1
|
Bizior A, Williamson G, Harris T, Hoskisson PA, Javelle A. Prokaryotic ammonium transporters: what has three decades of research revealed? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001360. [PMID: 37450375 PMCID: PMC10433425 DOI: 10.1099/mic.0.001360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life. In plants, bacteria and fungi, ammonium represents a vital source of nitrogen, which is scavenged from the external environment. In contrast, in animal cells ammonium is a cytotoxic metabolic waste product and must be excreted to prevent cell death. Transport of ammonium is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. In addition to their function as transporters, Amt/Mep/Rh proteins play roles in a diverse array of biological processes and human physiopathology. Despite this clear physiological importance and medical relevance, the molecular mechanism of Amt/Mep/Rh proteins has remained elusive. Crystal structures of bacterial Amt/Rh proteins suggest electroneutral transport, whilst functional evidence supports an electrogenic mechanism. Here, focusing on bacterial members of the family, we summarize the structure of Amt/Rh proteins and what three decades of research tells us concerning the general mechanisms of ammonium translocation, in particular the possibility that the transport mechanism might differ in various members of the Amt/Mep/Rh superfamily.
Collapse
Affiliation(s)
- Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
2
|
Sanchez-Andrada P, Vidal-Vidal A, Prieto T, Elguero J, Alkorta I, Marin-Luna M. Alkylammonium Cation Affinities of Nitrogenated Organobases: The Roles of Hydrogen Bonding and Proton Transfer. Chempluschem 2021; 86:1097-1105. [PMID: 34251758 DOI: 10.1002/cplu.202100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Indexed: 11/06/2022]
Abstract
Alkylammonium cation affinities of 64 nitrogen-containing organobases, as well as the respective proton transfer processes from the alkylammonium cations to the base, have been computed in the gas phase by using DFT methods. The guanidine bases show the highest proton transfer values (191.9-233 kJ mol-1 ) whereas the cis-2,2'-biimidazole presents the largest affinity towards the alkylammonium cations (>200 kJ mol-1 ) values. The resulting data have been compared with the experimentally reported proton affinities of the studied nitrogen-containing organobases revealing that the propensity of an organobase for the proton transfer process increases linearly with its proton affinity. This work can provide a tool for designing senors for bioactive compounds containing amino groups that are protonated at physiological pH.
Collapse
Affiliation(s)
- Pilar Sanchez-Andrada
- Departamento de Química Orgánica Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia Facultad de Química, Campus de Espinardo, E-30100, Murcia, Spain
| | - Angel Vidal-Vidal
- Departamento de Química Orgánica, Universidade de Vigo Campus Lagoas-Marcosende, Vigo, Spain
| | - Tania Prieto
- Departamento de Química Orgánica, Universidade de Vigo Campus Lagoas-Marcosende, Vigo, Spain
| | - José Elguero
- Instituto de Química Médica, Centro Superior de Investigaciones Científicas (CSIC), Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, Centro Superior de Investigaciones Científicas (CSIC), Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia Facultad de Química, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
3
|
Williamson G, Tamburrino G, Bizior A, Boeckstaens M, Dias Mirandela G, Bage MG, Pisliakov A, Ives CM, Terras E, Hoskisson PA, Marini AM, Zachariae U, Javelle A. A two-lane mechanism for selective biological ammonium transport. eLife 2020; 9:57183. [PMID: 32662768 PMCID: PMC7447429 DOI: 10.7554/elife.57183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The transport of charged molecules across biological membranes faces the dual problem of accommodating charges in a highly hydrophobic environment while maintaining selective substrate translocation. This has been the subject of a particular controversy for the exchange of ammonium across cellular membranes, an essential process in all domains of life. Ammonium transport is mediated by the ubiquitous Amt/Mep/Rh transporters that includes the human Rhesus factors. Here, using a combination of electrophysiology, yeast functional complementation and extended molecular dynamics simulations, we reveal a unique two-lane pathway for electrogenic NH4+ transport in two archetypal members of the family, the transporters AmtB from Escherichia coli and Rh50 from Nitrosomonas europaea. The pathway underpins a mechanism by which charged H+ and neutral NH3 are carried separately across the membrane after NH4+ deprotonation. This mechanism defines a new principle of achieving transport selectivity against competing ions in a biological transport process.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Mélanie Boeckstaens
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Gaëtan Dias Mirandela
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Andrei Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Callum M Ives
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Eilidh Terras
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Anna Maria Marini
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
4
|
A pore-occluding phenylalanine gate prevents ion slippage through plant ammonium transporters. Sci Rep 2019; 9:16765. [PMID: 31727964 PMCID: PMC6856177 DOI: 10.1038/s41598-019-53333-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Throughout all kingdoms of life, highly conserved transport proteins mediate the passage of ammonium across membranes. These transporters share a high homology and a common pore structure. Whether NH3, NH4+ or NH3 + H+ is the molecularly transported substrate, still remains unclear for distinct proteins. High-resolution protein structures of several ammonium transporters suggested two conserved pore domains, an external NH4+ recruitment site and a pore-occluding twin phenylalanine gate, to take over a crucial role in substrate determination and selectivity. Here, we show that while the external recruitment site seems essential for AtAMT1;2 function, single mutants of the double phenylalanine gate were not reduced in their ammonium transport capacity. Despite an unchanged ammonium transport rate, a single mutant of the inner phenylalanine showed reduced N-isotope selection that was proposed to be associated with ammonium deprotonation during transport. Even though ammonium might pass the mutant AMT pore in the ionic form, the transporter still excluded potassium ions from being transported. Our results, highlight the importance of the twin phenylalanine gate in blocking uncontrolled ammonium ion flux.
Collapse
|
5
|
Liu WQ, Amara P, Mouesca JM, Ji X, Renoux O, Martin L, Zhang C, Zhang Q, Nicolet Y. 1,2-Diol Dehydration by the Radical SAM Enzyme AprD4: A Matter of Proton Circulation and Substrate Flexibility. J Am Chem Soc 2018; 140:1365-1371. [DOI: 10.1021/jacs.7b10501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wan-Qiu Liu
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | - Xinjian Ji
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | - Chen Zhang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Zhang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
6
|
Different transport behaviors of NH4 + and NH3 in transmembrane cyclic peptide nanotubes. J Mol Model 2016; 22:233. [DOI: 10.1007/s00894-016-3081-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
7
|
Liu C, Zeng Y, Li X, Zheng S, Zhang X. Cation···π interactions: QTAIM and NBO studies on the interaction of alkali metal cations with heteroaromatic rings. Struct Chem 2014. [DOI: 10.1007/s11224-014-0433-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
9
|
Ishikita H, Saito K. Proton transfer reactions and hydrogen-bond networks in protein environments. J R Soc Interface 2013; 11:20130518. [PMID: 24284891 DOI: 10.1098/rsif.2013.0518] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein-protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Biological Sciences, Graduate School of Science, Osaka University, , Machikaneyama-cho 1-1, Toyonaka 560-0043, Japan
| | | |
Collapse
|
10
|
Dance I. A molecular pathway for the egress of ammonia produced by nitrogenase. Sci Rep 2013; 3:3237. [PMID: 24241241 PMCID: PMC3831235 DOI: 10.1038/srep03237] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/01/2013] [Indexed: 01/19/2023] Open
Abstract
Nitrogenase converts N2 to NH3, at one face of an Fe-Mo-S cluster (FeMo-co) buried in the protein. Through exploration of cavities in the structures of nitrogenase proteins, a pathway for the egress of ammonia from its generation site to the external medium is proposed. This pathway is conserved in the three species Azotobacter vinelandii, Klebsiella pneumoniae and Clostridium pasteurianum. A molecular mechanism for the translocation of NH3 by skipping through a sequence of hydrogen bonds involving eleven water molecules and surrounding aminoacids has been developed. The putative mechanism requires movement aside of some water molecules by up to ~ 1Å. Consistent with this, the surrounding protein is comprised of different chains and has little secondary structure: protein fluctuations are part of the mechanism. This NH3 pathway is well separated from the water chain and embedded proton wire that have been proposed for serial supply of protons to FeMo-co. Verification procedures are suggested.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
11
|
Wang J, Fulford T, Shao Q, Javelle A, Yang H, Zhu W, Merrick M. Ammonium transport proteins with changes in one of the conserved pore histidines have different performance in ammonia and methylamine conduction. PLoS One 2013; 8:e62745. [PMID: 23667517 PMCID: PMC3647058 DOI: 10.1371/journal.pone.0062745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/25/2013] [Indexed: 01/02/2023] Open
Abstract
Two conserved histidine residues are located near the mid-point of the conduction channel of ammonium transport proteins. The role of these histidines in ammonia and methylamine transport was evaluated by using a combination of in vivo studies, molecular dynamics (MD) simulation, and potential of mean force (PMF) calculations. Our in vivo results showed that a single change of either of the conserved histidines to alanine leads to the failure to transport methylamine but still facilitates good growth on ammonia, whereas double histidine variants completely lose their ability to transport both methylamine and ammonia. Molecular dynamics simulations indicated the molecular basis of the in vivo observations. They clearly showed that a single histidine variant (H168A or H318A) of AmtB confines the rather hydrophobic methylamine more strongly than ammonia around the mutated sites, resulting in dysfunction in conducting the former but not the latter molecule. PMF calculations further revealed that the single histidine variants form a potential energy well of up to 6 kcal/mol for methylamine, impairing conduction of this substrate. Unlike the single histidine variants, the double histidine variant, H168A/H318A, of AmtB was found to lose its unidirectional property of transporting both ammonia and methylamine. This could be attributed to a greatly increased frequency of opening of the entrance gate formed by F215 and F107, in this variant compared to wild-type, with a resultant lowering of the energy barrier for substrate to return to the periplasm.
Collapse
Affiliation(s)
- Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Saito K, Kandori H, Ishikita H. Factors that differentiate the H-bond strengths of water near the Schiff bases in bacteriorhodopsin and Anabaena sensory rhodopsin. J Biol Chem 2012; 287:34009-18. [PMID: 22865888 DOI: 10.1074/jbc.m112.388348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump, whereas Anabaena sensory rhodopsin (ASR) is believed to function as a photosensor despite the high similarity in their protein sequences. In Fourier transform infrared (FTIR) spectroscopic studies, the lowest O-D stretch for D(2)O was observed at ∼2200 cm(-1) in BR but was significantly higher in ASR (>2500 cm(-1)), which was previously attributed to a water molecule near the Schiff base (W402) that is H-bonded to Asp-85 in BR and Asp-75 in ASR. We investigated the factors that differentiate the lowest O-D stretches of W402 in BR and ASR. Quantum mechanical/molecular mechanical calculations reproduced the H-bond geometries of the crystal structures, and the calculated O-D stretching frequencies were corroborated by the FTIR band assignments. The potential energy profiles indicate that the smaller O-D stretching frequency in BR originates from the significantly higher pK(a)(Asp-85) in BR relative to the pK(a)(Asp-75) in ASR, which were calculated to be 1.5 and -5.1, respectively. The difference is mostly due to the influences of Ala-53, Arg-82, Glu-194-Glu-204, and Asp-212 on pK(a)(Asp-85) in BR and the corresponding residues Ser-47, Arg-72, Ser-188-Asp-198, and Pro-206 on pK(a)(Asp-75) in ASR. Because these residues participate in proton transfer pathways in BR but not in ASR, the presence of a strongly H-bonded water molecule near the Schiff base ultimately results from the proton-pumping activity in BR.
Collapse
Affiliation(s)
- Keisuke Saito
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
13
|
Ullmann RT, Andrade SLA, Ullmann GM. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations. J Phys Chem B 2012; 116:9690-703. [PMID: 22804733 DOI: 10.1021/jp305440f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.
Collapse
Affiliation(s)
- R Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany.
| | | | | |
Collapse
|
14
|
Wang S, Orabi EA, Baday S, Bernèche S, Lamoureux G. Ammonium Transporters Achieve Charge Transfer by Fragmenting Their Substrate. J Am Chem Soc 2012; 134:10419-27. [DOI: 10.1021/ja300129x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shihao Wang
- Department of Chemistry and
Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West,
Montréal, Québec H4B 1R6, Canada
| | - Esam A. Orabi
- Department of Chemistry and
Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West,
Montréal, Québec H4B 1R6, Canada
| | - Sefer Baday
- Swiss Institute of Bioinformatics
and Biozentrum, University of Basel, Klingelbergstrasse
50/70, CH-4056 Basel, Switzerland
| | - Simon Bernèche
- Swiss Institute of Bioinformatics
and Biozentrum, University of Basel, Klingelbergstrasse
50/70, CH-4056 Basel, Switzerland
| | - Guillaume Lamoureux
- Department of Chemistry and
Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West,
Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
15
|
Periplasmic vestibule plays an important role for solute recruitment, selectivity, and gating in the Rh/Amt/MEP superfamily. Proc Natl Acad Sci U S A 2011; 108:3970-5. [PMID: 21368153 DOI: 10.1073/pnas.1007240108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AmtB, a member of the Rh/Amt/MEP superfamily, is responsible for ammonia transport in Escherichia coli. The ammonia pathway in AmtB consists of a narrow hydrophobic lumen in between hydrophilic periplasmic and cytoplasmic vestibules. A series of molecular dynamics simulations (greater than 0.4 μs in total) were performed to determine the mechanism of solute recruitments and selectivity by the periplasmic vestibule. The results show that the periplasmic vestibule plays a crucial role in solute selectivity, and its solute preferences follow the order of NH4(+) > NH3 > CO2. Based on our results, NH4(+) recruitment is initiated by its interaction with either E70 or E225, highly conserved residues located at the entrance of the vestibule. Subsequently, the backbone carbonyl groups at the periplasmic vestibule direct NH4(+) to the conserved aromatic cage at the bottom of the vestibule (known as the Am1 site). The umbrella sampling simulations suggest that the conserved residue D160 is not directly involved in the ammonia conduction; rather its main function is to keep the structure of periplasmic vestibule intact. The MD simulations also revealed that two partially stacked phenyl rings of F107 and F215, separating the periplasmic vestibule from the hydrophobic lumen, flip open and closed simultaneously with a frequency of approximately 10(8) flipping events per second. These results show how the periplasmic vestibule selectively recruits NH4(+) to the Am1 site, and also that the synchronized flipping of two phenyl rings potentially facilitates the solute transition from the periplasmic vestibule to the hydrophobic lumen in the Rh/Amt/MEP superfamily.
Collapse
|
16
|
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
17
|
Abstract
AbstractThe interplay between two important noncovalent interactions involving different aromatic rings is studied by means of ab initio calculations (MP2/6-31++G**) computing the non-additivity energies. In this study we demonstrate the existence of cooperativity effects when cation-π and lone pair-π interactions coexist in the same system. These effects are studied theoretically using energetic and geometric features of the complexes. In addition we use Bader’s theory of atoms-in-molecules and Molecular Interaction Potential with polarization (MIPp) partition scheme to characterize the interactions. Experimental evidence for this combination of interactions has been obtained from the Cambridge Structural Database.
Collapse
|
18
|
Hub JS, Winkler FK, Merrick M, de Groot BL. Potentials of mean force and permeabilities for carbon dioxide, ammonia, and water flux across a Rhesus protein channel and lipid membranes. J Am Chem Soc 2010; 132:13251-63. [PMID: 20815391 DOI: 10.1021/ja102133x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a member of the ubiquitous ammonium transporter/methylamine permease/Rhesus (Amt/MEP/Rh) family of membrane protein channels, the 50 kDa Rhesus channel (Rh50) has been implicated in ammonia (NH(3)) and, more recently, also in carbon dioxide (CO(2)) transport. Here we present molecular dynamics simulations of spontaneous full permeation events of ammonia and carbon dioxide across Rh50 from Nitrosomonas europaea. The simulations show that Rh50 is functional in its crystallographic conformation, without the requirement for a major conformational change or the action of a protein partner. To assess the physiological relevance of NH(3) and CO(2) permeation across Rh50, we have computed potentials of mean force (PMFs) and permeabilities for NH(3) and CO(2) flux across Rh50 and compare them to permeation through a wide range of lipid membranes, either composed of pure lipids or composed of lipids plus an increasing cholesterol content. According to the PMFs, Rh50 is expected to enhance NH(3) flux across dense membranes, such as membranes with a substantial cholesterol content. Although cholesterol reduces the intrinsic CO(2) permeability of lipid membranes, the CO(2) permeabilities of all membranes studied here are too high to allow significant Rh50-mediated CO(2) flux. The increased barrier in the PMF for water permeation across Rh50 shows that Rh50 discriminates 40-fold between water and NH(3). Thus, Rh50 channels complement aquaporins, allowing the cell to regulate water and NH(3) flux independently. The PMFs for methylamine and NH(3) are virtually identical, suggesting that methylamine provides an excellent model for NH(3) in functional experiments.
Collapse
Affiliation(s)
- Jochen S Hub
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden.
| | | | | | | |
Collapse
|
19
|
Wang J, Yang H, Zuo Z, Yan X, Wang Y, Luo X, Jiang H, Chen K, Zhu W. Molecular Dynamics Simulations on the Mechanism of Transporting Methylamine and Ammonia by Ammonium Transporter AmtB. J Phys Chem B 2010; 114:15172-9. [DOI: 10.1021/jp104508k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinan Wang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Huaiyu Yang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhili Zuo
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuhua Yan
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Wang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Kaixian Chen
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China, School of Biomedical Sciences, Curtin University of Technology, Perth WA 6485, Australia, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
20
|
Lamoureux G, Javelle A, Baday S, Wang S, Bernèche S. Transport mechanisms in the ammonium transporter family. Transfus Clin Biol 2010; 17:168-75. [DOI: 10.1016/j.tracli.2010.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 02/09/2023]
|
21
|
Nygaard TP, Alfonso-Prieto M, Peters GH, Jensen MØ, Rovira C. Substrate Recognition in the Escherichia coli Ammonia Channel AmtB: A QM/MM Investigation. J Phys Chem B 2010; 114:11859-65. [DOI: 10.1021/jp102338h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Thomas P. Nygaard
- MEMPHYS—Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona, Spain
| | - Mercedes Alfonso-Prieto
- MEMPHYS—Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona, Spain
| | - Günther H. Peters
- MEMPHYS—Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona, Spain
| | - Morten Ø. Jensen
- MEMPHYS—Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona, Spain
| | - Carme Rovira
- MEMPHYS—Center for Biomembrane Physics, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona, Spain
| |
Collapse
|
22
|
Ishikita H. Origin of the pK
a
shift of the catalytic lysine in acetoacetate decarboxylase. FEBS Lett 2010; 584:3464-8. [DOI: 10.1016/j.febslet.2010.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/22/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
|
23
|
Hoopen FT, Cuin TA, Pedas P, Hegelund JN, Shabala S, Schjoerring JK, Jahn TP. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2303-15. [PMID: 20339151 PMCID: PMC2877888 DOI: 10.1093/jxb/erq057] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants can use ammonium (NH4+) as the sole nitrogen source, but at high NH4+ concentrations in the root medium, particularly in combination with a low availability of K+, plants suffer from NH4+ toxicity. To understand the role of K+ transporters and non-selective cation channels in K+/NH4+ interactions better, growth, NH4+ and K+ accumulation and the specific fluxes of NH4+, K+, and H+ were examined in roots of barley (Hordeum vulgare L.) and Arabidopsis seedlings. Net fluxes of K+ and NH4+ were negatively correlated, as were their tissue concentrations, suggesting that there is direct competition during uptake. Pharmacological treatments with the K+ transport inhibitors tetraethyl ammonium (TEA+) and gadolinium (Gd3+) reduced NH4+ influx, and the addition of TEA+ alleviated the NH4+-induced depression of root growth in germinating Arabidopsis plants. Screening of a barley root cDNA library in a yeast mutant lacking all NH4+ and K+ uptake proteins through the deletion of MEP1-3 and TRK1 and TRK2 resulted in the cloning of the barley K+ transporter HvHKT2;1. Further analysis in yeast suggested that HvHKT2;1, AtAKT1, and AtHAK5 transported NH4+, and that K+ supplied at increasing concentrations competed with this NH4+ transport. On the other hand, uptake of K+ by AtHAK5, and to a lesser extent via HvHKT2;1 and AtAKT1, was inhibited by increasing concentrations of NH4+. Together, the results of this study show that plant K+ transporters and channels are able to transport NH4+. Unregulated NH4+ uptake via these transporters may contribute to NH4+ toxicity at low K+ levels, and may explain the alleviation of NH4+ toxicity by K+.
Collapse
Affiliation(s)
- Floor ten Hoopen
- Department of Agriculture and Ecology, Plant and Soil Science Laboratory, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tracey Ann Cuin
- School of Agricultural Sciences, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001
| | - Pai Pedas
- Department of Agriculture and Ecology, Plant and Soil Science Laboratory, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Josefine N. Hegelund
- Department of Agriculture and Ecology, Plant and Soil Science Laboratory, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Sergey Shabala
- School of Agricultural Sciences, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001
| | - Jan K. Schjoerring
- Department of Agriculture and Ecology, Plant and Soil Science Laboratory, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Thomas P. Jahn
- Department of Agriculture and Ecology, Plant and Soil Science Laboratory, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
24
|
Li X, Chung LW, Mizuno H, Miyawaki A, Morokuma K. A Theoretical Study on the Nature of On- and Off-States of Reversibly Photoswitching Fluorescent Protein Dronpa: Absorption, Emission, Protonation, and Raman. J Phys Chem B 2009; 114:1114-26. [DOI: 10.1021/jp909947c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Hideaki Mizuno
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Atsushi Miyawaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| |
Collapse
|
25
|
Zidi-Yahiaoui N, Callebaut I, Genetet S, Le Van Kim C, Cartron JP, Colin Y, Ripoche P, Mouro-Chanteloup I. Functional analysis of human RhCG: comparison with E. coli ammonium transporter reveals similarities in the pore and differences in the vestibule. Am J Physiol Cell Physiol 2009; 297:C537-47. [DOI: 10.1152/ajpcell.00137.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rh glycoproteins are members of the ammonium transporter (Amt)/methylamine permease (Mep)/Rh family facilitating movement of NH3 across plasma membranes. Homology models constructed on the basis of the experimental structures of Escherichia coli AmtB and Nitrosomonas europaea Rh50 indicated a channel structure for human RhA (RhAG), RhB (RhBG), and RhC (RhCG) glycoproteins in which external and internal vestibules are linked by a pore containing two strictly conserved histidines. The pore entry is constricted by two highly conserved phenylalanines, “twin-Phe.” In this study, RhCG function was investigated by stopped-flow spectrofluorometry measuring kinetic pH variations in HEK293E cells in the presence of an ammonium gradient. The apparent unitary NH3 permeability of RhCG was determined and was found to be close to that of AmtB. With a site-directed mutagenesis approach, critical residues involved in Rh NH3 channel activity were highlighted. In the external vestibule, the importance of both the charge and the conformation of the conserved aspartic acid was shown. In contrast to AmtB, individual mutations of each phenylalanine of the twin-Phe impaired the function while the removal of both resulted in recovery of the transport activity. The impact of the mutations suggests that, although having a common function and a similar channel structure, bacterial AmtB and human Rh vary in several aspects of the NH3 transport mechanisms.
Collapse
Affiliation(s)
- Nedjma Zidi-Yahiaoui
- Institut National de la Santé et de la Recherche Médicale, UMR-S665,
- Institut National de la Transfusion Sanguine,
- Université Paris Diderot-Paris 7, and
| | - Isabelle Callebaut
- Centre National de la Recherche Scientifique, UMR7590, Université Pierre et Marie Curie Paris 6, Paris France
| | - Sandrine Genetet
- Institut National de la Santé et de la Recherche Médicale, UMR-S665,
- Institut National de la Transfusion Sanguine,
- Université Paris Diderot-Paris 7, and
| | - Caroline Le Van Kim
- Institut National de la Santé et de la Recherche Médicale, UMR-S665,
- Institut National de la Transfusion Sanguine,
- Université Paris Diderot-Paris 7, and
| | - Jean-Pierre Cartron
- Institut National de la Santé et de la Recherche Médicale, UMR-S665,
- Institut National de la Transfusion Sanguine,
- Université Paris Diderot-Paris 7, and
| | - Yves Colin
- Institut National de la Santé et de la Recherche Médicale, UMR-S665,
- Institut National de la Transfusion Sanguine,
- Université Paris Diderot-Paris 7, and
| | - Pierre Ripoche
- Institut National de la Santé et de la Recherche Médicale, UMR-S665,
- Institut National de la Transfusion Sanguine,
- Université Paris Diderot-Paris 7, and
| | - Isabelle Mouro-Chanteloup
- Institut National de la Santé et de la Recherche Médicale, UMR-S665,
- Institut National de la Transfusion Sanguine,
- Université Paris Diderot-Paris 7, and
| |
Collapse
|
26
|
Interplay between cation–π and hydrogen bonding interactions: Are non-additivity effects additive? Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.08.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Tamang DG, Rabus R, Barabote RD, Saier MH. Comprehensive analyses of transport proteins encoded within the genome of "Aromatoleum aromaticum" strain EbN1. J Membr Biol 2009; 229:53-90. [PMID: 19506936 DOI: 10.1007/s00232-009-9168-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
The denitrifying bacterium "Aromatoleum aromaticum" strain EbN1 is specialized for the aerobic utilization of aromatic compounds including crude oil constituents. We here report whole-genome analyses for potential transport proteins in A. aromaticum strain EbN1. This organism encodes very few transporters for simple sugars and most other common carbon sources. However, up to 28% of its putative transporters may act on fairly hydrophobic aromatic and aliphatic compounds. We categorize the putative transporters encoded within the genome, assign them to recognized families, and propose their preferred substrates. The bioinformatic data are correlated with available metabolic information to obtain an integrated view of the metabolic network of A. aromaticum strain EbN1. The results thus indicate that this organism possesses a disproportionately large percentage of transporters for the uptake and efflux of hydrophobic and amphipathic aromatic and aliphatic compounds compared with previously analyzed organisms. We predict that these findings will have important implications for our ecophysiological understanding of bioremediation.
Collapse
Affiliation(s)
- Dorjee G Tamang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
28
|
Lin Y, Cao Z, Mo Y. Functional role of Asp160 and the deprotonation mechanism of ammonium in the Escherichia coli ammonia channel protein AmtB. J Phys Chem B 2009; 113:4922-9. [PMID: 19278252 PMCID: PMC2676109 DOI: 10.1021/jp810651m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular dynamics simulations on the wild-type AmtB protein and its D160A homology model have been performed. Although no significant structural changes due to the mutation of Asp160 were observed, calculations confirmed the critical role of Asp160 for the recognition and binding of NH(4)(+) in AmtB. The carboxyl group of Asp160 is approximately 8 A from NH(4)(+), but their favorable through-space electrostatic interaction is further enhanced by a hydrogen bond chain involving Ala162 (the backbone carbonyl group) and Gly163 (the backbone amide group). This explains the occurrence of the second binding site in AmtB which does not exist in the D160A mutant, as shown in the computed energy profiles. As the initially buried carboxyl group of Asp160 links to the ammonium ion in the periplasmic binding vestibule through a chain of water molecules, a likely deprotonation venue thus is from ammonium to Asp160. Combined QM(PM3)/MM molecular dynamics simulations showed that indeed Asp160 can serve as the proton acceptor and the overall proton transfer process needs to overcome a barrier of merely 7.7 kcal/mol, which is in good agreement with our previous QM(DFT)/MM optimizations. Significantly, the proton transfer adopts an unconventional mechanism by migrating the negative charge from the carboxyl group of Asp160 to NH(4)(+) via two water molecules, which can be illustrated as -CO(2)(-)...H(2)O...H(2)O...NH(4)(+) --> -COOH...H(2)O...OH(-)...NH(4)(+) --> -COOH...H(2)O...H(2)O...NH(3). Apparently, this is also a charge recombination process and thus is exothermic.
Collapse
Affiliation(s)
- Yuchun Lin
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Zexing Cao
- Department of Chemistry, the State Key Laboratory for Physical Chemistry of Solid States, Center for Theoretical Chemistry, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA
- Department of Chemistry, the State Key Laboratory for Physical Chemistry of Solid States, Center for Theoretical Chemistry, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
29
|
Boeckstaens M, André B, Marini AM. Distinct Transport Mechanisms in Yeast Ammonium Transport/Sensor Proteins of the Mep/Amt/Rh Family and Impact on Filamentation. J Biol Chem 2008; 283:21362-70. [DOI: 10.1074/jbc.m801467200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
30
|
Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J. A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:3028-39. [PMID: 18434596 DOI: 10.1091/mbc.e08-01-0033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ammonium permease Mep2 is required for the induction of pseudohyphal growth, a process in Saccharomyces cerevisiae that occurs in response to nutrient limitation. Mep2 has both a transport and a regulatory function, supporting models in which Mep2 acts as a sensor of ammonium availability. Potentially similar ammonium permease-dependent regulatory cascades operate in other fungi, and they may also function in animals via the homologous Rh proteins; however, little is known about the molecular mechanisms that mediate ammonium sensing. We show that Mep2 is localized to the cell surface during pseudohyphal growth, and it is required for both filamentous and invasive growth. Analysis of site-directed Mep2 mutants in residues lining the ammonia-conducting channel reveal separation of function alleles (transport and signaling defective; transport-proficient/signaling defective), indicating transport is necessary but not sufficient to sense ammonia. Furthermore, Mep2 overexpression enhances differentiation under normally repressive conditions and induces a transcriptional profile that is consistent with activation of the mitogen-activated protein (MAP) kinase pathway. This finding is supported by epistasis analysis establishing that the known role of the MAP kinase pathway in pseudohyphal growth is linked to Mep2 function. Together, these data strengthen the model that Mep2-like proteins are nutrient sensing transceptors that govern cellular differentiation.
Collapse
Affiliation(s)
- Julian C Rutherford
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
31
|
Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci U S A 2008; 105:5040-5. [PMID: 18362341 DOI: 10.1073/pnas.0711742105] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The conduction mechanism of Escherichia coli AmtB, the structurally and functionally best characterized representative of the ubiquitous Amt/Rh family, has remained controversial in several aspects. The predominant view has been that it facilitates the movement of ammonium in its uncharged form as indicated by the hydrophobic nature of a pore located in the center of each subunit of the homotrimer. Using site-directed mutagenesis and a combination of biochemical and crystallographic methods, we have investigated mechanistic questions concerning the putative periplasmic ammonium ion binding site S1 and the adjacent periplasmic "gate" formed by two highly conserved phenylalanine residues, F107 and F215. Our results challenge models that propose that NH(4)(+) deprotonation takes place at S1 before NH(3) conduction through the pore. The presence of S1 confers two critical features on AmtB, both essential for its function: ammonium scavenging efficiency at very low ammonium concentration and selectivity against water and physiologically important cations. We show that AmtB activity absolutely requires F215 but not F107 and that removal or obstruction of the phenylalanine gate produces an open but inactive channel. The phenyl ring of F215 must thus play a very specific role in promoting transfer and deprotonation of substrate from S1 to the central pore. We discuss these results with respect to three distinct mechanisms of conduction that have been considered so far. We conclude that substrate deprotonation is an essential part of the conduction mechanism, but we do not rule out net electrogenic transport.
Collapse
|
32
|
Lupo D, Li XD, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, Winkler FK. The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proc Natl Acad Sci U S A 2007; 104:19303-8. [PMID: 18032606 PMCID: PMC2148285 DOI: 10.1073/pnas.0706563104] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Indexed: 12/19/2022] Open
Abstract
The Rhesus (Rh) proteins are a family of integral membrane proteins found throughout the animal kingdom that also occur in a number of lower eukaryotes. The significance of Rh proteins derives from their presence in the human red blood cell membrane, where they constitute the second most important group of antigens used in transfusion medicine after the ABO group. Rh proteins are related to the ammonium transport (Amt) protein family and there is considerable evidence that, like Amt proteins, they function as ammonia channels. We have now solved the structure of a rare bacterial homologue (from Nitrosomonas europaea) of human Rh50 proteins at a resolution of 1.3 A. The protein is a trimer, and analysis of its subunit interface strongly argues that all Rh proteins are likely to be homotrimers and that the human erythrocyte proteins RhAG and RhCE/D are unlikely to form heterooligomers as previously proposed. When compared with structures of bacterial Amt proteins, NeRh50 shows several distinctive features of the substrate conduction pathway that support the concept that Rh proteins have much lower ammonium affinities than Amt proteins and might potentially function bidirectionally.
Collapse
Affiliation(s)
- Domenico Lupo
- *Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Xiao-Dan Li
- *Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Anne Durand
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Takashi Tomizaki
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Baya Cherif-Zahar
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale U845, Faculté de Medecine René Descartes, F-75015 Paris, France; and
| | - Giorgio Matassi
- Institut Jacques Monod Centre National de la Recherche Scientifique-Unite Mixte de Recherche 7592, Université Paris 6 et Université Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Fritz K. Winkler
- *Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
33
|
Garcia-Raso A, Albertí FM, Fiol JJ, Tasada A, Barceló-Oliver M, Molins E, Escudero D, Frontera A, Quiñonero D, Deyà PM. A Combined Experimental and Theoretical Study of Anion–π Interactions in Bis(pyrimidine) Salts. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700809] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Garcia-Raso A, Albertí FM, Fiol JJ, Tasada A, Barceló-Oliver M, Molins E, Escudero D, Frontera A, Quiñonero D, Deyà PM. Anion−π Interactions in Bisadenine Derivatives: A Combined Crystallographic and Theoretical Study. Inorg Chem 2007; 46:10724-35. [DOI: 10.1021/ic701555n] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Angel Garcia-Raso
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Francisca M. Albertí
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Juan J. Fiol
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Andres Tasada
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Miquel Barceló-Oliver
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Elies Molins
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Daniel Escudero
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - David Quiñonero
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| | - Pere M. Deyà
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain and Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, E-08193 Cerdanyola (Barcelona), Spain
| |
Collapse
|
35
|
Escudero D, Frontera A, Quiñonero D, Costa A, Ballester P, Deyà PM. Induced-Polarization Energy Map: A Helpful Tool for Predicting Geometric Features of Anion-π Complexes. J Chem Theory Comput 2007; 3:2098-107. [DOI: 10.1021/ct700122y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Escudero
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain, and ICREA and Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain, and ICREA and Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - David Quiñonero
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain, and ICREA and Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Antoni Costa
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain, and ICREA and Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Pablo Ballester
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain, and ICREA and Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Pere M. Deyà
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain, and ICREA and Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
36
|
Cao Z, Mo Y, Thiel W. Deprotonation Mechanism of NH4+ in theEscherichia coli Ammonium Transporter AmtB: Insight from QM and QM/MM Calculations. Angew Chem Int Ed Engl 2007; 46:6811-5. [PMID: 17668906 DOI: 10.1002/anie.200701348] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | | | | |
Collapse
|
37
|
Cao Z, Mo Y, Thiel W. Deprotonation Mechanism of NH4+ in theEscherichia coli Ammonium Transporter AmtB: Insight from QM and QM/MM Calculations. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Ishikita H. Modulation of the protein environment in the hydrophilic pore of the ammonia transporter protein AmtB upon GlnK protein binding. FEBS Lett 2007; 581:4293-7. [PMID: 17707821 DOI: 10.1016/j.febslet.2007.07.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022]
Abstract
The conduction of ammonia/ammonium (NH3/NH4(+)) through the channel protein AmtB is inhibited by the binding of the signal transduction protein GlnK. In the AmtB-GlnK binding interface, there exists an NH3/NH4(+) binding site--Am6. The calculated pK(a) values at the Am6 sites in both the AmtB-GlnK complex and isolated AmtB implies the dominance of an uncharged NH3 state. The GlnK protein binding causes a significant downshift in the Am6 pK(a) value of the AmtB. However, this downshift is perfectly compensated by the reorientation of the protein backbone (carbonyl group of Cys312 from the AmtB part) upon AmtB-GlnK complex formation.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
39
|
Ishikita H. Influence of the protein environment on the redox potentials of flavodoxins from Clostridium beijerinckii. J Biol Chem 2007; 282:25240-6. [PMID: 17602164 DOI: 10.1074/jbc.m702788200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flavin mononucleotide (FMN) quinones in flavodoxin have two characteristic redox potentials, namely, Em(FMNH./FMNH-) for the one-electron reduction of the protonated FMN (E1) and Em(FMN/FMNH.) for the proton-coupled one-electron reduction (E2). These redox potentials in native and mutant flavodoxins obtained from Clostridium beijerinckii were calculated by considering the protonation states of all titratable sites as well as the energy contributed at the pKa value of FMN during protonation at the N5 nitrogen (pKa(N5)). E1 is sensitive to the subtle differences in the protein environments in the proximity of FMN. The protein dielectric volume that prevents the solvation of charged FMN quinones is responsible for the downshift of 130-160 mV of the E1 values with respect to that in an aqueous solution. The influence of the negatively charged 5'-phosphate group of FMN quinone on E1 could result in a maximum shift of 90 mV. A dramatic difference of 130 mV in the calculated E2 values of FMN quinone of the native and G57T mutant flavodoxins is due to the difference in the pKa(N5) values. This is due to the difference in the influence exerted by the carbonyl group of the protein backbone at residue 57.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
40
|
Bostick DL, Brooks CL. On the equivalence point for ammonium (de)protonation during its transport through the AmtB channel. Biophys J 2007; 92:L103-5. [PMID: 17434945 PMCID: PMC1877791 DOI: 10.1529/biophysj.107.109165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural characterization of the bacterial channel, AmtB, provides a glimpse of how members of its family might control the protonated state of permeant ammonium to allow for its selective passage across the membrane. In a recent study, we employed a combination of simulation techniques that suggested ammonium is deprotonated and reprotonated near dehydrative phenylalanine landmarks (F107 and F31, respectively) during its passage from the periplasm to the cytoplasm. At these landmarks, ammonium is forced to maintain a critical number ( approximately 3) of hydrogen bonds, suggesting that the channel controls ammonium (de)protonation by controlling its coordination/hydration. In the work presented here, a free energy-based analysis of ammonium hydration in dilute aqueous solution indicates, explicitly, that at biological pH, the transition from ammonium (NH(4)(+)) to ammonia (NH(3)) occurs when these species are constrained to donate three hydrogen bonds or less. This result demonstrates the viability of the proposal that AmtB indirectly controls ammonium (de)protonation by directly controlling its hydration.
Collapse
Affiliation(s)
- David L Bostick
- Department of Molecular Biology and Center for Theoretical Biological Physics, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|