1
|
Jimenez EC. Peptide antagonists of NMDA receptors: Structure-activity relationships for potential therapeutics. Peptides 2022; 153:170796. [PMID: 35367253 DOI: 10.1016/j.peptides.2022.170796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/19/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptors are heteromeric cation channels involved in memory, learning, and synaptic plasticity. The dysfunction associated with NMDA receptors results in neurodegenerative conditions. The conantokins comprise a family of Conus venom peptides that induce sleep upon intracranial injection into young mice and are known to be NMDA receptor antagonists. This work comprehensibly documents the conantokins that have been characterized to date, focusing on the biochemistry, solution structures in the presence or absence of divalent cations, functions as selective NMDA receptor antagonists, and structure-activity relationships. Furthermore, the applications of conantokins as potential therapeutics for certain neurological conditions, including neuropathic pain, epilepsy, and ischaemia that are linked to NMDA receptor dysfunction are reviewed.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines.
| |
Collapse
|
2
|
Corvaglia V, Carbajo D, Prabhakaran P, Ziach K, Mandal PK, Santos VD, Legeay C, Vogel R, Parissi V, Pourquier P, Huc I. Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificial analogues of DNA mimic proteins. Nucleic Acids Res 2019; 47:5511-5521. [PMID: 31073604 PMCID: PMC6582331 DOI: 10.1093/nar/gkz352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inspired by DNA mimic proteins, we have introduced aromatic foldamers bearing phosphonate groups as synthetic mimics of the charge surface of B-DNA and competitive inhibitors of some therapeutically relevant DNA-binding enzymes: the human DNA Topoisomerase 1 (Top1) and the human HIV-1 integrase (HIV-1 IN). We now report on variants of these anionic foldamers bearing carboxylates instead of phosphonates. Several new monomers have been synthesized with protecting groups suitable for solid phase synthesis (SPS). Six hexadecaamides have been prepared using SPS. Proof of their resemblance to B-DNA was brought by the first crystal structure of one of these DNA-mimic foldamers in its polyanionic form. While some of the foldamers were found to be as active as, or even more active than, the original phosphonate oligomers, others had no activity at all or could even stimulate enzyme activity in vitro. Some foldamers were found to have differential inhibitory effects on the two enzymes. These results demonstrate a strong dependence of inhibitory activity on foldamer structure and charge distribution. They open broad avenues for the development of new classes of derivatives that could inhibit the interaction of specific proteins with their DNA target thereby influencing the cellular pathways in which they are involved.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Daniel Carbajo
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Panchami Prabhakaran
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Krzysztof Ziach
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Pradeep Kumar Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | | | - Carole Legeay
- Sanofi recherche & développement, Montpellier 34184, France
| | - Rachel Vogel
- Sanofi recherche & développement, Montpellier 34184, France
| | - Vincent Parissi
- Université de Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (UMR 5234), Bordeaux 33146, France
| | - Philippe Pourquier
- INSERM U1194, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier, Montpellier 34298, France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| |
Collapse
|
3
|
Antagonistic action on NMDA/GluN2B mediated currents of two peptides that were conantokin-G structure-based designed. BMC Neurosci 2017; 18:44. [PMID: 28511693 PMCID: PMC5433008 DOI: 10.1186/s12868-017-0361-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Background The GluN2B subunit of the N-methyl-d-aspartate receptor (NMDAr) modulates many physiological processes including learning, memory, and pain. Excessive increase in NMDAr/GluN2B activity has been associated with various disorders such neuropathic pain and neuronal death following hypoxia. Thus there is an interest in identifying NMDAr antagonists that interact specifically with the GluN2B subunit. Recently based on structural analysis between the GluN2B subunit and conantokin-G, a toxin that interacts selectively with the GluN2B subunit, we designed various peptides that are predicted to act as NMDAr antagonists by interacting with the GluN2B subunit. In this study we tested this prediction for two of these peptides EAR16 and EAR18. Results The effects of EAR16 and EAR18 in NMDA-evoked currents were measured in cultured rat embryonic hippocampal neurons and in HEK-293 cells expressing recombinant NMDAr comprised of GluN1a–GluN2A or GluN1a–GluN2B subunits. In hippocampal neurons, EAR16 and EAR18 reduced the NMDA-evoked calcium currents in a dose-dependent and reversible manner with comparable IC50 (half maximal inhibitory concentration) values of 241 and 176 µM, respectively. At 500 µM, EAR16 blocked more strongly the NMDA-evoked currents mediated by the GluN1a–GluN2B (84%) than those mediated by the GluN1a–GluN2A (50%) subunits. At 500 µM, EAR18 blocked to a similar extent the NMDA-evoked currents mediated by the GluN1a–GluN2B (62%) and the GluN1a–GluN2A (55%) subunits. Conclusions The newly designed EAR16 and EAR18 peptides were shown to block in reversible manner NMDA-evoked currents, and EAR16 showed a stronger selectivity for GluN2B than for GluN2A.
Collapse
|
4
|
Mandal PK, Kauffmann B, Destecroix H, Ferrand Y, Davis AP, Huc I. Crystal structure of a complex between β-glucopyranose and a macrocyclic receptor with dendritic multicharged water solubilizing chains. Chem Commun (Camb) 2016; 52:9355-8. [PMID: 27373805 DOI: 10.1039/c6cc04466b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using commercial screens for crystallization of biomolecules and taking advantage of the use of racemic crystallography allowed the production of X-ray quality single crystals and the elucidation at 1.08 Å resolution of the solid state structure of a difficult target: the complex between glucopyranose and a water soluble macrocyclic receptor equipped with dendritic multianionic solubilizing chains.
Collapse
Affiliation(s)
- Pradeep K Mandal
- Univ. Bordeaux, CBMN (UMR 5248), IECB, 2 rue Robert Escarpit, F-33600 Pessac, France.
| | | | | | | | | | | |
Collapse
|
5
|
Zhang W, Tian Y, He H, Chen R, Ma Y, Guo H, Yuan Y, Liu C. Strontium attenuates rhBMP-2-induced osteogenic differentiation via formation of Sr-rhBMP-2 complex and suppression of Smad-dependent signaling pathway. Acta Biomater 2016; 33:290-300. [PMID: 26828127 DOI: 10.1016/j.actbio.2016.01.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/23/2015] [Accepted: 01/28/2016] [Indexed: 02/03/2023]
Abstract
Strontium (Sr(2+)) has pronounced effects on stimulating bone formation and inhibiting bone resorption in bone regeneration. In this current study, the effect and the underlying mechanism involved of Sr(2+) on the biological activity of bone morphogenetic protein-2 (BMP-2) were studied in detail with pluripotent skeletal muscle myogenic progenitor C2C12 model cell line. The results indicated that Sr(2+) could bind recombinant human BMP-2 (rhBMP-2) rapidly, even in the presence of Ca(2+) and Mg(2+), and inhibited rhBMP-2-induced osteogenic differentiation in vitro and osteogenetic efficiency in vivo. Further studies demonstrated that Sr(2+) treatment undermined the binding capacity of rhBMP-2 with its receptor BMPRIA and thus attenuated Smad 1/5/8 phosphorylation without affecting their dephosphorylation in C2C12 cells. Furthermore, circular dichroism spectroscopy, fluorescence spectroscopy and X-ray photoelectron spectroscopy all revealed that the inhibitory effect of Sr(2+) on the rhBMP-2 osteogenic activity was associated with the formation of Sr-rhBMP-2 complex and ensuing enhancement of β-sheet structure. Our work suggests the activity of rhBMP-2 to induce osteogenic differentiation was decreased by directly interaction with free Sr ions in solution, which should provide guide and assist for development of BMP-2-based materials for bone regeneration. STATEMENT OF SIGNIFICANCE Due to easy denaturation and ensuing the reduced activity of rhBMP-2, preserving/enhancing the capacity of rhBMP-2 to induce osteogenic differentiation is of critical importance in developing the protein-based therapy. Cations as effective elements influence the conformation and thereby the bioactivity of protein. Strontium (Sr(2+)), stimulating bone formation and inhibiting bone resorption, has been incorporated into biomaterials/scaffold to improve the bioactivity for bone-regeneration applications. However, Sr(2+)-induced changes in the conformation and bioactivity of BMP-2 have never been investigated. In this study, the formation of Sr-rhBMP-2 complex inhibited the osteogenic differentiation in vitro and osteogenetic efficiency in vivo through the inhibition of BMP/Smad signaling pathway, providing guidance for development of Sr-containing BMP-2-based bone scaffold/matrice and other Sr-dopped protein therapy.
Collapse
Affiliation(s)
- Wenjing Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu Tian
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hongyan He
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rui Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yifan Ma
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Han Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
6
|
Zhang W, He H, Tian Y, Gan Q, Zhang J, Yuan Y, Liu C. Calcium ion-induced formation of β-sheet/-turn structure leading to alteration of osteogenic activity of bone morphogenetic protein-2. Sci Rep 2015. [PMID: 26212061 PMCID: PMC4515877 DOI: 10.1038/srep12694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Preserving bioactivity of bone morphogenetic protein 2 (BMP-2) still remains a challenge in protein-based therapy. It is not known how Ca2+ released from extracellular matrix or existing in physiological environment influences bioactivity in situ till now. Here, effects of extracellular Ca2+ on conformation and osteogenic bioactivity of recombinant human BMP-2 (rhBMP-2) were investigated systematically. In vitro results indicated that Ca2+ could bind rhBMP-2 rapidly and had no obvious effect on cell behaviors. Low concentration of Ca2+ (0.18 mM) enhanced rhBMP-2-induced osteogenic differentiation, while high Ca2+ concentration (>1.80 mM) exerted negative effect. In vivo ectopic bone formation exhibited similar trend. Further studies by circular dichroism spectroscopy, fluorescence spectroscopy, together with cell culture experiments revealed at low concentration, weak interaction of Ca2+ and rhBMP-2 slightly increased β-sheet/-turn content and facilitated recognition of BMP-2 and BMPRIA. But, high Ca2+ concentration (>1.8 mM) induced formation of Ca-rhBMP-2 complex and markedly increased content of β-sheet/-turn, which led to inhibition binding of rhBMP-2 and BMPRIA and thus suppression of downstream Smad1/5/8, ERK1/2 and p38 mitogen-associated protein kinase signaling pathways. Our work suggests osteogenic bioactivity of BMP-2 can be adjusted via extracellular Ca2+, which should provide guide and assist for development of BMP-2-based materials for bone regeneration.
Collapse
Affiliation(s)
- Wenjing Zhang
- 1] The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China [2] Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hongyan He
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu Tian
- 1] The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China [2] Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qi Gan
- 1] Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China [2] Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuan Yuan
- 1] The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China [2] Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- 1] The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China [2] Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China [3] Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
7
|
Cromm PM, Spiegel J, Grossmann TN. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem Biol 2015; 10:1362-75. [PMID: 25798993 DOI: 10.1021/cb501020r] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based drug discovery has experienced a significant upturn within the past decade since the introduction of chemical modifications and unnatural amino acids has allowed for overcoming some of the drawbacks associated with peptide therapeutics. Strengthened by such features, modified peptides become capable of occupying a niche that emerges between the two major classes of today's therapeutics-small molecules (<500 Da) and biologics (>5000 Da). Stabilized α-helices have proven particularly successful at impairing disease-relevant PPIs previously considered "undruggable." Among those, hydrocarbon stapled α-helical peptides have emerged as a novel class of potential peptide therapeutics. This review provides a comprehensive overview of the development and applications of hydrocarbon stapled peptides discussing the benefits and limitations of this technique.
Collapse
Affiliation(s)
- Philipp M. Cromm
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jochen Spiegel
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Tom N. Grossmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| |
Collapse
|
8
|
Kunda S, Yuan Y, Balsara RD, Zajicek J, Castellino FJ. Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors. J Biol Chem 2015; 290:18156-18172. [PMID: 26048991 DOI: 10.1074/jbc.m115.650341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/10/2023] Open
Abstract
Conantokins are ~20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp(10) disrupts only a small region of the α-helix of the Mn(2+)·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp(10) with N(8)Q results in a Mg(2+)-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp(10) with Pro(10) allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses.
Collapse
Affiliation(s)
- Shailaja Kunda
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Yue Yuan
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Rashna D Balsara
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jaroslav Zajicek
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
9
|
Church AT, Hughes ZE, Walsh TR. Improving the description of interactions between Ca2+ and protein carboxylate groups, including γ-carboxyglutamic acid: revised CHARMM22* parameters. RSC Adv 2015. [DOI: 10.1039/c5ra11268k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We show that the CHARMM22* force-field over-binds the interaction between aqueous carboxylates and Ca2+, and introduce a modification that can recover experimentally-determined binding free energies for these systems.
Collapse
Affiliation(s)
- Andrew T. Church
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Zak E. Hughes
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Tiffany R. Walsh
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| |
Collapse
|
10
|
Kunda S, Cheriyan J, Hur M, Balsara RD, Castellino FJ. Antagonist properties of Conus parius peptides on N-methyl-D-aspartate receptors and their effects on CREB signaling. PLoS One 2013; 8:e81405. [PMID: 24260577 PMCID: PMC3832412 DOI: 10.1371/journal.pone.0081405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/22/2013] [Indexed: 02/05/2023] Open
Abstract
Three members of a family of small neurotoxic peptides from the venom of Conus parius, conantokins (Con) Pr1, Pr2, and Pr3, function as antagonists of N-methyl-D-aspartate receptors (NMDAR). We report structural characterizations of these synthetic peptides, and also demonstrate their antagonistic properties toward ion flow through NMDAR ion channels in primary neurons. ConPr1 and ConPr2 displayed moderate increases in α-helicity after addition of Mg2+. Native apo-ConPr3 possessed an α-helical conformation, and the helicity increased only slightly on addition of Mg2+. Additionally, these peptides diminished NMDA/Gly-mediated currents and intracellular Ca2+ (iCa2+) influx in mature rat primary hippocampal neurons. Electrophysiological data showed that these peptides displayed slower antagonistic properties toward the NMDAR than conantokins from other species of cone snails, e.g., ConT and ConG. Furthermore, to demonstrate selectivity of the C. parius-derived conantokins towards specific NMDAR subunits, cortical neurons from GluN2A-/- and GluN2B-/- mice were utilized. Robust inhibition of NMDAR-mediated stimulation in GluN2A-/--derived mouse neurons, as compared to those isolated from GluN2B-/--mouse brains, was observed, suggesting a greater selectivity of these antagonists towards the GluN2B subunit. These C. parius conantokins mildly inhibited NMDAR-induced phosphorylation of CREB at Ser133, suggesting that the peptides modulated iCa2+ entry and, thereby, activation of CREB, a transcription factor that is required for maintaining long-term synaptic activity. Our data mechanistically show that while these peptides effectively antagonize NMDAR-directed current and iCa2+ influx, receptor-coupled CREB signaling is maintained. The consequence of sustained CREB signaling is improved neuronal plasticity and survival during neuropathologies.
Collapse
Affiliation(s)
- Shailaja Kunda
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John Cheriyan
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael Hur
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rashna D. Balsara
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Zhang N, Li BQ, Gao S, Ruan JS, Cai YD. Computational prediction and analysis of protein γ-carboxylation sites based on a random forest method. MOLECULAR BIOSYSTEMS 2012; 8:2946-55. [PMID: 22918520 DOI: 10.1039/c2mb25185j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The glutamate γ-carboxylation plays a pivotal part in a number of important human diseases. However, traditional protein γ-carboxylation site detection by experimental approaches are often laborious and time-consuming. In this study, we initiated an attempt for the computational prediction of protein γ-carboxylation sites. We developed a new method for predicting the γ-carboxylation sites based on a Random Forest method. As a result, 90.44% accuracy and 0.7739 MCC value were obtained for the training dataset, and 89.83% accuracy and 0.7448 MCC value for the testing dataset. Our method considered several features including sequence conservation, residual disorder, secondary structures, solvent accessibility, physicochemical/biochemical properties and amino acid occurrence frequencies. By means of the feature selection algorithm, an optimal set of 327 features were selected; these features were considered as the ones that contributed significantly to the prediction of protein γ-carboxylation sites. Analysis of the optimal feature set indicated several important factors in determining the γ-carboxylation and a possible consensus sequence of the γ-carboxylation recognition site (γ-CRS) was suggested. These may shed some light on the in-depth understanding of the mechanisms of γ-carboxylation, providing guidelines for experimental validation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biomedical Engineering Tianjin University, Tianjin Key Lab of BME Measurement, Tianjin, 300072, PR China
| | | | | | | | | |
Collapse
|
12
|
Gowd KH, Han TS, Twede V, Gajewiak J, Smith MD, Watkins M, Platt RJ, Toledo G, White HS, Olivera BM, Bulaj G. Conantokins derived from the Asprella clade impart conRl-B, an N-methyl d-aspartate receptor antagonist with a unique selectivity profile for NR2B subunits. Biochemistry 2012; 51:4685-92. [PMID: 22594498 DOI: 10.1021/bi300055n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using molecular phylogeny has accelerated the discovery of peptidic ligands targeted to ion channels and receptors. One clade of venomous cone snails, Asprella, appears to be significantly enriched in conantokins, antagonists of N-methyl d-aspartate receptors (NMDARs). Here, we describe the characterization of two novel conantokins from Conus rolani, including conantokin conRl-B that has shown an unprecedented selectivity for blocking NMDARs that contain NR2B subunits. ConRl-B shares only some sequence similarity with the most studied NR2B selective conantokin, conG. The divergence between conRl-B and conG in the second inter-Gla loop was used to design analogues for structure-activity studies; the presence of Pro10 was found to be key to the high potency of conRl-B for NR2B, whereas the ε-amino group of Lys8 contributed to discrimination in blocking NR2B- and NR2A-containing NMDARs. In contrast to previous findings for Tyr5 substitutions in other conantokins, conRl-B[L5Y] showed potencies on the four NR2 NMDA receptor subtypes that were similar to those of the native conRl-B. When delivered into the brain, conRl-B was active in suppressing seizures in the model of epilepsy in mice, consistent with NR2B-containing NMDA receptors being potential targets for antiepileptic drugs. Circular dichroism experiments confirmed that the helical conformation of conRl-B is stabilized by divalent metal ions. Given the clinical applications of NMDA antagonists, conRl-B provides a potentially important pharmacological tool for understanding the differential roles of NMDA receptor subtypes in the nervous system. This work shows the effectiveness of coupling molecular phylogeny, chemical synthesis, and pharmacology for discovering new bioactive natural products.
Collapse
|
13
|
Platt RJ, Han TS, Green BR, Smith MD, Skalicky J, Gruszczynski P, White HS, Olivera B, Bulaj G, Gajewiak J. Stapling mimics noncovalent interactions of γ-carboxyglutamates in conantokins, peptidic antagonists of N-methyl-D-aspartic acid receptors. J Biol Chem 2012; 287:20727-36. [PMID: 22518838 DOI: 10.1074/jbc.m112.350462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-D-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties. To test the hypothesis that stapling can effectively replace γ-carboxyglutamic acid residues in stabilizing the helical conformation of conantokins, we designed, synthesized, and characterized several stapled analogs of conantokin G (conG), with varying connectivities in terms of staple length and location along the face of the α-helix. NMR studies confirmed that the ring-closing metathesis reaction yielded a single product with the Z configuration of the olefinic bond. Based on circular dichroism and molecular modeling, the stapled analogs exhibited significantly enhanced helicity compared with the native peptide in a metal-free environment. Stapling i,i+4 was benign with respect to effects on in vitro and in vivo pharmacological properties. One analog, namely conG[11-15,S(i,i+4)S(8)], blocked NR2B-containing NMDA receptors with IC(50) = 0.7 μm and provided significant protection in the 6-Hz psychomotor model of pharmacoresistant epilepsy in mice. Remarkably, unlike native conG, conG[11-15,S(i,i+4)S(8)] produced no behavioral motor toxicity. Our results extend the applications of peptide stapling to helical peptides with extracellular targets and provide a means for engineering conantokins with improved pharmacological properties.
Collapse
Affiliation(s)
- Randall J Platt
- Departments of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bohlen CJ, Julius D. Receptor-targeting mechanisms of pain-causing toxins: How ow? Toxicon 2012; 60:254-64. [PMID: 22538196 DOI: 10.1016/j.toxicon.2012.04.336] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
Venoms often target vital processes to cause paralysis or death, but many types of venom also elicit notoriously intense pain. While these pain-producing effects can result as a byproduct of generalized tissue trauma, there are now multiple examples of venom-derived toxins that target somatosensory nerve terminals in order to activate nociceptive (pain-sensing) neural pathways. Intriguingly, investigation of the venom components that are responsible for evoking pain has revealed novel roles and/or configurations of well-studied toxin motifs. This review serves to highlight pain-producing toxins that target the capsaicin receptor, TRPV1, or members of the acid-sensing ion channel family, and to discuss the utility of venom-derived multivalent and multimeric complexes.
Collapse
Affiliation(s)
- Christopher J Bohlen
- Department of Physiology, University of California, San Francisco, CA 94158-2517, USA.
| | | |
Collapse
|
15
|
Cnudde SE, Prorok M, Jia X, Castellino FJ, Geiger JH. The crystal structure of the calcium-bound con-G[Q6A] peptide reveals a novel metal-dependent helical trimer. J Biol Inorg Chem 2011; 16:257-66. [PMID: 21063741 PMCID: PMC3672856 DOI: 10.1007/s00775-010-0722-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/09/2010] [Indexed: 11/24/2022]
Abstract
The ability to form and control both secondary structure and oligomerization in short peptides has proven to be challenging owing to the structural instability of such peptides. The conantokin peptides are a family of γ-carboxyglutamic acid containing peptides produced in the venoms of predatory sea snails of the Conus family. They are examples of short peptides that form stable helical structures, especially in the presence of divalent cations. Both monomeric and dimeric conantokin peptides have been identified and represent a new mechanism of helix association, "the metallozipper motif" that is devoid of a hydrophobic interface between monomers. In the present study, a parallel/antiparallel three-helix bundle was identified and its crystal structure determined at high resolution. The three helices are almost perfectly parallel and represent a novel helix-helix association. The trimer interface is dominated by metal chelation between the three helices, and contains no interfacial hydrophobic interactions. It is now possible to produce stable monomeric, dimeric, or trimeric metallozippers depending on the peptide sequence and metal ion. Such structures have important applications in protein design.
Collapse
Affiliation(s)
- Sara E. Cnudde
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Mary Prorok
- Department of Chemistry and Biochemistry and W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556
| | | | - Francis J. Castellino
- Department of Chemistry and Biochemistry and W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
16
|
Gowd KH, Watkins M, Twede VD, Bulaj GW, Olivera BM. Characterization of conantokin Rl-A: molecular phylogeny as structure/function study. J Pept Sci 2010; 16:375-82. [PMID: 20572027 DOI: 10.1002/psc.1249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A multidisciplinary strategy for discovery of new Conus venom peptides combines molecular genetics and phylogenetics with peptide chemistry and neuropharmacology. Here we describe application of this approach to the conantokin family of conopeptides targeting NMDA receptors. A new conantokin from Conus rolani, ConRl-A, was identified using molecular phylogeny and subsequently synthesized and functionally characterized. ConRl-A is a 24-residue peptide containing three gamma-carboxyglutamic acid residues with a number of unique sequence features compared to conantokins previously characterized. The HPLC elution of ConRl-A suggested that this peptide exists as two distinct, slowly exchanging conformers. ConRl-A is predominantly helical (estimated helicity of 50%), both in the presence and absence of Ca(++). The order of potency for blocking the four NMDA receptor subtypes by ConRl-A was NR2B > NR2D > NR2A > NR2C. This peptide has a greater discrimination between NR2B and NR2C than any other ligand reported so far. In summary, ConRl-A is a new member of the conantokin family that expands our understanding of structure/function of this group of peptidic ligands targeted to NMDA receptors. Thus, incorporating phylogeny in the discovery of novel ligands for the given family of ion channels or receptors is an efficient means of exploring the megadiverse group of peptides from the genus Conus.
Collapse
Affiliation(s)
- Konkallu H Gowd
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | |
Collapse
|
17
|
Dai Q, Dong M, Liu Z, Prorok M, Castellino FJ. Ca 2+-induced self-assembly in designed peptides with optimally spaced gamma-carboxyglutamic acid residues. J Inorg Biochem 2010; 105:52-7. [PMID: 21134602 DOI: 10.1016/j.jinorgbio.2010.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 08/08/2010] [Accepted: 10/01/2010] [Indexed: 11/18/2022]
Abstract
We have previously elucidated a new paradigm for the metal ion-induced helix-helix assembly in the natural γ-carboxyglutamic acid (Gla)-containing class of conantokin (con) peptides, typified by con-G and a variant of con-T, con-T[K7Gla], independent of the hydrophobic effect. In these "metallo-zipper" structures, Gla residues spaced at i, i+4, i+7, i+11 intervals, which is similar to the arrangement of a and d residues in typical heptads of coiled-coils, coordinate with Ca(2+) and form specific antiparallel helical dimers. In order to evaluate the common role of Gla residues in peptide self-assembly, we extend herein the same Gla arrangement to designed peptides: NH(2)-(γLSγEAK)(3)-CONH(2) (peptide 1) and NH(2)-γLSγEAKγLSγQANγLSγKAE-CONH(2) (peptide 2). Peptide 1 and peptide 2 exhibit no helicity alone, but undergo structural transitions to helical conformations in the presence of a variety of divalent cations. Sedimentation equilibrium ultracentrifugation analyses showed that peptide 1 and peptide 2 form helical dimers in the presence of Ca(2+), but not Mg(2+). Folding and thiol-disulfide rearrangement assays with Cys-containing peptide variants indicated that the helical dimers are mixtures of antiparallel and parallel dimers, which is different from the strict antiparallel strand orientations of con-G and con-T[K7γGla] dimers. These findings suggest that the Gla arrangement, i, i+4, i+7, i+11, i+14, plays a key role in helix formation, without a strict adherence to strand orientation of the helical dimer.
Collapse
Affiliation(s)
- Qiuyun Dai
- Institute of Biotechnology, Beijing 100071, China.
| | | | | | | | | |
Collapse
|
18
|
Sheng Z, Prorok M, Castellino FJ. Specific determinants of conantokins that dictate their selectivity for the NR2B subunit of N-methyl-D-aspartate receptors. Neuroscience 2010; 170:703-10. [PMID: 20688135 DOI: 10.1016/j.neuroscience.2010.07.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Conantokins are naturally-occurring small peptide antagonists of ion flow through NMDA/glycine activated-N-methyl-d-aspartate receptor (NMDAR) ion channels. One member of the conantokin family, conantokin (con)-G, a 17-residue peptide, is selective for NMDARs containing the N-methyl-d-aspartate receptor subunit 2 B (NR2B), whereas the homologous peptides, con-T and con-R, show broader selectivity for NR2 subunits. In this study, con-G, con-R, and con-T variants were chemically synthesized and employed to investigate their subunit selectivities as inhibitors of agonist-evoked ion currents in human embryonic kidney-293 (HEK-293) cells expressing various combinations of NMDAR subunits that contain NR1a or NR1b combined with NR2A or NR2B. Using truncation and point mutants, as well as chimeric conantokins, we determined that the N-terminus of con-G contains all the determinants for NR2B selectivity. With this information, a large number of (con) variants were synthesized and used to establish minimal sequence determinants for selectivity. Tyr at position 5 broadens the NR2 selectivity, and recovery of NR2B selectivity in Tyr5 peptides was achieved by incorporating Ala or Gly at position 8. NR2B selectivity in con-R can be conferred through deletion of the Ala at position 10, thereby shifting the γ-carboxyglutamate (Gla) from position 11 to position 10, where a Gla naturally occurs in con-G and con-T. The nature of the amino acid at position 6 is also linked to subunit selectivity. Our studies suggest that the molecular determinants of conantokins that dictate NMDAR subunit selectivity are housed in specific residues of the N-termini of these peptides. Thus, it is possible to engineer desired NMDAR functional properties into conantokin-based peptides.
Collapse
Affiliation(s)
- Z Sheng
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
19
|
Cnudde SE, Prorok M, Castellino FJ, Geiger JH. Metal ion determinants of conantokin dimerization as revealed in the X-ray crystallographic structure of the Cd(2+)/Mg (2+)-con-T[K7gamma] complex. J Biol Inorg Chem 2010; 15:667-75. [PMID: 20195692 PMCID: PMC3693470 DOI: 10.1007/s00775-010-0633-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Predatory sea snails from the Conus family produce a variety of venomous small helical peptides called conantokins that are rich in gamma-carboxyglutamic acid (Gla) residues. As potent and selective antagonists of the N-methyl-D: -aspartate receptor, these peptides are potential therapeutic agents for a variety of neurological conditions. The two most studied members of this family of peptides are con-G and con-T. Con-G has Gla residues at sequence positions 3, 4, 7, 10, and 14, and requires divalent cation binding to adopt a helical conformation. Although both Ca(2+) and Mg(2+) can fulfill this role, Ca(2+) induces dimerization of con-G, whereas the Mg(2+)-complexed peptide remains monomeric. A variant of con-T, con-T[K7gamma] (gamma is Gla), contains Gla residues at the same five positions as in con-G and behaves very similarly with respect to metal ion binding and dimerization; each peptide binds two Ca(2+) ions and two Mg(2+) ions per helix. To understand the difference in metal ion selectivity, affinity, and the dependence on Ca(2+) for dimer formation, we report here the structure of the monomeric Cd(2+)/Mg(2+)-con-T[K7gamma] complex, and, by comparison with the previously published con-T[K7gamma]/Ca(2+) dimer structure, we suggest explanations for both metal ion binding site specificity and metal-ion-dependent dimerization.
Collapse
Affiliation(s)
- Sara E. Cnudde
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Mary Prorok
- Department of Chemistry and Biochemistry, W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- Department of Chemistry and Biochemistry, W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Han S, Singh NJ, Kang TY, Choi KW, Choi S, Baek SJ, Kim KS, Kim SK. Aromatic π–π interaction mediated by a metal atom: structure and ionization of the bis(η6-benzene)chromium–benzene cluster. Phys Chem Chem Phys 2010; 12:7648-53. [DOI: 10.1039/b923929d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Torralba AS, Bowler DR, Miyazaki T, Gillan MJ. Non-self-consistent Density-Functional Theory Exchange-Correlation Forces for GGA Functionals. J Chem Theory Comput 2009; 5:1499-505. [DOI: 10.1021/ct8005425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio S. Torralba
- London Centre for Nanotechnology, UCL, 17-19 Gordon St, London WC1H 0AH, U.K., and Materials Simulation Laboratory and Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT, and National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0045, JAPAN
| | - David R. Bowler
- London Centre for Nanotechnology, UCL, 17-19 Gordon St, London WC1H 0AH, U.K., and Materials Simulation Laboratory and Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT, and National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0045, JAPAN
| | - Tsuyoshi Miyazaki
- London Centre for Nanotechnology, UCL, 17-19 Gordon St, London WC1H 0AH, U.K., and Materials Simulation Laboratory and Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT, and National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0045, JAPAN
| | - Michael J. Gillan
- London Centre for Nanotechnology, UCL, 17-19 Gordon St, London WC1H 0AH, U.K., and Materials Simulation Laboratory and Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT, and National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0045, JAPAN
| |
Collapse
|
22
|
Dai Q, Xiao C, Dong M, Liu Z, Sheng Z, Castellino FJ, Prorok M. Non-strict strand orientation of the Ca2+-induced dimerization of a conantokin peptide variant with sequence-shifted gamma-carboxyglutamate residues. Peptides 2009; 30:866-72. [PMID: 19428763 PMCID: PMC2714806 DOI: 10.1016/j.peptides.2009.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/12/2009] [Accepted: 01/14/2009] [Indexed: 11/20/2022]
Abstract
We have previously found a new mode of metal ion-induced helix-helix assembly for the gamma-carboxyglutamate (Gla)-containing, neuroactive conantokin (con) peptides that is independent of the hydrophobic effect. In these unique "metallo-zipper" assemblies of con-G and con-T[K7gamma], interhelical Ca(2+) coordination induces dimer formation with strictly antiparallel chain orientation in conantokin peptides in which Gla residues are positioned at "i, i+4, i+7, i+11" intervals. In order to probe the property of self-assembly in conantokin peptides with an extended Gla network, a con-T variant (con-T-tri) was synthesized that contains five Gla residues spaced at "i, i+4, i+7, i+11, i+14" intervals. Sedimentation equilibrium analyses showed that Ca(2+), but not Mg(2+), was capable of promoting con-T-tri self-assembly. Oxidation and rearrangement assays with Cys-containing con-T-tri variants revealed that the peptide strands in the complex can orient in both parallel and antiparallel forms. Stable parallel and antiparallel dimeric forms of con-T-tri were modeled using disulfide-linked peptides and the biological viability of these species was confirmed by electrophysiology. These findings suggest that small changes within the helix-helix interface of the conantokins can be exploited to achieve desired modes of strand alignment.
Collapse
Affiliation(s)
- Qiuyun Dai
- From Beijing Institute of Biotechnology, Beijing 100071, China
- To whom correspondence should be addressed: Beijing Institute of Biotechnology, Beijing 100071, China. Tel: 86-10-66948897. Fax: 86-10-63833521.
| | - Cai Xiao
- From Beijing Institute of Biotechnology, Beijing 100071, China
| | - Mingxin Dong
- From Beijing Institute of Biotechnology, Beijing 100071, China
| | | | - Zhenyu Sheng
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Francis J. Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | - Mary Prorok
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
- To whom correspondence should be addressed: Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA. Tel.: 574-6319120. Fax: 574-6314048.
| |
Collapse
|
23
|
Abstract
Conotoxins are small disulfide-rich peptides from the venoms of marine cone snails. They target a variety of ion channels, transporters, and receptors besides the interest in their natural functions in venoms and they are of much interest as drug leads. This short article gives an overview of the structural diversity of conotoxins, and illustrates this diversity with recent selected examples of conotoxin structures.
Collapse
Affiliation(s)
- Norelle L Daly
- The University of Queensland, Institute for Molecular Bioscience and Australian Research Council Special Research Centre for Functional and Applied Genomics, Brisbane, QLD, Australia.
| | | |
Collapse
|
24
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 410] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
25
|
Dai Q, Sheng Z, Geiger JH, Castellino FJ, Prorok M. Helix-Helix Interactions between Homo- and Heterodimeric γ-Carboxyglutamate-containing Conantokin Peptides and Their Derivatives. J Biol Chem 2007; 282:12641-9. [PMID: 17347154 DOI: 10.1074/jbc.m609087200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conantokins are a family of small, naturally occurring gamma-carboxyglutamate (Gla)-rich peptides that specifically antagonize the N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptor. One member of this family, conantokin-G (con-G), undergoes Ca(2+)-mediated self-assembly to form an antiparallel helical dimer. Subunit interactions in this complex are incumbent upon intermolecular Ca(2+) bridging of Gla residues spaced at i, i + 4, i + 7, i + 11 intervals within the monomer. Herein, we further probe the molecular determinants governing such helix-helix interactions. Select variants were synthesized to evaluate the contributions of non-Gla residues to conantokin self-association. Con-G dimerization was shown to be exothermic and accompanied by positive heat capacity changes. Using positional Gla variants of conantokin-R (con-R), a non-dimerizing conantokin, i, i + 4, i + 7, i + 11 Gla spacing alone was shown to be insufficient for self-assembly. The Ca(2+)-dependent antiparallel heterodimerization of con-G and con-T(K7 gamma), two peptides that harbor optimal Gla spacing, was established. Last, the effects of covalently constrained con-G dipeptides on NMDA-evoked current in HEK293 cells expressing combinations of NR1a, NR1b, NR2A, and NR2B subunits of the NMDA receptor were investigated. The antiparallel dipeptide was unique in its ability to potentiate current at NR1a/2A receptors and, like monomeric con-G, was inhibitory at NR1a/2B and NR1b/2B combinations. In contrast, the parallel species was completely inactive at all subunit combinations tested. These results suggest that, under physiological Ca(2+) concentrations, equilibrium levels of con-G dimer most likely exist in an antiparallel orientation and exert effects on NMDA receptor activity that differ from the monomer.
Collapse
Affiliation(s)
- Qiuyun Dai
- Department of Chemistry and Biochemistry and the W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|