of FRIPS and highlight its fruitful combination with chemical cross-linking/mass spectrometry (MS) as a highly promising option to derive complementary structural information of peptides and proteins. FRIPS does not only yield exhaustive sequence information of cross-linked peptides, but also defines the exact cross-linking sites of the connected peptides. The development of more advanced FRIPS cross-linkers that extend the FRIPS-based cross-linking/MS approach to the study of large protein assemblies and protein interaction networks can be eagerly anticipated.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Cologne, D-50939, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| |
Collapse
|
3
|
Kempkes LJ, Martens J, Berden G, Houthuijs KJ, Oomens J. Investigation of the position of the radical in z3-ions resulting from electron transfer dissociation using infrared ion spectroscopy. Faraday Discuss 2019; 217:434-452. [DOI: 10.1039/c8fd00202a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular structures of six open-shell z3-ions resulting from electron transfer dissociation mass spectrometry (ETD MS) were investigated using infrared ion spectroscopy in combination with density functional theory and molecular mechanics/molecular dynamics calculations.
Collapse
Affiliation(s)
| | - Jonathan Martens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Kas J. Houthuijs
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
- Van’t Hoff Institute for Molecular Sciences
| |
Collapse
|
4
|
Commodore JJ, Cassady CJ. Electron transfer dissociation mass spectrometry of acidic phosphorylated peptides cationized with trivalent praseodymium. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1178-1188. [PMID: 30221809 PMCID: PMC6291000 DOI: 10.1002/jms.4291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The lanthanide ion praseodymium, Pr(III), was employed to study metallated ion formation and electron transfer dissociation (ETD) of 27 biological and model highly acidic phosphopeptides. All phosphopeptides investigated form metallated ions by electrospray ionization (ESI) that can be studied by ETD to yield abundant sequence information. The ions formed are [M + Pr - H]2+ , [M + Pr]3+ , and [M + Pr + H]4+ . All biological phosphopeptides with a chain length of seven or more residues generate [M + Pr]3+ . For biological phosphopeptides, [M + Pr]3+ undergoes more backbone cleavage by ETD than [M + Pr - H]2+ and, in some cases, full sequence coverage occurs. Acidic model phosphorylated hexa-peptides and octa-peptides, composed of alanine residues and one phosphorylated residue, form exclusively [M + Pr - H]2+ by ESI. Limited sequence information is obtained by ETD of [M + Pr - H]2+ with only metallated product ions being generated. For two biological phosphopeptides, [M + Pr + H]4+ is observed and may be due to the presence of at least one residue with a highly basic side chain that facilitates the addition of an extra proton. For the model phosphopeptides, more sequence coverage occurs when the phosphorylated residue is in the middle of the sequence than at either the N- or C-terminus. ETD of the metallated precursor ions formed by ESI generates exclusively metallated and nonmetallated c- and z-ions for the biological phosphopeptides, while metallated c-ions, z-ions, and a few y-ions form for the model phosphopeptides. Most of the product ions contain the phosphorylated residue indicating that the metal ion binds predominantly at the deprotonated phosphate group. The results of this study indicate that ETD is a promising tool for sequencing highly acidic phosphorylated peptides by metal adduction with Pr (III) and, by extension, all nonradioactive lanthanide metal ions.
Collapse
Affiliation(s)
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
5
|
Kempkes LM, Martens J, Berden G, Oomens J. Spectroscopic Characterization of an Extensive Set of c-Type Peptide Fragment Ions Formed by Electron Transfer Dissociation Suggests Exclusive Formation of Amide Isomers. J Phys Chem Lett 2018; 9:6404-6411. [PMID: 30343579 PMCID: PMC6240889 DOI: 10.1021/acs.jpclett.8b02850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Electron attachment dissociation (electron capture dissociation (ECD) and electron transfer dissociation (ETD)) applied to gaseous multiply protonated peptides leads predominantly to backbone N-Cα bond cleavages and the formation of c- and z-type fragment ions. The mechanisms involved in the formation of these ions have been the subject of much discussion. Here, we determine the molecular structures of an extensive set of c-type ions produced by ETD using infrared ion spectroscopy. Nine c3- and c4-ions are investigated to establish their C-terminal structure as either enol-imine or amide isomers by comparison of the experimental infrared spectra with quantum-chemically predicted spectra for both structural variants. The spectra suggest that all c-ions investigated possess an amide structure; the absence of the NH bending mode at approximately 1000-1200 cm-1 serves as an important diagnostic feature.
Collapse
Affiliation(s)
- Lisanne
J. M. Kempkes
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Schneeberger EM, Breuker K. Replacing H + by Na + or K + in phosphopeptide anions and cations prevents electron capture dissociation. Chem Sci 2018; 9:7338-7353. [PMID: 30542537 PMCID: PMC6237128 DOI: 10.1039/c8sc02470g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/07/2018] [Indexed: 01/29/2023] Open
Abstract
By successively replacing H+ by Na+ or K+ in phosphopeptide anions and cations, we show that the efficiency of fragmentation into c and z˙ or c˙ and z fragments from N-Cα backbone bond cleavage by negative ion electron capture dissociation (niECD) and electron capture dissociation (ECD) substantially decreases with increasing number of alkali ions attached. In proton-deficient phosphopeptide ions with a net charge of 2-, we observed an exponential decrease in electron capture efficiency with increasing number of Na+ or K+ ions attached, suggesting that electrons are preferentially captured at protonated sites. In proton-abundant phosphopeptide ions with a net charge of 3+, the electron capture efficiency was not affected by replacing up to four H+ ions with Na+ or K+ ions, but the yield of c, z˙ and c˙, z fragments from N-Cα backbone bond cleavage generally decreased next to Na+ or K+ binding sites. We interpret the site-specific decrease in fragmentation efficiency as Na+ or K+ binding to backbone amide oxygen in competition with interactions of protonated sites that would otherwise lead to backbone cleavage into c, z˙ or c˙, z fragments. Our findings seriously challenge the hypothesis that the positive charge responsible for ECD into c, z˙ or c˙, z fragments can generally be a sodium or other metal ion instead of a proton.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| | - Kathrin Breuker
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| |
Collapse
|
8
|
Imaoka N, Houferak C, Murphy MP, Nguyen HTH, Dang A, Tureček F. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1768-1780. [PMID: 29340957 DOI: 10.1007/s13361-017-1871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Naruaki Imaoka
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Camille Houferak
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Megan P Murphy
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Huong T H Nguyen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Andy Dang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - František Tureček
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
9
|
Hayakawa S. Study of Ion Dynamics by Electron Transfer Dissociation: Alkali Metals as Targets. Mass Spectrom (Tokyo) 2017; 6:A0062. [PMID: 28966899 DOI: 10.5702/massspectrometry.a0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 11/23/2022] Open
Abstract
High energy collision processes for singly charged positive ions using an alkali metal target are confirmed, as a charge inversion mass spectrometry, to occur by electron transfers in successive collisions and the dissociation processes involve the formation of energy-selected neutral species from near-resonant neutralization with alkali metal targets. A doubly charged thermometer molecule was made to collide with alkali metal targets to give singly and doubly charged positive ions. The internal energy resulting from the electron transfer with the alkali metal target was very narrow and centered at a particular energy. This narrow internal energy distribution can be attributed to electron transfer by Landau-Zener potential crossing between the precursor ion and an alkali metal atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of more than 10-14 cm2 was estimated for high-energy electron transfer dissociation (HE-ETD). Doubly protonated phosphorylated peptides obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions. Whereas doubly charged fragment ions resulting from CAD were dominant in the case of the Xe target, singly charged fragment ions resulting from ETD were dominant with the Cs target. HE-ETD using the Cs target provided all of the z-type ions by N-Cα bond cleavage without the loss of the phosphate groups. The results demonstrate that HE-ETD with an alkali metal target allowed the position of phosphorylation and the amino acid sequence of peptides with post translational modifications (PTM) to be determined.
Collapse
|
10
|
Commodore JJ, Cassady CJ. Effects of acidic peptide size and sequence on trivalent praseodymium adduction and electron transfer dissociation mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:218-229. [PMID: 28170125 PMCID: PMC5407459 DOI: 10.1002/jms.3919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 05/05/2023]
Abstract
Using the lanthanide ion praseodymium, Pr(III), metallated ion formation and electron transfer dissociation (ETD) were studied for 25 biological and model acidic peptides. For chain lengths of seven or more residues, even highly acidic peptides that can be difficult to protonate by electrospray ionization will metallate and undergo abundant ETD fragmentation. Peptides composed of predominantly acidic residues form only the deprotonated ion, [M + Pr - H]2+ ; this ion yields near complete ETD sequence coverage for larger peptides. Peptides with a mixture of acidic and neutral residues generate [M + Pr]3+ , which cleaves between every residue for many peptides. Acidic peptides that contain at least one residue with a basic side chain also produce the protonated ion, [M + Pr + H]4+ ; this ion undergoes the most extensive sequence coverage by ETD. Primarily metallated and non-metallated c- and z-ions form for all peptides investigated. Metal adducted product ions are only present when at least half of the peptide sequence can be incorporated into the ion; this suggests that the metal ion simultaneously attaches to more than one acidic site. The only site consistently lacking dissociation is at the N-terminal side of a proline residue. Increasing peptide chain length generates more backbone cleavage for metal-peptide complexes with the same charge state. For acidic peptides with the same length, increasing the precursor ion charge state from 2+ to 3+ also leads to more cleavage. The results of this study indicate that highly acidic peptides can be sequenced by ETD of complexes formed with Pr(III). Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Carolyn J. Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487
| |
Collapse
|
11
|
Commodore JJ, Cassady CJ. The Effects of Trivalent Lanthanide Cationization on the Electron Transfer Dissociation of Acidic Fibrinopeptide B and its Analogs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1499-509. [PMID: 27294379 PMCID: PMC4974135 DOI: 10.1007/s13361-016-1428-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 05/08/2023]
Abstract
Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H](4+), [M + Met](3+), and [M + Met -H](2+), where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H](4+) leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met](3+) is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met - H ](2+), a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu - H](2+) and [M + Eu](3+) yields a limited amount of peptide backbone cleavage; however, [M + Eu + H](4+) dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
12
|
Viglino E, Lai CK, Mu X, Chu IK, Tureček F. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1454-1467. [PMID: 27278824 DOI: 10.1007/s13361-016-1425-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H](+●) and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS(3) dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in Cu(II)(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR](+●) that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Emilie Viglino
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 981915-1700, USA
| | - Cheuk Kuen Lai
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoyan Mu
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ivan K Chu
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 981915-1700, USA.
| |
Collapse
|
13
|
Martens J, Grzetic J, Berden G, Oomens J. Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy. Nat Commun 2016; 7:11754. [PMID: 27277826 PMCID: PMC4906228 DOI: 10.1038/ncomms11754] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
Tandem mass spectrometry occupies a principle place among modern analytical methods and drives many developments in the ‘omics' sciences. Electron attachment induced dissociation methods, as alternatives for collision-induced dissociation have profoundly influenced the field of proteomics, enabling among others the top-down sequencing of entire proteins and the analysis of post-translational modifications. The technique, however, produces more complex mass spectra and its radical-driven reaction mechanisms remain incompletely understood. Here we demonstrate the facile structural characterization of electron transfer dissociation generated peptide fragments by infrared ion spectroscopy using the tunable free-electron laser FELIX, aiding the elucidation of the underlying dissociation mechanisms. We apply this method to verify and revise previously proposed product ion structures for an often studied model tryptic peptide, [AlaAlaHisAlaArg+2H]2+. Comparing experiment with theory reveals that structures that would be assigned using only theoretical thermodynamic considerations often do not correspond to the experimentally sampled species. Mass spectrometry is a leading method used for sequencing peptides and proteins by fragmentation followed by analysis of the sequence fragments. Here, the authors use infrared spectroscopy to characterize the structures of peptide fragments formed during electron transfer dissociation.
Collapse
Affiliation(s)
- Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Josipa Grzetic
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 908, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Asakawa D, Yamashita A, Kawai S, Takeuchi T, Wada Y. N-Cα Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah-Washington Model. J Phys Chem B 2016; 120:891-901. [PMID: 26673038 DOI: 10.1021/acs.jpcb.5b11118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of gas-phase ions are widely used for peptide/protein sequencing by mass spectrometry. To understand the general mechanism of ECD/ETD of peptides, we focused on the ETD fragmentation of metal-peptide complexes in the absence of remote protons. Since Zn(2+) strongly binds to neutral histidine residues in peptides, Zn(2+)-polyhistidine complexation does not generate any remote protons. However, in the absence of remote protons, electron transfer to the Zn(2+)-polyhistidine complex induced the N-Cα bond cleavage. The formation pathway for the ETD products was investigated by density functional theory calculations. The calculations showed that the charge-reduced zinc-peptide radical, [M + Zn](•+), can exist in the low-energy zwitterionic amide π* states, which underwent homolytic N-Cα bond dissociation. The homolytic cleavage resulted in the donation of an electron from the N-Cα bond to the nitrogen atom, producing an iminoenol c' anion. The counterpart z(•) radical contained a radical site on the α-carbon atom. The iminoenol c' anion then abstracted a proton to presumably form the more stable amide c' fragment. The current experimental and computational joint study strongly suggested that the N-Cα bond cleavage occurred through the aminoketyl radical-anion formation for Zn(2+)-polyhistidine complexes in ETD.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Metrology Institute of Japan (NMIJ), Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568, Japan
| | - Asuka Yamashita
- Department of Chemistry, Faculty of Science, Nara Women's University , Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Shikiho Kawai
- Department of Chemistry, Faculty of Science, Nara Women's University , Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Takae Takeuchi
- Department of Chemistry, Faculty of Science, Nara Women's University , Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Yoshinao Wada
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health , Murodo-cho 840, Izumi, Osaka, 594-1101, Japan
| |
Collapse
|
15
|
Tureček F. Benchmarking Electronic Excitation Energies and Transitions in Peptide Radicals. J Phys Chem A 2015; 119:10101-11. [DOI: 10.1021/acs.jpca.5b06235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Bagley Hall,
Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
16
|
Sakane C, Ohta H, Shidoji Y. Measurement of lysine-specific demethylase-1 activity in the nuclear extracts by flow-injection based time-of-flight mass spectrometry. J Clin Biochem Nutr 2015; 56:123-31. [PMID: 25759518 PMCID: PMC4345185 DOI: 10.3164/jcbn.14-99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/06/2014] [Indexed: 01/21/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A), a histone-modifying enzyme, is upregulated in many cancers, especially in neuroblastoma, breast cancer and hepatoma. We have established a simple method to measure LSD1 activity using a synthetic N-terminal 21-mer peptide of histone H3, which is dimethylated at Lys-4 (H3K4me2). After the enzyme reaction, a substrate of H3K4me2 and two demethylated products, H3K4me1 and H3K4me0, were quantitatively determined by flow injection time-of-flight mass spectrometry (FI-TOF/MS). By using recombinant human LSD1, a nonlinear fitting simulation of the data obtained by FI-TOF/MS produced typical consecutive-reaction kinetics. Apparent K m and k cat values of hLSD1 for the first and second demethylation reactions were found to be in the range of reported values. Tranylcypromine was shown to inhibit LSD1 activity with an IC50 of 6.9 µM for the first demethylation reaction and 5.8 µM for the second demethylation reaction. The FI-TOF/MS assay revealed that the endogenous LSD1 activity was higher in the nuclear extracts of SH-SY5Y cells than in HeLa or PC-3 cells, and this is in accordance with the immunoblotting data using an anti-LSD1 antibody. A simple, straightforward FI-TOF/MS assay is described to efficiently measure LSD1 activity in the nuclear extracts of cultured cells.
Collapse
Affiliation(s)
- Chiharu Sakane
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, 1-1-1 Manabino, Nagayo, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | - Hiromichi Ohta
- University of Nagasaki, 123 Kawashimo, Sasebo, Nagasaki 858-8580, Japan
| | - Yoshihiro Shidoji
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, 1-1-1 Manabino, Nagayo, Nishisonogi-gun, Nagasaki 851-2195, Japan
| |
Collapse
|
17
|
Thomas DA, Sohn CH, Gao J, Beauchamp JL. Hydrogen Bonding Constrains Free Radical Reaction Dynamics at Serine and Threonine Residues in Peptides. J Phys Chem A 2014; 118:8380-92. [DOI: 10.1021/jp501367w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel A. Thomas
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Chang Ho Sohn
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jinshan Gao
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - J. L. Beauchamp
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Anusiewicz I, Skurski P, Simons J. Refinements to the Utah–Washington Mechanism of Electron Capture Dissociation. J Phys Chem B 2014; 118:7892-901. [DOI: 10.1021/jp5004819] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iwona Anusiewicz
- Department
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Skurski
- Department
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jack Simons
- Chemistry
Department and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Mentinova M, Crizer DM, Baba T, McGee WM, Glish GL, McLuckey SA. Cation recombination energy/coulomb repulsion effects in ETD/ECD as revealed by variation of charge per residue at fixed total charge. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1676-89. [PMID: 23568028 PMCID: PMC3795911 DOI: 10.1007/s13361-013-0606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 05/11/2023]
Abstract
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) experiments in electrodynamic ion traps operated in the presence of a bath gas in the 1-10 mTorr range have been conducted on a common set of doubly protonated model peptides of the form X(AG)nX (X = lysine, arginine, or histidine, n = 1, 2, or 4). The partitioning of reaction products was measured using thermal electrons, anions of azobenzene, and anions of 1,3-dinitrobenzene as reagents. Variation of n alters the charge per residue of the peptide cation, which affects recombination energy. The ECD experiments showed that H-atom loss is greatest for the n = 1 peptides and decreases as n increases. Proton transfer in ETD, on the other hand, is expected to increase as charge per residue decreases (i.e., as n increases). These opposing tendencies were apparent in the data for the K(AG)nK peptides. H-atom loss appeared to be more prevalent in ECD than in ETD and is rationalized on the basis of either internal energy differences, differences in angular momentum transfer associated with the electron capture versus electron transfer processes, or a combination of the two. The histidine peptides showed the greatest extent of charge reduction without dissociation, the arginine peptides showed the greatest extent of side-chain cleavages, and the lysine peptides generally showed the greatest extent of partitioning into the c/z•-product ion channels. The fragmentation patterns for the complementary c- and z•-ions for ETD and ECD were found to be remarkably similar, particularly for the peptides with X = lysine.
Collapse
Affiliation(s)
- Marija Mentinova
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | - David M. Crizer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Takashi Baba
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William M. McGee
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| |
Collapse
|
20
|
Wu M, Strid Å, Eriksson LA. Development of non-standard arginine residue parameters for use with the AMBER force fields. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
22
|
Malins LR, Cergol KM, Payne RJ. Peptide Ligation-Desulfurization Chemistry at Arginine. Chembiochem 2013; 14:559-63. [DOI: 10.1002/cbic.201300049] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Indexed: 11/10/2022]
|
23
|
Westlake BC, Paul JJ, Bettis SE, Hampton SD, Mehl BP, Meyer TJ, Papanikolas JM. Base-Induced Phototautomerization in 7-Hydroxy-4-(trifluoromethyl)coumarin. J Phys Chem B 2012. [DOI: 10.1021/jp308505p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brittany C. Westlake
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jared J. Paul
- Department of Chemistry, Villanova University, Villanova, Pennsylvania
19085,
United States
| | - Stephanie E. Bettis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shaun D. Hampton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Brian P. Mehl
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Thomas J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - John M. Papanikolas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
24
|
Kalli A, Hess S. Electron capture dissociation of hydrogen-deficient peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1729-1740. [PMID: 22855421 DOI: 10.1007/s13361-012-0433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Hydrogen-deficient peptide radical cations exhibit fascinating gas phase chemistry, which is governed by radical driven dissociation and, in many cases, by a combination of radical and charge driven fragmentation. Here we examine electron capture dissociation (ECD) of doubly, [M + H](2+•), and triply, [M + 2H](3+•), charged hydrogen-deficient species, aiming to investigate the effect of a hydrogen-deficient radical site on the ECD outcome and characterize the dissociation pathways of hydrogen-deficient species in ECD. ECD of [M + H](2+•) and [M + 2H](3+•) precursor ions resulted in efficient electron capture by the hydrogen-deficient species. However, the intensities of c- and z-type product ions were reduced, compared with those observed for the even electron species, indicating suppression of N-C(α) backbone bond cleavages. We postulate that radical recombination occurs after the initial electron capture event leading to a stable even electron intermediate, which does not trigger N-C(α) bond dissociations. Although the intensities of c- and z-type product ions were reduced, the number of backbone bond cleavages remained largely unaffected between the ECD spectra of the even electron and hydrogen-deficient species. We hypothesize that a small ion population exist as a biradical, which can trigger N-C(α) bond cleavages. Alternatively, radical recombination and N-C(α) bond cleavages can be in competition, with radical recombination being the dominant pathway and N-C(α) cleavages occurring to a lesser degree. Formation of b- and y-type ions observed for two of the hydrogen-deficient peptides examined is also discussed.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
25
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
26
|
Zimnicka M, Moss CL, Chung TW, Hui R, Tureček F. Tunable charge tags for electron-based methods of peptide sequencing: design and applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:608-620. [PMID: 21952752 DOI: 10.1007/s13361-011-0184-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 05/31/2023]
Abstract
Charge tags using basic auxiliary functional groups 6-aminoquinolinylcarboxamido, 4-aminopyrimidyl-1-methylcarboxamido, 2-aminobenzoimidazolyl-1-methylcarboxamido, and the fixed-charge 4-(dimethylamino)pyridyl-1-carboxamido moiety are evaluated as to their properties in electron transfer dissociation mass spectra of arginine C-terminated peptides. The neutral tags have proton affinities that are competitive with those of amino acid residues in peptides. Charge reduction by electron transfer from fluoranthene anion-radicals results in peptide backbone dissociations that improve sequence coverage by providing extensive series of N-terminal c-type fragments without impeding the formation of C-terminal z fragments. Comparison of ETD mass spectra of free and tagged peptides allows one to resolve ambiguities in fragment ion assignment through mass shifts of c ions. Simple chemical procedures are reported for N-terminal tagging of Arg-containing tryptic peptides.
Collapse
Affiliation(s)
- Magdalena Zimnicka
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | | | |
Collapse
|
27
|
Świerszcz I, Skurski P, Simons J. Dipole and Coulomb Forces in Electron Capture Dissociation and Electron Transfer Dissociation Mass Spectroscopy. J Phys Chem A 2012; 116:1828-37. [DOI: 10.1021/jp210915c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Piotr Skurski
- Department
of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952
Gdańsk, Poland
- Chemistry
Department and Henry
Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jack Simons
- Chemistry
Department and Henry
Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
van der Rest G, Hui R, Frison G, Chamot-Rooke J. Dissociation channel dependence on peptide size observed in electron capture dissociation of tryptic peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1631-1644. [PMID: 21953266 DOI: 10.1007/s13361-011-0166-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 05/31/2023]
Abstract
Electron capture dissociation (ECD) of a series of five residue peptides led to the observation that these small peptides did not lead to the formation of the usual c/z ECD fragments, but to a, b, y, and w fragments. In order to determine how general this behavior is for small sized peptides, the effect of peptide size on ECD fragments using a complete set of ECD spectra from the SwedECD spectra database was examined. Analysis of the database shows that b and w fragments are favored for small peptide sizes and that average fragment size shows a linear relationship to parent peptide size for most fragment types. From these data, it appears that most of the w fragments are not secondary fragments of the major z ions, in sharp contrast with the proposed mechanism leading to these ions. These data also show that c fragment distributions depend strongly on the nature of C-terminal residue basic site: arginine leads to loss of short neutral fragments, whereas lysine leads to loss of longer neutral fragments. It also appears that b ions might be produced by two different mechanisms depending on the parent peptide size. A model for the fragmentation pathways in competition is proposed. These relationships between average fragment size and parent peptide size could be further exploited also for CID fragment spectra and could be included in fragmentation prediction algorithms.
Collapse
Affiliation(s)
- Guillaume van der Rest
- Laboratoire des Mécanismes Réactionnels, Department of Chemistry, Ecole Polytechnique and CNRS, 91128, Palaiseau Cedex, France.
| | | | | | | |
Collapse
|
29
|
Zhang Y, Zhang H, Cui W, Chen H. Tandem MS analysis of selenamide-derivatized peptide ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1610-1621. [PMID: 21953264 PMCID: PMC3731447 DOI: 10.1007/s13361-011-0170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/15/2011] [Accepted: 05/15/2011] [Indexed: 05/27/2023]
Abstract
Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen (m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.
Collapse
Affiliation(s)
- Yun Zhang
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
30
|
Moss CL, Chung TW, Čeřovský V, Tureček F. Electron transfer dissociation of a melectin peptide: correlating the precursor ion structure with peptide backbone dissociations. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electron transfer dissociation (ETD) of doubly and triply charged ions from the amphipathic N-terminal decapeptide GFLSILKKVL-NH2 segment of melectin gave different distributions of fragment ions. The triply charged ions generated extensive series of fragment ions of c and z type that covered the entire sequence from both the N and C termini. In contrast, electron transfer to the doubly charged ions caused backbone cleavages that occurred at residues close to the N and C termini. Attachment of a free low-energy electron to the doubly charged ions caused primary dissociations close to the N and C termini that were followed by consecutive dissociations of z ions. The structure of gaseous doubly charged ions from the melectin peptide was elucidated by a combination of exhaustive conformational search by force-field molecular dynamics, large-scale gradient optimization using the semiempirical PM6 method, and density functional theory single-point energy and gradient optimization calculations. The most stable doubly charged ions were found to be protonated at the lysine ε-amino groups and have globular conformations. The backbone cleavages in ETD correlated with the electronic structure of cation-radicals produced by electron attachment to the most stable conformers. The charged lysine ammonium groups direct the incoming electron to the π* orbitals at the proximate amide groups at Phe, Leu, Lys and Val residues that show the highest spin densities. Electron attachment at these amide groups weakens the N–Cα bonds between the Phe-Leu, Leu-Ser, Lys-Lys and Lys-Val residues and causes backbone dissociations.
Collapse
|
31
|
Sargaeva NP, Lin C, O’Connor PB. Unusual fragmentation of β-linked peptides by ExD tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:480-91. [PMID: 21472566 PMCID: PMC4361814 DOI: 10.1007/s13361-010-0049-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 05/11/2023]
Abstract
Ion-electron reaction based fragmentation methods (ExD) in tandem mass spectrometry (MS), such as electron capture dissociation (ECD) and electron transfer dissociation (ETD) represent a powerful tool for biological analysis. ExD methods have been used to differentiate the presence of the isoaspartate (isoAsp) from the aspartate (Asp) in peptides and proteins. IsoAsp is a β(3)-type amino acid that has an additional methylene group in the backbone, forming a C(α)-C(β) bond within the polypeptide chain. Cleavage of this bond provides specific fragments that allow differentiation of the isomers. The presence of a C(α)-C(β) bond within the backbone is unique to β-amino acids, suggesting a similar application of ExD toward the analysis of peptides containing other β-type amino acids. In the current study, ECD and ETD analysis of several β-amino acid containing peptides was performed. It was found that N-C(β) and C(α)-C(β) bond cleavages were rare, providing few c and z• type fragments, which was attributed to the instability of the C(β) radical. Instead, the electron capture resulted primarily in the formation of a• and y fragments, representing an alternative fragmentation pathway, likely initiated by the electron capture at a backbone amide nitrogen protonation site within the β amino acid residues.
Collapse
Affiliation(s)
- Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
| | - Peter B. O’Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, R504, Boston, Massachusetts 02118
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
32
|
Chung TW, Moss CL, Zimnicka M, Johnson RS, Moritz RL, Tureček F. Electron-capture and -transfer dissociation of peptides tagged with tunable fixed-charge groups: structures and dissociation energetics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:13-30. [PMID: 21472540 DOI: 10.1007/s13361-010-0012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/26/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Pyridiniummethylcarbonyl moieties that were previously designed on the basis of electronic structure analysis are now utilized as fixed-charge tags with tunable electronic properties to be used for N-terminal peptide derivatization and sequencing by electron-transfer dissociation. Dipeptides AK and KA were derivatized at the peptide N-terminus with 4-dimethylaminopyridinium-N-acetyl (DMAP-ac) and pyridinium-N-acetyl (pyrid-ac) tags of increasing intrinsic recombination energies. Upon the capture of a free electron or electron transfer from fluoranthene anions, (DMAP-ac-AK+H)(2+), (DMAP-ac-KA+H)(2+), (pyrid-ac-AK+H)(2+) and (pyrid-ac-KA+H)(2+) ions, as well as underivatized (AK+2H)(2+), completely dissociated. The fixed-charge tags steered the dissociation upon electron transfer to form abundant backbone N-C(α) bond cleavages, whereas the underivatized peptide mainly underwent H-atom and side-chain losses. Precursor ion structures for the tagged peptides were analyzed by an exhaustive conformational search combined with B3LYP/6-31+G(d,p) geometry optimization and single-point energy calculations in order to select the global energy minima. Structures, relative energies, transition states, ion-molecule complexes, and dissociation products were identified for several charge-reduced species from the tagged peptides. The electronic properties of the charge tags and their interactions with the peptide moieties are discussed. Electrospray ionization and electron-transfer dissociation of larger peptides are illustrated with a DMAP-tagged pentapeptide.
Collapse
Affiliation(s)
- Thomas W Chung
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
33
|
Jensen CS, Wyer JA, Houmøller J, Hvelplund P, Nielsen SB. Electron-capture induced dissociation of doubly charged dipeptides: on the neutral losses and N–Cα bond cleavages. Phys Chem Chem Phys 2011; 13:18373-8. [DOI: 10.1039/c1cp21549c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Turecek F, Chung TW, Moss CL, Wyer JA, Ehlerding A, Holm AIS, Zettergren H, Nielsen SB, Hvelplund P, Chamot-Rooke J, Bythell B, Paizs B. The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals. J Am Chem Soc 2010; 132:10728-40. [PMID: 20681705 DOI: 10.1021/ja907808h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron-transfer and -capture dissociations of doubly protonated peptides gave dramatically different product ions for a series of histidine-containing pentapeptides of both non-tryptic (AAHAL, AHAAL, AHADL, AHDAL) and tryptic (AAAHK, AAHAK, AHAAK, HAAAK, AAAHR, AAHAR, AHAAR, HAAAR) type. Electron transfer from gaseous Cs atoms and fluoranthene anions triggered backbone dissociations of all four N-C(alpha) bonds in the peptide ions in addition to loss of H and NH(3). Substantial fractions of charge-reduced cation-radicals did not dissociate on an experimental time scale ranging from 10(-6) to 10(-1) s. Multistage tandem mass spectrometric (MS(n)) experiments indicated that the non-dissociating cation-radicals had undergone rearrangements. These were explained as being due to proton migrations from N-terminal ammonium and COOH groups to the C-2' position of the reduced His ring, resulting in substantial radical stabilization. Ab initio calculations revealed that the charge-reduced cation-radicals can exist as low-energy zwitterionic amide pi* states which were local energy minima. These states underwent facile exothermic proton migrations to form aminoketyl radical intermediates, whereas direct N-C(alpha) bond cleavage in zwitterions was disfavored. RRKM analysis indicated that backbone N-C(alpha) bond cleavages did not occur competitively from a single charge-reduced precursor. Rather, these bond cleavages proceeded from distinct intermediates which originated from different electronic states accessed by electron transfer. In stark contrast to electron transfer, capture of a free electron by the peptide ions mainly induced radical dissociations of the charge-carrying side chains and loss of a hydrogen atom followed by standard backbone dissociations of even-electron ions. The differences in dissociation are explained by different electronic states being accessed upon electron transfer and capture.
Collapse
Affiliation(s)
- Frantisek Turecek
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jones AW, Cooper HJ. Probing the mechanisms of electron capture dissociation mass spectrometry with nitrated peptides. Phys Chem Chem Phys 2010; 12:13394-9. [PMID: 20830387 PMCID: PMC3071000 DOI: 10.1039/c0cp00623h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/05/2010] [Indexed: 11/21/2022]
Abstract
Previously we have shown that the presence of 3-nitrotyrosine within a peptide sequence severely depletes the peptide backbone fragments typically observed following electron capture dissociation (ECD) mass spectrometry. Instead, ECD of nitrated peptides is characterised by abundant losses of small neutrals (hydroxyl radicals, water and ammonia). Here, we investigate the origin of ammonia loss by comparing the ECD behaviour of lysine- and arginine-containing nitrated peptides, and their N-acetylated counterparts, and nitrated peptides containing no basic amino acid residues. The results reveal that ammonia loss derives from the N-terminus of the peptides, however, the key finding of this work is the insight provided into the hierarchy of various proposed ECD mechanisms: the Utah-Washington mechanism, the electron predator mechanism and the Oslo mechanism.
Collapse
Affiliation(s)
- Andrew W. Jones
- School of Biosciences , College of Life and Environmental Sciences , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK . ; Fax: +44 (0)121 414 5925 ; Tel: +44 (0)121 414 7527
| | - Helen J. Cooper
- School of Biosciences , College of Life and Environmental Sciences , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK . ; Fax: +44 (0)121 414 5925 ; Tel: +44 (0)121 414 7527
| |
Collapse
|
36
|
Tureček F. Electron predators are hydrogen atom traps. Effects of aryl groups on N-C(α) bond dissociations of peptide radicals. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:1280-1290. [PMID: 20812369 DOI: 10.1002/jms.1807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 05/29/2023]
Abstract
Effects of substituted aryl groups on dissociations of peptide aminoketyl radicals were studied computationally for model tetrapeptide intermediates GXD(•) G where X was a cysteine residue that was derivatized by S-(3-nitrobenzyl), S-(3-cyanobenzyl), S-(3,5-dicyanobenzyl), S-(2,3,4,5,6-pentafluorobenzyl), and S-benzyl groups. The aminoketyl radical was placed within the Asp amide group. Aminoketyl radicals having the S-(3-nitrobenzyl) group were found to undergo spontaneous and highly exothermic migration of the hydroxyl hydrogen atom onto the nitro group in conformers allowing interaction between these groups. Competing reaction channels were investigated for aminoketyl radicals having the S-(3-cyanobenzyl) and S-(3,5-dicyanobenzyl) groups, e.g. H-atom migration to the C and N atoms of the C≡N group, migration to the C-4 position of the phenyl ring, and dissociation of the radical-activated NC(α) bond between the Asp and Gly residues. RRKM kinetic analysis on the combined B3LYP and ROMP2/6-311++G(2d,p) potential energy surface indicated > 99% H-atom transfer to the C≡N group forming a stable iminyl intermediate. The NC(α) bond dissociation was negligible. In contrast, peptides with the S-(2,3,4,5,6-pentafluorobenzyl) and S-benzyl groups showed preferential NC(α) bond dissociation that outcompeted H-atom migration to the C-4 position and fluorine substituents in the phenyl ring. These computational results are used to suggest an alternative mechanism for the quenching effect on electron-based peptide backbone dissociations of benzyl groups with electron-withdrawing substitutents, as reported recently.
Collapse
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700, USA.
| |
Collapse
|
37
|
Hayakawa S, Matsumoto S, Hashimoto M, Iwamoto K, Nagao H, Toyoda M, Shigeri Y, Tajiri M, Wada Y. High-energy electron transfer dissociation (HE-ETD) using alkali metal targets for sequence analysis of post-translational peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1482-1489. [PMID: 20598903 DOI: 10.1016/j.jasms.2010.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/17/2010] [Accepted: 05/23/2010] [Indexed: 05/29/2023]
Abstract
Post-translational modifications (PTMs) of proteins are important in the activation, localization, and regulation of protein function in vivo. The usefulness of electron capture dissociation (ECD) and electron-transfer dissociation (ETD) in tandem mass spectrometry (MS/MS) using low-energy (LE) trap type mass spectrometer is associated with no loss of a labile PTM group regarding peptide and protein sequencing. The experimental results of high-energy (HE) collision induced dissociation (CID) using the Xe and Cs targets and LE-ETD were compared for doubly-phosphorylated peptides TGFLT(p)EY(p)VATR (1). Although HE-CID using the Xe target did not provide information on the amino acid sequence, HE-CID using the Cs target provided all the z-type ions without loss of the phosphate groups as a result of HE-ETD process, while LE-ETD using fluoranthene anion gave only z-type ions from z(5) to z(11). The difference in the results of HE-CID between the Xe and Cs targets demonstrated that HE-ETD process with the Cs target took place much more dominantly than collisional activation. The difference between HE-ETD using Cs targets and LE-ETD using the anion demonstrated that mass discrimination was much weaker in the high-energy process. HE-ETD was also applied to three other phosphopeptides YGGMHRQEX(p)VDC (2: X = S, 3: X = T, 4: X = Y). The HE-CID spectra of the doubly-protonated phosphopeptides (= [M + 2H](2+)) of 2, 3, and 4 using the Cs target showed a very similar feature that the c-type ions from c(7) to c(11) and the z-type ions from z(7) to z(11) were formed via N-C alpha bond cleavage without a loss of the phosphate group.
Collapse
Affiliation(s)
- Shigeo Hayakawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Simons J. Analytical Model for Rates of Electron Attachment and Intramolecular Electron Transfer in Electron Transfer Dissociation Mass Spectrometry. J Am Chem Soc 2010; 132:7074-85. [DOI: 10.1021/ja100240f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jack Simons
- Chemistry Department and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
39
|
Zhou Y, Nelson WH. Free Radicals in l-Arginine·HCl·H2O Single Crystals X-irradiated at 66K- EPR, ENDOR, EIE and DFT Studies. J Phys Chem B 2010; 114:5567-82. [DOI: 10.1021/jp911943n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yiying Zhou
- Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, Georgia 30302-4106
| | - William H. Nelson
- Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, Georgia 30302-4106
| |
Collapse
|
40
|
Kelly RT, Tolmachev AV, Page JS, Tang K, Smith RD. The ion funnel: theory, implementations, and applications. MASS SPECTROMETRY REVIEWS 2010; 29:294-312. [PMID: 19391099 PMCID: PMC2824015 DOI: 10.1002/mas.20232] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The electrodynamic ion funnel has enabled the manipulation and focusing of ions in a pressure regime (0.1-30 Torr) that has challenged traditional approaches, and provided the basis for much greater mass spectrometer ion transmission efficiencies. The initial ion funnel implementations aimed to efficiently capture ions in the expanding gas jet of an electrospray ionization interface and radially focus them for efficient transfer through a conductance limiting orifice. We review the improvements in fundamental understanding of ion motion in ion funnels, the evolution in its implementations that have brought the ion funnel to its current state of refinement, as well as applications of the ion funnel for purposes such as ion trapping, ion cooling, low pressure electrospray, and ion mobility spectrometry.
Collapse
|
41
|
Jones AW, Mikhailov VA, Iniesta J, Cooper HJ. Electron capture dissociation mass spectrometry of tyrosine nitrated peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:268-277. [PMID: 19931467 DOI: 10.1016/j.jasms.2009.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/08/2009] [Accepted: 10/14/2009] [Indexed: 05/28/2023]
Abstract
In vivo protein nitration is associated with many disease conditions that involve oxidative stress and inflammatory response. The modification involves addition of a nitro group at the position ortho to the phenol group of tyrosine to give 3-nitrotyrosine. To understand the mechanisms and consequences of protein nitration, it is necessary to develop methods for identification of nitrotyrosine-containing proteins and localization of the sites of modification. Here, we have investigated the electron capture dissociation (ECD) and collision-induced dissociation (CID) behavior of 3-nitrotyrosine-containing peptides. The presence of nitration did not affect the CID behavior of the peptides. For the doubly-charged peptides, addition of nitration severely inhibited the production of ECD sequence fragments. However, ECD of the triply-charged nitrated peptides resulted in some singly-charged sequence fragments. ECD of the nitrated peptides is characterized by multiple losses of small neutral species including hydroxyl radicals, water and ammonia. The origin of the neutral losses has been investigated by use of activated ion (AI) ECD. Loss of ammonia appears to be the result of non-covalent interactions between the nitro group and protonated lysine side-chains.
Collapse
Affiliation(s)
- Andrew W Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
42
|
Parthasarathi R, He Y, Reilly JP, Raghavachari K. New Insights into the Vacuum UV Photodissociation of Peptides. J Am Chem Soc 2010; 132:1606-10. [DOI: 10.1021/ja907975v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Yi He
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | | |
Collapse
|
43
|
Kalli A, Håkansson K. Electron capture dissociation of highly charged proteolytic peptides from Lys N, Lys C and Glu C digestion. MOLECULAR BIOSYSTEMS 2010; 6:1668-81. [DOI: 10.1039/c003834b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
|
45
|
Tureček F, Panja S, Wyer JA, Ehlerding A, Zettergren H, Nielsen SB, Hvelplund P, Bythell B, Paizs B. Carboxyl-Catalyzed Prototropic Rearrangements in Histidine Peptide Radicals upon Electron Transfer: Effects of Peptide Sequence and Conformation. J Am Chem Soc 2009; 131:16472-87. [DOI: 10.1021/ja9050229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Subhasis Panja
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jean A. Wyer
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Anneli Ehlerding
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Henning Zettergren
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Steen Brøndsted Nielsen
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Preben Hvelplund
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Benjamin Bythell
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Béla Paizs
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| |
Collapse
|
46
|
Neff D, Simons J. Analytical and Computational Studies of Intramolecular Electron Transfer Pertinent to Electron Transfer and Electron Capture Dissociation Mass Spectrometry. J Phys Chem A 2009; 114:1309-23. [DOI: 10.1021/jp9057059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diane Neff
- Chemistry Department and Henry Eyring Center for Theoretical Chemistry University of Utah, Salt Lake City, Utah 84112
| | - Jack Simons
- Chemistry Department and Henry Eyring Center for Theoretical Chemistry University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
47
|
Tureček F, Yao C, Fung YME, Hayakawa S, Hashimoto M, Matsubara H. Histidine-Containing Radicals in the Gas Phase. J Phys Chem B 2009; 113:7347-66. [DOI: 10.1021/jp900719n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Chunxiang Yao
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Y. M. Eva Fung
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shigeo Hayakawa
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Mami Hashimoto
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Matsubara
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
48
|
Sohn CH, Chung CK, Yin S, Ramachandran P, Loo JA, Beauchamp JL. Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity. J Am Chem Soc 2009; 131:5444-59. [PMID: 19331417 PMCID: PMC2765496 DOI: 10.1021/ja806534r] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via beta-elimination and Michael addition of various thiol compounds. These include propanyl, benzyl, 4-cyanobenzyl, perfluorobenzyl, 3,5-dicyanobenzyl, 3-nitrobenzyl, and 3,5-dinitrobenzyl structural moieties, having a range of EA from -1.15 to +1.65 eV, excluding the propanyl group. Typical ECD or ETD backbone fragmentations are completely inhibited in peptides with substituent tags having EA over 1.00 eV, which are referred to as electron predators in this work. Nearly identical rates of electron capture by the dications substituted by the benzyl (EA = -1.15 eV) and 3-nitrobenzyl (EA = 1.00 eV) moieties are observed, which indicates the similarity of electron capture cross sections for the two derivatized peptides. This observation leads to the inference that electron capture kinetics are governed by the long-range electron-dication interaction and are not affected by side chain derivatives with positive EA. Once an electron is captured to high-n Rydberg states, however, through-space or through-bond electron transfer to the EA-tuning tags or low-n Rydberg states via potential curve crossing occurs in competition with transfer to the amide pi* orbital. The energetics of these processes are evaluated using time-dependent density functional theory with a series of reduced model systems. The intramolecular electron transfer process is modulated by structure-dependent hydrogen bonds and is heavily affected by the presence and type of electron-withdrawing groups in the EA-tuning tag. The anion radicals formed by electron predators have high proton affinities (approximately 1400 kJ/mol for the 3-nitrobenzyl anion radical) in comparison to other basic sites in the model peptide dication, facilitating exothermic proton transfer from one of the two sites of protonation. This interrupts the normal sequence of events in ECD or ETD, leading to backbone fragmentation by forming a stable radical intermediate. The implications which these results have for previously proposed ECD and ETD mechanisms are discussed.
Collapse
Affiliation(s)
- Chang Ho Sohn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Cheol K. Chung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Sheng Yin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Prasanna Ramachandran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - J. L. Beauchamp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
49
|
Ito T, Morimoto S, Fujita SI, Nishimoto SI. Radical intermediates generated in the reactions of l-arginine with hydroxyl radical and sulfate radical anion: A pulse radiolysis study. Radiat Phys Chem Oxf Engl 1993 2009. [DOI: 10.1016/j.radphyschem.2009.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Panja S, Nielsen SB, Hvelplund P, Turecek F. Inverse hydrogen migration in arginine-containing peptide ions upon electron transfer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1726-1742. [PMID: 18799322 DOI: 10.1016/j.jasms.2008.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
Collisional electron transfer from gaseous Cs atoms was studied for singly and doubly protonated peptides Gly-Arg (GR) and Ala-Arg (AR) at 50- and 100-keV kinetic energies. Singly protonated GR and AR were discharged to radicals that in part rearranged by migration of a C(alpha) hydrogen atom onto the guanidine group. The C(alpha)-radical isomers formed were detected as stable anions following transfer of a second electron. In addition to the stabilizing rearrangements, the radicals underwent side-chain and backbone dissociations. The latter formed z fragments that were detected as the corresponding anions. Analysis of the (GR + H)(.) radical potential energy surface using electronic structure theory in combination with Rice-Ramsperger-Kassel-Marcus calculations of rate constants indicated that the arginine C(alpha) hydrogen atom was likely to be transferred to the arginine side-chain on the experimental timescale of <or=200 ns. Transfer of the Gly C(alpha)H was calculated to have a higher transition-state energy and was not kinetically competitive. Collisional electron transfer to doubly protonated GR and AR resulted in complete dissociation of (GR + 2H)(+.) and (AR + 2H)(+.) ions by loss of H, ammonia, and NC(alpha) bond cleavage. Electronic structure theory analysis of (GR + 2H)(+.) indicated the presence of multiple conformers and electronic states that differed in reactivity and steered the dissociations to distinct channels. Electron attachment to (GR + 2H)(2+) resulted in the formation of closely spaced electronic states of (GR + 2H)(+.) in which the electron density was delocalized over the guanidinium, ammonium, amide, and carboxyl groups. The different behavior of (GR + H)(.) and (GR + 2H)(+.) is explained by the different timescales for dissociation and different internal energies acquired upon electron transfer.
Collapse
Affiliation(s)
- Subhasis Panja
- Department of Physics and Astronomy, University of Aarhus, Denmark
| | | | | | | |
Collapse
|