1
|
Huang X, Yang Y, He Q, Liu C, Yuan M, Jin Y. Copper-Catalyzed Aerobic Cross-Dehydrogenation Coupling of Indoles for Synthesis of 2,3'-Bisindoles. Chem Asian J 2024:e202401015. [PMID: 39305138 DOI: 10.1002/asia.202401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Indexed: 11/02/2024]
Abstract
2,3'-Bisindoles with C-C linkages have attracted interest in medicinal chemistry, yet their synthesis is intricate with many steps. Notably, direct C-H/C-H cross-coupling of non-directed heteroaromatics remains challenging, often requiring precious metals and oxidants to enhance coupling efficiency. Herein, we present a copper-catalyzed C-H/C-H cross-coupling method for N-substituted indoles without directing groups, facilitated by molecular oxygen under gentle conditions. It showed reasonable functional group compatibility and provided one-pot access to a variety of 2,3'-bisindoles derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Xinxiang Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Qiping He
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Chang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Mingquan Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
2
|
Vinod K, Mathew R, Jandl C, Thomas B, Hariharan M. Electron diffraction and solid-state NMR reveal the structure and exciton coupling in a eumelanin precursor. Chem Sci 2024:d4sc05453a. [PMID: 39345764 PMCID: PMC11423530 DOI: 10.1039/d4sc05453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Eumelanin, a versatile biomaterial found throughout the animal kingdom, performs essential functions like photoprotection and radical scavenging. The diverse properties of eumelanin are attributed to its elusive and heterogenous structure with DHI (5,6-dihydroxyindole) and DHICA (5,6-dihydroxyindole-2-carboxylic acid) precursors as the main constituents. Despite DHICA being recognized as the key eumelanin precursor, its crystal structure and functional role in the assembled state remain unknown. Herein, we employ a synthesis-driven, bottom-up approach to elucidate the structure and assembly-specifics of DHICA, a critical building block of eumelanin. We introduce an interdisciplinary methodology to analyse the nanocrystalline assembly of DHICA, employing three-dimensional electron diffraction (3D ED), solid-state NMR and density functional theory (DFT), while correlating the structural aspects with the electronic spectroscopic features. The results underscore charge-transfer exciton delocalization as the predominant energy transfer mechanism within the π-π stacked and hydrogen-bonded crystal network of DHICA. Additionally, extending the investigation to the 13C-labelled DHICA-based polymer improves our understanding of the chemical heterogeneity across the eumelanin pigment, providing crucial insights into the structure of eumelanin.
Collapse
Affiliation(s)
- Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| | - Renny Mathew
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Christian Jandl
- ELDICO Scientific AG, Switzerland Innovation Park Basel Area Hegenheimermattweg 167A, Allschwil 4123 Switzerland
| | - Brijith Thomas
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| |
Collapse
|
3
|
DeMarco M, Ballard M, Grage E, Nourigheimasi F, Getter L, Shafiee A, Ghadiri E. Enhanced photochemical activity and ultrafast photocarrier dynamics in sustainable synthetic melanin nanoparticle-based donor-acceptor inkjet-printed molecular junctions. NANOSCALE 2023; 15:14346-14364. [PMID: 37602764 DOI: 10.1039/d3nr02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Melanin is a stable, widely light-absorbing, photoactive, and biocompatible material viable for energy conversion, photocatalysis, and bioelectronic applications. To achieve multifunctional nanostructures, we synthesized melanin nanoparticles of uniform size and controlled chemical composition (dopamelanin and eumelanin) and used them with titanium dioxide to fabricate donor-acceptor bilayers. Their size enhances the surface-to-volume ratio important for any surface-mediated functionality, such as photocatalysis, sensing, and drug loading and release, while controlling their chemical composition enables to control the film's functionality and reproducibility. Inkjet printing uniquely allowed us to control the deposited amount of materials with minimum ink waste suitable for reproducible materials deposition. We studied the photochemical characteristics of the donor-acceptor melanin-TiO2 nanostructured films via photocatalytic degradation of methylene blue dye under selective UV-NIR and Vis-NIR irradiation conditions. Under both irradiation conditions, they exhibited photocatalytic characteristics superior to pure melanin and, under UV-NIR irradiation, superior to TiO2 alone; TiO2 is photoactive only under UV irradiation. The enhanced photocatalytic characteristics of the melanin-TiO2 nanostructured bilayer films, particularly when excited by visible light, point to charge separation at the melanin-TiO2 interface as a possible mechanism. We performed ultrafast laser spectroscopy to investigate the photochemical characteristics of pure melanin and the melanin-TiO2 constructs and found that their time-resolved photoexcited spectral patterns differ. We performed singular value decomposition analysis to quantitatively deconvolute and compare the dynamics of photochemical processes for melanin and melanin-TiO2 heterostructures. This observation supports electronic interactions, namely, interfacial charge separation at the melanin and TiO2 interface. The excited-state relaxation in melanin-TiO2 increases markedly from 5 ps to 400 ps. The results are remarkable for the future intriguing application of melanin-based constructs for bioelectronics and energy conversion.
Collapse
Affiliation(s)
- Max DeMarco
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Matthew Ballard
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Elinor Grage
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Farnoush Nourigheimasi
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Lillian Getter
- Chemistry Department, Wake Forest University, USA.
- Center for Functional Materials, Wake Forest University, USA
| | - Ashkan Shafiee
- Wake Forest School of Medicine, Wake Forest University, USA
- Center for Functional Materials, Wake Forest University, USA
| | - Elham Ghadiri
- Chemistry Department, Wake Forest University, USA.
- Wake Forest School of Medicine, Wake Forest University, USA
- Center for Functional Materials, Wake Forest University, USA
| |
Collapse
|
4
|
Lettieri M, Spinelli M, Caponi L, Scarano S, Palladino P, Amoresano A, Minunni M. Sensing of Catecholamine in Human Urine Using a Simple Colorimetric Assay Based on Direct Melanochrome and Indolequinone Formation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3971. [PMID: 37112313 PMCID: PMC10146333 DOI: 10.3390/s23083971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
We used the first enzyme-free synthesis and stabilization of soluble melanochrome (MC) and 5,6-indolequinone (IQ) derived from levodopa (LD), dopamine (DA), and norepinephrine (NE) oxidation to develop a simple colorimetric assay for catecholamine detection in human urine, also elucidating the time-dependent formation and molecular weight of MC and IQ using UV-Vis spectroscopy and mass spectrometry. The quantitative detection of LD and DA was achieved in human urine using MC as a selective colorimetric reporter to demonstrate the potential assay applicability in a matrix of interest in therapeutic drug monitoring (TDM) and in clinical chemistry. The assay showed a linear dynamic range between 5.0 mg L-1 and 50.0 mg L-1, covering the concentration range of DA and LD found in urine samples from, e.g., Parkinson's patients undergoing LD-based pharmacological therapy. The data reproducibility in the real matrix was very good within this concentration range (RSDav% 3.7% and 6.1% for DA and LD, respectively), also showing very good analytical performances with the limits of detection of 3.69 ± 0.17 mg L-1 and 2.51 ± 0.08 mg L-1 for DA and LD, respectively, thus paving the way for the effective and non-invasive monitoring of dopamine and levodopa in urine from patients during TDM in Parkinson's disease.
Collapse
Affiliation(s)
- Mariagrazia Lettieri
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Laura Caponi
- Laboratory of Clinical Pathology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Simona Scarano
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Pasquale Palladino
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Minunni
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Ito S, Napolitano A, Sarna T, Wakamatsu K. Iron and copper ions accelerate and modify dopamine oxidation to eumelanin: implications for neuromelanin genesis. J Neural Transm (Vienna) 2023; 130:29-42. [PMID: 36527527 DOI: 10.1007/s00702-022-02574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 ℃. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.
Collapse
Affiliation(s)
- Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan.
| | | | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
6
|
Structural Investigation of DHICA Eumelanin Using Density Functional Theory and Classical Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238417. [PMID: 36500509 PMCID: PMC9738096 DOI: 10.3390/molecules27238417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Eumelanin is an important pigment, for example, in skin, hair, eyes, and the inner ear. It is a highly heterogeneous polymer with 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) building blocks, of which DHICA is reported as the more abundant in natural eumelanin. The DHICA-eumelanin protomolecule consists of three building blocks, indole-2-carboxylic acid-5,6-quinone (ICAQ), DHICA and pyrrole-2,3,5-tricarboxylic acid (PTCA). Here, we focus on the self-assembly of DHICA-eumelanin using multi-microsecond molecular dynamics (MD) simulations at various concentrations in aqueous solutions. The molecule was first parameterized using density functional theory (DFT) calculations. Three types of systems were studied: (1) uncharged DHICA-eumelanin, (2) charged DHICA-eumelanin corresponding to physiological pH, and (3) a binary mixture of both of the above protomolecules. In the case of uncharged DHICA-eumelanin, spontaneous aggregation occurred and water molecules were present inside the aggregates. In the systems corresponding to physiological pH, all the carboxyl groups are negatively charged and the DHICA-eumelanin model has a net charge of -4. The effect of K+ ions as counterions was investigated. The results show high probability of binding to the deprotonated oxygens of the carboxylate anions in the PTCA moiety. Furthermore, the K+ counterions increased the solubility of DHICA-eumelanin in its charged form. A possible explanation is that the charged protomolecules favor binding to the K+ ions rather than aggregating and binding to other protomolecules. The binary mixtures show aggregation of uncharged DHICA-eumelanins; unlike the charged systems with no aggregation, a few charged DHICA-eumelanins are present on the surface of the uncharged aggregation, binding to the K+ ions.
Collapse
|
7
|
Soltani S, Sowlati-Hashjin S, Tetsassi Feugmo CG, Karttunen M. Free Energy and Stacking of Eumelanin Nanoaggregates. J Phys Chem B 2022; 126:1805-1818. [PMID: 35175060 DOI: 10.1021/acs.jpcb.1c07884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eumelanin, a member of the melanin family, is a black-brown insoluble pigment. It possesses a broad range of properties such as antioxidation, free radical scavenging, photoprotection, and charge carrier transportation. Surprisingly, the exact molecular structure of eumelanin remains undefined. It is, however, generally considered to consist of two main building blocks, 5,6-dihydroxyindole (DHI) and 5,6- dihydroxyindole carboxylic acid (DHICA). We focus on DHI and report, for the first time, a computational investigation of the structural properties of DHI-eumelanin aggregates in aqueous solutions. First, multimicrosecond molecular dynamics (MD) simulations at different concentrations were performed to investigate the aggregation and ordering of tetrameric DHI-eumelanin protomolecules. This was followed by umbrella sampling (US) and density functional theory (DFT) calculations to study the physical mechanisms of stacking. Aggregation occurs through formation of nanoscale stacks and was observed in all systems. Further analyses showed that aggregation and coarsening of the domains is due to a decrease in hydrogen bonds between the eumelanins and water; while domains exist, there is no long-range order. The results show noncovalent stacks with the interlayer distance between eumelanin protomolecules being less than 3.5 Å. This is in good agreement with transmission electron microscopy data. Both free energy calculations and DFT revealed strong stacking interactions. The electrostatic potential map provides an explanation and a rationale for the slightly sheared relative orientations and, consequently, for the curved shapes of the nanoscale domains.
Collapse
Affiliation(s)
- Sepideh Soltani
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Conrard Giresse Tetsassi Feugmo
- National Research Council Canada, Energy Mining and Environment, Mississauga, Ontario L5K 1B1, Canada.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Mikko Karttunen
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
8
|
Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front Oncol 2022; 12:842496. [PMID: 35359389 PMCID: PMC8963986 DOI: 10.3389/fonc.2022.842496] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet radiation and other environmental stressors. It is produced by the enzymatic transformation of L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) oligomers-main constituents of eumelanin, and benzothiazine and benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure and by many hormonal factors at the tissue, cellular, and subcellular levels. While the presence of melanin protects against the development of skin cancers including cutaneous melanoma, its presence may be necessary for the malignant transformation of melanocytes. This shows a complex role of melanogenesis in melanoma development defined by chemical properties of melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1α) activation, which, combined with their immunosuppressive effects, can lead to melanoma progression and resistance to immunotherapy. On the other hand, melanogenesis-related proteins can be a target for immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have shown a negative correlation between tumor pigmentation and diseases outcome as defined by overall survival and disease-free time. This indicates a "Yin and Yang" role for melanin and active melanogenesis in melanoma development, progression, and therapy. Furthermore, based on the clinical, experimental data and diverse effects of melanogenesis, we propose that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic adjuvant strategy to enhance immuno-, radio-, and chemotherapy.
Collapse
Affiliation(s)
- Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemysław M Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Lettieri M, Emanuele R, Scarano S, Palladino P, Minunni M. Melanochrome-based colorimetric assay for quantitative detection of levodopa in co-presence of carbidopa and its application to relevant anti-Parkinson drugs. Anal Bioanal Chem 2021; 414:1713-1722. [PMID: 34842945 DOI: 10.1007/s00216-021-03804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
In this paper is reported the selective detection and quantification of levodopa in co-presence of carbidopa. The method took advantage of the spontaneous oxidation and color development of levodopa at basic pH here driven by alkaline earth cations and co-solvent in solution. We have shown for the first time the generation and stabilization of the purple melanochrome from levodopa, by using magnesium acetate and dimethyl sulfoxide, which was here exploited for the development of a quantitative colorimetric assay for the active principle ingredient in commercial drugs for the treatment of Parkinson's disease. The calibration curves of levodopa in the two tablet formulations, containing carbidopa as decarboxylase inhibitor, showed a common linear trend between 10 mg L-1 and 40 mg L-1 with levodopa alone or in combination with carbidopa in standard solutions, with very good reproducibility (CVav%, 3.3% for both brand and generic drug) and very good sensitivity, with limit of quantification about 0.6 mg L-1 in any case. The colorimetric method here developed is very simple and effective, appearing as a rapid and low-cost alternative to other methodologies, involving large and expensive instrumentations, for drug estimation and quality control of pharmaceutical formulations.
Collapse
Affiliation(s)
- Mariagrazia Lettieri
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Roberta Emanuele
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Simona Scarano
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Maria Minunni
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Ghosh P, Ghosh D. Effect of Dimerization on the Nonradiative Processes of Eumelanin Monomer. J Phys Chem B 2021; 125:547-556. [PMID: 33410319 DOI: 10.1021/acs.jpcb.0c10555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eumelanin is a polymeric structure made of dihydroxyindole (DHI) as the basic motif. Since the oxidative polymerization of DHI forms the core of eumelanin, understanding the effect of polymerization on its optical and photoprotective properties is crucial to elucidate the structure-function relationship of eumelanin. In this work, we investigate the effect of dimerization of DHI on the photoprocesses of eumelanin. We observe that there are several low-energy conical intersections and energetically favorable pathways for deactivation of photoexcited dimeric DHI species. While the original deactivation modes of the monomers are still important, in dimers the intermonomer dihedral angles seem to play a central role.
Collapse
Affiliation(s)
- Paulami Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
11
|
Zawadzka M, Ràcz B, Ambrosini D, Görbitz CH, Morth JP, Wilkins AL, Østeby A, Elgstøen KBP, Lundanes E, Rise F, Ringvold A, Wilson SR. Searching for a UV-filter in the eyes of high-flying birds. Sci Rep 2021; 11:273. [PMID: 33431985 PMCID: PMC7801516 DOI: 10.1038/s41598-020-79533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023] Open
Abstract
The eye lens is a unique organ as no cells can be replaced throughout life. This makes it decisive that the lens is protected against damaging UV-radiation. An ultraviolet (UV)-absorbing compound of unknown identity is present in the aqueous humor of geese (wild and domestic) and other birds flying at high altitudes. A goose aqueous humor extract, that was believed to contain the UV protective compound which was designated as “compound X”, was fractionated and examined using a variety of spectroscopic techniques including LC–MS and high field one- and two dimensional-NMR methods. A series of compounds were identified but none of them appeared to be the UV protective “compound X”. It may be that the level of the UV protective compound in goose aqueous humor is much less than the compounds identified in our investigation, or it may have been degraded by the isolation and chromatographic purification protocols used in our investigations.
Collapse
Affiliation(s)
- Malgorzata Zawadzka
- Department of Chemistry, University of Oslo, Blindern, Post Box 1033, 0315, Oslo, Norway
| | - Beatrix Ràcz
- Department of Chemistry, University of Oslo, Blindern, Post Box 1033, 0315, Oslo, Norway
| | - Dario Ambrosini
- Department of Chemistry, University of Oslo, Blindern, Post Box 1033, 0315, Oslo, Norway
| | - Carl Henrik Görbitz
- Department of Chemistry, University of Oslo, Blindern, Post Box 1033, 0315, Oslo, Norway
| | - Jens Preben Morth
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Alistair L Wilkins
- Faculty of Science and Engineering, The University of Waitato, Gate 1 Knighton Road, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Anja Østeby
- Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet, Nydalen, PO Box 4950, 0424, Oslo, Norway
| | | | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Blindern, Post Box 1033, 0315, Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Blindern, Post Box 1033, 0315, Oslo, Norway
| | - Amund Ringvold
- Department of Ophthalmology, Oslo University Hospital, Ullevål, Nydalen, Postbox 4956, 0424, Oslo, Norway.
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Blindern, Post Box 1033, 0315, Oslo, Norway.
| |
Collapse
|
12
|
15N NMR Shifts of Eumelanin Building Blocks in Water: A Combined Quantum Mechanics/Statistical Mechanics Approach. Molecules 2020; 25:molecules25163616. [PMID: 32784827 PMCID: PMC7465604 DOI: 10.3390/molecules25163616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023] Open
Abstract
Theoretical results for the magnetic shielding of protonated and unprotonated nitrogens of eumelanin building blocks including monomers, dimers, and tetramers in gas phase and water are presented. The magnetic property in water was determined by carrying out Monte Carlo statistical mechanics sampling combined with quantum mechanics calculations based on the gauge-including atomic orbitals approach. The results show that the environment polarization can have a marked effect on nitrogen magnetic shieldings, especially for the unprotonated nitrogens. Large contrasts of the oligomerization effect on magnetic shielding show a clear distinction between eumelanin building blocks in solution, which could be detected in nuclear magnetic resonance experiments. Calculations for a π-stacked structure defined by the dimer of a tetrameric building block indicate that unprotonated N atoms are significantly deshielded upon π stacking, whereas protonated N atoms are slightly shielded. The results stress the interest of NMR experiments for a better understanding of the eumelanin complex structure.
Collapse
|
13
|
Matta M, Pezzella A, Troisi A. Relation between Local Structure, Electric Dipole, and Charge Carrier Dynamics in DHICA Melanin: A Model for Biocompatible Semiconductors. J Phys Chem Lett 2020; 11:1045-1051. [PMID: 31967830 DOI: 10.1021/acs.jpclett.9b03696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eumelanins are a family of natural and synthetic pigments obtained by oxidative polymerization of their natural precursors: 5,6-dihydroxyindole and its 2-carboxy derivative (DHICA). The simultaneous presence of ionic and electronic charge carriers makes these pigments promising materials for applications in bioelectronics. In this computational study we build a structural model of DHICA melanin considering the interplay between its many degrees of freedom, and then we examine the electronic structure of representative oligomers. We find that a nonvanishing dipole along the polymer chain sets this system apart from conventional polymer semiconductors, determining its electronic structure, reactivity toward oxidation and localization of the charge carriers. Our work sheds light on previously unnoticed features of DHICA melanin that not only fit well with its radical scavenging and photoprotective properties but also open new perspectives toward understanding and tuning charge transport in this class of materials.
Collapse
Affiliation(s)
- Micaela Matta
- University of Liverpool , Department of Chemistry , Crown Street , Liverpool L69 7ZD , U.K
| | - Alessandro Pezzella
- National Interuniversity Consortium of Materials Science and Technology (INSTM) , 50121 Florence , Italy
- Institute for Polymers , Composites and Biomaterials (IPCB) , CNR, Via Campi Flegrei 34 , I-80078 Pozzuoli , NA , Italy
| | - Alessandro Troisi
- University of Liverpool , Department of Chemistry , Crown Street , Liverpool L69 7ZD , U.K
| |
Collapse
|
14
|
Puzzarini C, Barone V. The challenging playground of astrochemistry: an integrated rotational spectroscopy - quantum chemistry strategy. Phys Chem Chem Phys 2020; 22:6507-6523. [PMID: 32163090 DOI: 10.1039/d0cp00561d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it is now well demonstrated that the interstellar medium (ISM) is characterized by a diverse and complex chemistry, a significant number of features in radioastronomical spectra are still unassigned and call for new laboratory efforts, which are increasingly based on integrated experimental and computational strategies. In parallel, the identification of an increasing number of molecules containing more than five atoms and at least one carbon atom (the so-called "interstellar" complex organic molecules), which can play a relevant role in the chemistry of life, raises the additional issue of how these species can be produced in the typical harsh conditions of the ISM. On these grounds, this perspective aims to present an integrated rotational spectroscopy - quantum chemistry approach for supporting radioastronomical observations and a computational strategy for contributing to the elucidation of chemical reactivity in the interstellar space.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| |
Collapse
|
15
|
Amin S, Rastogi RP, Sonani RR, Ray A, Sharma R, Madamwar D. Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:323-332. [PMID: 29669298 DOI: 10.1016/j.scitotenv.2018.04.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1R using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized. For over expression of the pigment, further sub-cloning of the clone DM1 was done. Sub-clone containing 10kb of the insert was sequenced for gene identification. The amino acids sequence of a protein 4-Hydroxyphenylpyruvate dioxygenase (HPPD), which is know to be involved in melanin biosynthesis was obtained from the gene sequence. The sequence-homology based 3D structure model of HPPD was constructed and analyzed. The physico-chemical nature of pigment was further analysed using 1H and 13C NMR, LC-MS, FTIR and UV-visible spectroscopy. The pigment was readily soluble in DMSO with an absorption maximum around 290nm. Based on the genetic and chemical characterization, the compound was confirmed as melanin-like pigment. The present results indicate that the metagenomic library from industrially polluted environment generated a microbial tool for the production of melanin-like pigment.
Collapse
Affiliation(s)
- Shivani Amin
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315, Anand, Gujarat, India
| | - Rajesh P Rastogi
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315, Anand, Gujarat, India; Ministry of Environment, Forests & Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi 110 003, India.
| | - Ravi R Sonani
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315, Anand, Gujarat, India
| | - Arabinda Ray
- Advanced Organic Chemistry Department, P. D. Patel Institute of Applied Sciences, CHARUSAT, Changa 388421, Gujarat, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrated Biology (IGIB), Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315, Anand, Gujarat, India.
| |
Collapse
|
16
|
Panzella L, Ebato A, Napolitano A, Koike K. The Late Stages of Melanogenesis: Exploring the Chemical Facets and the Application Opportunities. Int J Mol Sci 2018; 19:E1753. [PMID: 29899264 PMCID: PMC6032422 DOI: 10.3390/ijms19061753] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022] Open
Abstract
In the last decade, the late stages of melanin biosynthesis involving the oxidative polymerization of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) have been extensively investigated. Most of the information derived from a biomimetic approach in which the oxidation of melanogenic indoles was carried out under conditions mimicking those occurring in the biological environment. Characterization of the early oligomers allowed for drawing a structural picture of DHI and DHICA melanins, providing also an interpretative basis for the different properties exhibited by these pigments, e.g., the chromophore and the antioxidant ability. The improved knowledge has opened new perspectives toward the exploitation of the unique chemistry of melanins and its precursors in cosmetic and health care applications. A noticeable example is the development of an innovative hair dyeing system that is based on the marked ease of DHI to give rise to black melanin on air oxidation under slightly alkaline conditions. The advantage of this method for a step-wise coverage of gray hair with a natural shade pigmentation on repeated treatment with a DHI-based formulation with respect to traditional dyes is presented. A variant of DHICA melanin combining solubility in water-miscible organic solvents, an intense chromophore in the UltraViolet-A UV-A region, and a marked antioxidant potency was evaluated as an ingredient for cosmetic formulations.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy.
| | - Atsuko Ebato
- Hair Care Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy.
| | - Kenzo Koike
- Hair Care Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan.
| |
Collapse
|
17
|
Han X, Tang F, Jin Z. Free-standing polydopamine films generated in the presence of different metallic ions: the comparison of reaction process and film properties. RSC Adv 2018; 8:18347-18354. [PMID: 35541137 PMCID: PMC9080560 DOI: 10.1039/c8ra02930j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Polydopamine is widely used in surface modification, nanofiltration, photonic devices and drug delivery. The formation mechanism and properties of polydopamine are modified by the experimental conditions. Herein we demonstrated a comparison study of free-standing polydopamine films generated at the air-solution interface and their corresponding nanoparticles in solutions, in the presence of various metallic cations, Na+, Ca2+, Mg2+ and Co2+. Adding metallic ions influenced the intermediates in dopamine polymerization, and in turn the morphology and properties of the produced free-standing polydopamine films. Moreover, we observed that the polymerization process accompanying the stratification determines the formation of free-standing films at the air-solution interface: the fast polymerization of dopamine in a Co2+ environment leads to a rugged film surface and porous film body, whereas the comparatively slow polymerization of dopamine under conditions of other metallic ions results in a smooth and solid film. In addition, the water contact angles of the upper and lower surface of the polydopamine films were different. This investigation enriches our knowledge of dopamine polymerization in different environments, which is particularly useful for further application of free-standing polydopamine films.
Collapse
Affiliation(s)
- Xuwen Han
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| | - Feng Tang
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| |
Collapse
|
18
|
Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials 2018; 162:109-122. [DOI: 10.1016/j.biomaterials.2017.12.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
19
|
Mondal S, Thampi A, Puranik M. Kinetics of Melanin Polymerization during Enzymatic and Nonenzymatic Oxidation. J Phys Chem B 2018; 122:2047-2063. [PMID: 29364665 DOI: 10.1021/acs.jpcb.7b07941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanin is an abundant biopigment in the animal kingdom, but its structure remains poorly understood. This is a substantial impediment to understanding the mechanistic origin of its observed functions. Proposed models of melanin structure include aggregates of both linear and macrocyclic units and noncovalently held monomers. Both models are broadly in agreement with current experimental data. To constrain the structural and kinetic models of melanin, experimental data of high resolution with chemical specificity accompanied by atomistic modeling are required. We have addressed this by obtaining electronic absorption, infrared, and ultraviolet resonance Raman (RR) spectra of melanin at several wavelengths of excitation that are sensitive to small changes in structure. From these experiments, we observed kinetics of the formation of different species en route to melanin polymerization. Exclusive chemical signatures of monomer 3,4-dihydroxyphenylalanine (dopa), intermediate dopachrome (DC), and early-time polymer are established through their vibrational bands at 1292, 1670, and 1616 cm-1 respectively. Direct evidence of reduced heterogeneity of melanin oligomers in tyrosinase-induced formation is provided from experimental measurements of vibrational bandwidths. Models made with density functional theory show that the linear homopolymeric structures of 5,6-dihydroxyindole can account for experimentally observed wavenumbers and broad bandwidth in Raman spectra of dopa-melanin. We capture resonance Raman (RR) signature of DC, the intermediate stabilized by the enzyme tyrosinase, for the first time in an enzyme-assisted melanization reaction using 488 nm excitation wavelength and propose that this wavelength can be used to probe reaction intermediates of melanin formation in solution.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research , Pune 411008, India
| | - Arya Thampi
- Indian Institute of Science Education and Research , Pune 411008, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research , Pune 411008, India
| |
Collapse
|
20
|
Crescenzi O, D'Ischia M, Napolitano A. Kaxiras's Porphyrin: DFT Modeling of Redox-Tuned Optical and Electronic Properties in a Theoretically Designed Catechol-Based Bioinspired Platform. Biomimetics (Basel) 2017; 2:biomimetics2040021. [PMID: 31105182 PMCID: PMC6352670 DOI: 10.3390/biomimetics2040021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022] Open
Abstract
A detailed computational investigation of the 5,6-dihydroxyindole (DHI)-based porphyrin-type tetramer first described by Kaxiras as a theoretical structural model for eumelanin biopolymers is reported herein, with a view to predicting the technological potential of this unique bioinspired tetracatechol system. All possible tautomers/conformers, as well as alternative protonation states, were explored for the species at various degrees of oxidation and all structures were geometry optimized at the density functional theory (DFT) level. Comparison of energy levels for each oxidized species indicated a marked instability of most oxidation states except the six-electron level, and an unexpected resilience to disproportionation of the one-electron oxidation free radical species. Changes in the highest energy occupied molecular orbital (HOMO)–lowest energy unoccupied molecular orbital (LUMO) gaps with oxidation state and tautomerism were determined along with the main electronic transitions: more or less intense absorption in the visible region is predicted for most oxidized species. Data indicated that the peculiar symmetry of the oxygenation pattern pertaining to the four catechol/quinone/quinone methide moieties, in concert with the NH centers, fine-tunes the optical and electronic properties of the porphyrin system. For several oxidation levels, conjugated systems extending over two or more indole units play a major role in determining the preferred tautomeric state: thus, the highest stability of the six-electron oxidation state reflects porphyrin-type aromaticity. These results provide new clues for the design of innovative bioinspired optoelectronic materials.
Collapse
Affiliation(s)
- Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy.
| | - Marco D'Ischia
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy.
| |
Collapse
|
21
|
Micillo R, Panzella L, Iacomino M, Prampolini G, Cacelli I, Ferretti A, Crescenzi O, Koike K, Napolitano A, d'Ischia M. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Sci Rep 2017; 7:41532. [PMID: 28150707 PMCID: PMC5288692 DOI: 10.1038/srep41532] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Eumelanins, the chief photoprotective pigments in man and mammals, owe their black color to an unusual broadband absorption spectrum whose origin is still a conundrum. Excitonic effects from the interplay of geometric order and disorder in 5,6-dihydroxyindole (DHI)-based oligomeric/polymeric structures play a central role, however the contributions of structural (scaffold-controlled) and redox (π-electron-controlled) disorder have remained uncharted. Herein, we report an integrated experimental-theoretical entry to eumelanin chromophore dynamics based on poly(vinyl alcohol)-controlled polymerization of a large set of 5,6-dihydroxyindoles and related dimers. The results a) uncover the impact of the structural scaffold on eumelanin optical properties, disproving the widespread assumption of a universal monotonic chromophore; b) delineate eumelanin chromophore buildup as a three-step dynamic process involving the rapid generation of oxidized oligomers, termed melanochromes (phase I), followed by a slow oxidant-independent band broadening (phase II) leading eventually to scattering (phase III); c) point to a slow reorganization-stabilization of melanochromes via intermolecular redox interactions as the main determinant of visible broadband absorption.
Collapse
Affiliation(s)
- Raffaella Micillo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, I-80131 Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| | - Mariagrazia Iacomino
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca, I-56124 Pisa, Italy
| | - Ivo Cacelli
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca, I-56124 Pisa, Italy.,Dipartimento di Chimica e Chimica Industriale, Università di Pisa, I-56124 Pisa, Italy
| | - Alessandro Ferretti
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca, I-56124 Pisa, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| | - Kenzo Koike
- Hair care Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| |
Collapse
|
22
|
Huang P, Peng X, Hu D, Liao H, Tang S, Liu L. Regioselective synthesis of 2,3′-biindoles mediated by an NBS-induced homo-coupling of indoles. Org Biomol Chem 2017; 15:9622-9629. [DOI: 10.1039/c7ob02312j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of 2,3′-biindole and [3,2-a]carbazole derivatives via an NBS-induced homo-coupling of indoles with high regioselectivity.
Collapse
Affiliation(s)
- Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Huiwu Liao
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Shaobin Tang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
23
|
Yin B, Huang P, Lu Y, Liu L. TEMPO-catalyzed oxidative homocoupling route to 3,2′-biindolin-2-ones via an indolin-3-one intermediate. RSC Adv 2017. [DOI: 10.1039/c6ra24834a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A combinative C2 arylation and C3 carbonylation of free indoles using TEMPO catalysis and silver oxidant under non-directing group conditions was successful demonstrated. This new methodology is both atom and step efficient and is applicable to a broad scope of substrates.
Collapse
Affiliation(s)
- Bo Yin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Panpan Huang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Yingbing Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| |
Collapse
|
24
|
|
25
|
Feng J, Fan H, Zha DA, Wang L, Jin Z. Characterizations of the Formation of Polydopamine-Coated Halloysite Nanotubes in Various pH Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10377-10386. [PMID: 27643526 DOI: 10.1021/acs.langmuir.6b02948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies demonstrated that polydopamine (PDA) coating is universal to nearly all substrates, and it endows substrates with biocompatibility, postfunctionality, and other useful properties. Surface chemistry of PDA coating is important for its postmodifications and applications. However, there is less understanding of the formation mechanism and surface functional groups of PDA layers generated in different conditions. Halloysite is a kind of clay mineral with tubular nanostructure. Water-swellable halloysite has unique reactivity. In this study, we have investigated the reaction of dopamine in the presence of water-swellable halloysite. We have tracked the reaction progresses in different pH environments by using UV-vis spectroscopy and surface-enhanced Raman spectroscopy (SERS). The surface properties of PDA on halloysite were clarified by X-ray photoelectron spectroscopy (XPS), SERS, Fourier transform infrared (FTIR) characterizations, zeta potential, surface wettability, and morphological characterizations. We noticed that the interaction between halloysite surface and dopamine strongly influences the surface functionality of coated PDA. In addition, pH condition further modulates surface functional groups, resulting in less content of secondary/aromatic amine in PDA generated in weak acidic environment. This study demonstrates that the formation mechanism of polydopamine becomes complex in the presence of inorganic nanomaterials. Substrate property and reaction condition dominate the functionality of obtained PDA together.
Collapse
Affiliation(s)
- Junran Feng
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Hailong Fan
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Dao-An Zha
- School of Science, Beijing Jiaotong University , No. 3 Shang Yuan Cun, Haidian District, Beijing 100044, People's Republic of China
| | - Le Wang
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| |
Collapse
|
26
|
Sugumaran M. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis. Int J Mol Sci 2016; 17:ijms17091576. [PMID: 27657049 PMCID: PMC5037842 DOI: 10.3390/ijms17091576] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Melanin is an important biopolymeric pigment produced in a vast majority of organisms. Tyrosine and its hydroxylated product, dopa, form the starting material for melanin biosynthesis. Earlier studies by Raper and Mason resulted in the identification of dopachrome and dihydroxyindoles as important intermediates and paved way for the establishment of well-known Raper-Mason pathway for the biogenesis of brown to black eumelanins. Tyrosinase catalyzes the oxidation of tyrosine as well as dopa to dopaquinone. Dopaquinone thus formed, undergoes intramolecular cyclization to form leucochrome, which is further oxidized to dopachrome. Dopachrome is either converted into 5,6-dihydroxyindole by decarboxylative aromatization or isomerized into 5,6-dihydroxyindole-2-carboxylic acid. Oxidative polymerization of these two dihydroxyindoles eventually produces eumelanin pigments via melanochrome. While the role of quinones in the biosynthetic pathway is very well acknowledged, that of isomeric quinone methides, however, remained marginalized. This review article summarizes the key role of quinone methides during the oxidative transformation of a vast array of catecholamine derivatives and brings out the importance of these transient reactive species during the melanogenic process. In addition, possible reactions of quinone methides at various stages of melanogenesis are discussed.
Collapse
Affiliation(s)
- Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
27
|
Assis Oliveira LB, L. Fonseca T, Costa Cabral BJ, Coutinho K, Canuto S. Hydration effects on the electronic properties of eumelanin building blocks. J Chem Phys 2016; 145:084501. [DOI: 10.1063/1.4961147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Leonardo Bruno Assis Oliveira
- Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
- Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
- Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO, Brazil
| | - Tertius L. Fonseca
- Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - Benedito J. Costa Cabral
- Grupo de Física Matemática da Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Kaline Coutinho
- Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP, Brazil
| | - Sylvio Canuto
- Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP, Brazil
| |
Collapse
|
28
|
Ju KY, Kang J, Chang JH, Lee JK. Clue to Understanding the Janus Behavior of Eumelanin: Investigating the Relationship between Hierarchical Assembly Structure of Eumelanin and Its Photophysical Properties. Biomacromolecules 2016; 17:2860-72. [DOI: 10.1021/acs.biomac.6b00686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuk-Youn Ju
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Jeeun Kang
- Department
of Electronics Engineering and Sogang Institute of Advanced Technology, Sogang University, Seoul, 121-742, Korea
| | - Jin Ho Chang
- Department
of Electronics Engineering and Sogang Institute of Advanced Technology, Sogang University, Seoul, 121-742, Korea
| | - Jin-Kyu Lee
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
29
|
"Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties. Int J Mol Sci 2016; 17:ijms17050746. [PMID: 27196900 PMCID: PMC4881568 DOI: 10.3390/ijms17050746] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023] Open
Abstract
Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.
Collapse
|
30
|
Salomäki M, Tupala M, Parviainen T, Leiro J, Karonen M, Lukkari J. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4103-4112. [PMID: 27049932 DOI: 10.1021/acs.langmuir.6b00402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The preparation of thin melanin films suitable for applications is challenging. In this work, we present a new alternative approach to thin melanin-type films using oxidative multilayers prepared by the sequential layer-by-layer deposition of cerium(IV) and inorganic polyphosphate. The interfacial reaction between cerium(IV) in the multilayer and 5,6-dihydroxyindole (DHI) in the adjacent aqueous solution leads to the formation of a thin uniform film. The oxidation of DHI by cerium(IV) proceeds via known melanin intermediates. We have characterized the formed DHI-melanin films using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-vis spectroscopy, and spectroelectrochemistry. When a five-bilayer oxidative multilayer is used, the film is uniform with a thickness of ca. 10 nm. Its chemical composition, as determined using XPS, is typical for melanin. It is also redox active, and its oxidation occurs in two steps, which can be assigned to semiquinone and quinone formation within the indole structural motif. Oxidative multilayers can also oxidize dopamine, but the reaction stops at the dopamine quinone stage because of the limited amount of the multilayer-based oxidizing agent. However, dopamine oxidation by Ce(IV) was studied also in solution by UV-vis spectroscopy and mass spectrometry in order to verify the reaction mechanism and the final product. In solution, the oxidation of dopamine by cerium shows that the indole ring formation takes place already at low pH and that the mass spectrum of the final product is practically identical with that of commercial melanin. Therefore, layer-by-layer formed oxidative multilayers can be used to deposit functional melanin-type thin films on arbitrary substrates by a surface-controlled reaction.
Collapse
Affiliation(s)
- Mikko Salomäki
- Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
| | | | | | - Jarkko Leiro
- Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
| | | | - Jukka Lukkari
- Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
| |
Collapse
|
31
|
Tuna D, Udvarhelyi A, Sobolewski AL, Domcke W, Domratcheva T. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin. J Phys Chem B 2016; 120:3493-502. [PMID: 27005558 DOI: 10.1021/acs.jpcb.6b01793] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer.
Collapse
Affiliation(s)
- Deniz Tuna
- Department of Chemistry, Technische Universität München , 85747 Garching, Germany
| | - Anikó Udvarhelyi
- Department of Biomolecular Mechanisms, Max-Planck-Institut für Medizinische Forschung , 69120 Heidelberg, Germany
| | | | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München , 85747 Garching, Germany
| | - Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max-Planck-Institut für Medizinische Forschung , 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Kim E, Panzella L, Micillo R, Bentley WE, Napolitano A, Payne GF. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism. Sci Rep 2015; 5:18447. [PMID: 26669666 PMCID: PMC4680885 DOI: 10.1038/srep18447] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/18/2015] [Indexed: 12/23/2022] Open
Abstract
Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin's pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin's redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research University of Maryland 5115 Plant Sciences Building College Park, MD 20742, USA
- Fischell Department of Bioengineering University of Maryland College Park, MD 20742, USA
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples (Italy)
| | - Raffaella Micillo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples (Italy)
- Department of Clinical Medicine and Surgery, University of Naples “Federico II” – Via Pansini 5, I-80131 Naples, Italy
| | - William E. Bentley
- Institute for Biosystems and Biotechnology Research University of Maryland 5115 Plant Sciences Building College Park, MD 20742, USA
- Fischell Department of Bioengineering University of Maryland College Park, MD 20742, USA
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples (Italy)
| | - Gregory F. Payne
- Institute for Biosystems and Biotechnology Research University of Maryland 5115 Plant Sciences Building College Park, MD 20742, USA
- Fischell Department of Bioengineering University of Maryland College Park, MD 20742, USA
| |
Collapse
|
33
|
Narrow-band gap Benzodipyrrolidone (BDPD) based donor conjugated polymer: A theoretical investigation. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Qu H, Li J, Li H, Wang H, Liu L. Three-Component, Four-Molecule, Ru-Catalyzed Cascade Reactions of Indoles and Alkyl Bromides with Sodium Nitrite. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2014.999869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hongen Qu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jiuling Li
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Huiliang Li
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Hengshan Wang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
35
|
Prampolini G, Cacelli I, Ferretti A. Intermolecular interactions in eumelanins: a computational bottom-up approach. I. small building blocks. RSC Adv 2015. [DOI: 10.1039/c5ra03773e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Building eumelanin: from basic units to spectral properties.
Collapse
Affiliation(s)
- Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
- Area della Ricerca
- I-56124 Pisa
- Italy
| | - Ivo Cacelli
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
- Area della Ricerca
- I-56124 Pisa
- Italy
- Dipartimento di Chimica e Chimica Industriale
| | - Alessandro Ferretti
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
- Area della Ricerca
- I-56124 Pisa
- Italy
| |
Collapse
|
36
|
Lin F, Chen Y, Wang B, Qin W, Liu L. Silver-catalyzed TEMPO oxidative homocoupling of indoles for the synthesis of 3,3′-biindolin-2-ones. RSC Adv 2015. [DOI: 10.1039/c5ra04106f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A silver-catalyzed TEMPO oxidative homo dimerization of indoles was first successful demonstrated. This new methodology is both atom and step efficient, allowing the synthesis of substituted C3–C3′ bisindolin-2-ones in moderate to excellent yields.
Collapse
Affiliation(s)
- Feng Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Yu Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Baoshuang Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Wenbing Qin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| |
Collapse
|
37
|
della Vecchia NF, Cerruti P, Gentile G, Errico ME, Ambrogi V, D'Errico G, Longobardi S, Napolitano A, Paduano L, Carfagna C, d'Ischia M. Artificial biomelanin: highly light-absorbing nano-sized eumelanin by biomimetic synthesis in chicken egg white. Biomacromolecules 2014; 15:3811-6. [PMID: 25224565 DOI: 10.1021/bm501139h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The spontaneous oxidative polymerization of 0.01-1% w/w 5,6-dihydroxyindole (DHI) in chicken egg white (CEW) in the absence of added solvents leads to a black, water-soluble, and processable artificial biomelanin (ABM) with robust and 1 order of magnitude stronger broadband light absorption compared to natural and synthetic eumelanin suspensions. Small angle neutron scattering (SANS) and transmission electron microscopy (TEM) analysis indicated the presence in the ABM matrix of isolated eumelanin nanoparticles (≤100 nm) differing in shape from pure DHI melanin nanoparticles (SANS evidence). Electron paramagnetic resonance (EPR) spectra showed a slightly asymmetric signal (g ∼ 2.0035) similar to that of solid DHI melanin but with a smaller amplitude (ΔB), suggesting hindered spin delocalization in biomatrix. Enhanced light absorption, altered nanoparticle morphology and decreased free radical delocalization in ABM would reflect CEW-induced inhibition of eumelanin aggregation during polymerization accompanied in part by covalent binding of growing polymer to the proteins (SDS-PAGE evidence). The technological potential of eumelanin nanosizing by biomimetic synthesis within a CEW biomatrix is demonstrated by the preparation of an ABM-based black flexible film with characteristics comparable to those of commercially available polymers typically used in electronics and biomedical applications.
Collapse
|
38
|
Prasetyanto EA, Manini P, Napolitano A, Crescenzi O, d'Ischia M, De Cola L. Towards Eumelanin@Zeolite Hybrids: Pore-Size-Controlled 5,6-Dihydroxyindole Polymerization. Chemistry 2014; 20:1597-601. [DOI: 10.1002/chem.201303682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 11/08/2022]
|
39
|
Singh MS, Nagaraju A, Anand N, Chowdhury S. ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis. RSC Adv 2014. [DOI: 10.1039/c4ra11444b] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this critical review, we provide a comprehensive view of the chemistry of ortho-quinone methides as versatile reactive intermediates in organic synthesis.
Collapse
Affiliation(s)
- Maya Shankar Singh
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005, India
| | - Anugula Nagaraju
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005, India
| | - Namrata Anand
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005, India
| | - Sushobhan Chowdhury
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005, India
| |
Collapse
|
40
|
Chassepot A, Ball V. Human serum albumin and other proteins as templating agents for the synthesis of nanosized dopamine-eumelanin. J Colloid Interface Sci 2014; 414:97-102. [DOI: 10.1016/j.jcis.2013.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
|
41
|
Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS APPLIED MATERIALS & INTERFACES 2013; 5:12895-12904. [PMID: 24313803 DOI: 10.1021/am403405c] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A facile and versatile approach for the preparation of antifouling and antimicrobial polymer membranes has been developed on the basis of bioinspired polydopamine (PDA) in this work. It is well-known that a tightly adherent PDA layer can be generated over a wide range of material surfaces through a simple dip-coating process in dopamine aqueous solution. The resulting PDA coating is prone to be further surface-tailored and functionalized via secondary treatments because of its robust reactivity. Herein, a typical hydrophobic polypropylene (PP) porous membrane was first coated with a PDA layer and then further modified by poly(N-vinyl pyrrolidone) (PVP) via multiple hydrogen-bonding interactions between PVP and PDA. Data of water contact angle measurements showed that hydrophilicity and wettability of the membranes were significantly improved after introducing PDA and PVP layers. Both permeation fluxes and antifouling properties of the modified membranes were enhanced as evaluated in oil/water emulsion filtration, protein filtration, and adsorption tests. Furthermore, the modified membranes showed remarkable antimicrobial activity after iodine complexation with the PVP layer. The PVP layer immobilized on the membrane had satisfying long-term stability and durability because of the strong noncovalent forces between PVP and PDA coating. The strategy of material surface modification reported here is substrate-independent, and applicable to a broad range of materials and geometries, which allows effective development of materials with novel functional coatings based on the mussel-inspired surface chemistry.
Collapse
Affiliation(s)
- Jinhong Jiang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | | | | | | | | | | |
Collapse
|
42
|
Chang Q, Qu H, Qin W, Liu L, Chen Z. Methylsulfonic Acid Adsorbed on Silica Gel as a Solid Acid for Dimerization of Indoles: A Convenient Synthesis of 2,3′-Bi(3 H-indol)-3-one Oximes. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2012.751611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qiong Chang
- a Department of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , China
| | - Hongen Qu
- a Department of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , China
| | - Wenbing Qin
- a Department of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , China
| | - Liangxian Liu
- a Department of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , China
| | - Zhengwang Chen
- a Department of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , China
| |
Collapse
|
43
|
Panzella L, Gentile G, D'Errico G, Della Vecchia NF, Errico ME, Napolitano A, Carfagna C, d'Ischia M. Atypical Structural and π-Electron Features of a Melanin Polymer That Lead to Superior Free-Radical-Scavenging Properties. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Panzella L, Gentile G, D'Errico G, Della Vecchia NF, Errico ME, Napolitano A, Carfagna C, d'Ischia M. Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angew Chem Int Ed Engl 2013; 52:12684-7. [PMID: 24123614 DOI: 10.1002/anie.201305747] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126 Naples (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pezzella A, Crescenzi O, Panzella L, Napolitano A, Land EJ, Barone V, d’Ischia M. Free Radical Coupling of o-Semiquinones Uncovered. J Am Chem Soc 2013; 135:12142-9. [DOI: 10.1021/ja4067332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro Pezzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Edward J. Land
- STFC Daresbury Laboratory, Daresbury, WA4 4AD, United
Kingdom
- Chemistry Section,
School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri
7, I-56126 Pisa, Italy
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| |
Collapse
|
46
|
Ascione L, Pezzella A, Ambrogi V, Carfagna C, d'Ischia M. Intermolecular π-Electron Perturbations Generate Extrinsic Visible Contributions to Eumelanin Black Chromophore in Model Polymers with Interrupted Interring Conjugation. Photochem Photobiol 2012; 89:314-8. [DOI: 10.1111/php.12003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/20/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Laura Ascione
- Department of Chemical Sciences; University of Naples Federico II; Naples; Italy
| | - Alessandro Pezzella
- Department of Chemical Sciences; University of Naples Federico II; Naples; Italy
| | - Veronica Ambrogi
- Department of Materials and Production Engineering; University of Naples Federico II; Naples; Italy
| | | | - Marco d'Ischia
- Department of Chemical Sciences; University of Naples Federico II; Naples; Italy
| |
Collapse
|
47
|
Corani A, Huijser A, Iadonisi A, Pezzella A, Sundström V, d’Ischia M. Bottom-Up Approach to Eumelanin Photoprotection: Emission Dynamics in Parallel Sets of Water-Soluble 5,6-Dihydroxyindole-Based Model Systems. J Phys Chem B 2012; 116:13151-8. [DOI: 10.1021/jp306436f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alice Corani
- Department of Chemical Physics, Lund University, Box 124, 221 00 Lund, Sweden
| | - Annemarie Huijser
- Department of Chemical Physics, Lund University, Box 124, 221 00 Lund, Sweden
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples “Federico II”, Via
Cintia, 80126 Naples, Italy
| | - Alessandro Pezzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via
Cintia, 80126 Naples, Italy
| | - Villy Sundström
- Department of Chemical Physics, Lund University, Box 124, 221 00 Lund, Sweden
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples “Federico II”, Via
Cintia, 80126 Naples, Italy
| |
Collapse
|
48
|
Arzillo M, Mangiapia G, Pezzella A, Heenan RK, Radulescu A, Paduano L, d'Ischia M. Eumelanin buildup on the nanoscale: aggregate growth/assembly and visible absorption development in biomimetic 5,6-dihydroxyindole polymerization. Biomacromolecules 2012; 13:2379-90. [PMID: 22651227 DOI: 10.1021/bm3006159] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Establishing structure-property relationships in the black insoluble eumelanins, the key determinants of human pigmentation and skin photoprotective system, is a considerable conceptual and experimental challenge in the current drive for elucidation of the biological roles of these biopolymers and their application as advanced materials for organoelectronics. Herein, we report a new breakthrough toward this goal by the first detailed investigation on the nanoscale level of the oxidative polymerization of 5,6-dihydroxyindole (DHI), a model process of eumelanin synthesis. On the basis of a combined use of spectrophotometry, dynamic light scattering (DLS), and small-angle neutron scattering (SANS) investigations, it was possible to unveil the dynamics of the aggregation process before precipitation, the key relationships with visible light absorption and the shape of fundamental aggregates. The results indicated a polymerization mechanism of the type: Polymer(n) + DHI(x) = Polymer(n+x), where DHI(x) indicates monomer, dimer, or low oligomers (x ≤ 5). During polymerization, visible absorption increases rapidly, reaching a plateau. Particle growth proceeds slowly, with formation of 2-D structures ~55 nm thick, until precipitation occurs, that is, when large aggregates with a maximum hydrodynamic radius (R(h)) of ~1200 nm are formed. Notably, markedly smaller R(h) values, up to ~110 nm, were determined in the presence of poly(vinyl alcohol) (PVA) that was shown to be an efficient aggregation-preventing agent for polymerizing DHI ensuring water solubilization. Finally, it is shown that DHI monomer can be efficiently and partially irreversibly depleted from aqueous solutions by the addition of eumelanin suspensions. This behavior is suggested to reflect oxidant-independent competing pathways of polymer synthesis and buildup via monomer conversion on the active aggregate surface contributing to particle growth. Besides filling crucial gaps in DHI polymerization, these results support the attractive hypothesis that eumelanins may behave as a peculiar example of living biopolymers. The potential of PVA as a powerful tool for solution chemistry-based investigations of eumelanin supramolecular organization and for technological manipulation purposes is underscored.
Collapse
Affiliation(s)
- Marianna Arzillo
- Department of Chemical Sciences, University of Naples Federico II, Napoli (NA), Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Reale S, Crucianelli M, Pezzella A, d'Ischia M, De Angelis F. Exploring the frontiers of synthetic eumelanin polymers by high-resolution matrix-assisted laser/desorption ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:49-53. [PMID: 22282089 DOI: 10.1002/jms.2025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
New trends in material science and nanotechnologies have spurred growing interest in eumelanins black insoluble biopolymers derived by tyrosinase-catalysed oxidation of tyrosine via 5,6-dihydroxyindole (DHI) and its 2-carboxylic acid (DHICA). Efficient antioxidant and photoprotective actions, associated with peculiar optoelectronic properties, are recognised as prominent functions of eumelanin macromolecules within the human and mammalian pigmentary system, making them unique candidates for the realisation of innovative bio-inspired functional soft materials, with structure-based physical-chemical properties. An unprecedented breakthrough into the mechanism of synthetic eumelanin buildup has derived from a detailed investigation of the oxidative polymerization of DHI and its N-methyl derivative (NMDHI) by linear and reflectron matrix-assisted laser/desorption ionization mass spectrometry. Regular collections of oligomers of increasing masses, spanning the entire m/z ranges up to 5000 Da (>30-mer) and 8000 Da (> 50-mer) for the two building blocks, respectively, were disclosed. It is the first time that the in vitro polymerisation of dihydroxyindoles to form synthetic eumelanins is explored up to its high mass limits, giving at the same time information on the polymerisation mode, whether it follows a stepwise pattern (being this the conclusion in our case) or a staking sequencing of small-sized entities. It also highlighted the influence of the N-methyl substituent on the polymerization process; this opens the way to the production of N-functionalized, synthetic eumelanin-inspired soft materials, for possible future technological applications.
Collapse
Affiliation(s)
- Samantha Reale
- Department of Chemistry, Chemical Engineering and Materials, University of L'Aquila, Via Vetoio, I-67100, Coppito, L'Aquila, Italy
| | | | | | | | | |
Collapse
|
50
|
Ball V, Del Frari D, Michel M, Buehler MJ, Toniazzo V, Singh MK, Gracio J, Ruch D. Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale. BIONANOSCIENCE 2011. [DOI: 10.1007/s12668-011-0032-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|