1
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Correia C, Leite AC, Fraga AG, Proença MF, Pedrosa J, Carvalho MA. Discovery of 2,9-diaryl-6-carbamoylpurines as a novel class of antitubercular agents. Eur J Med Chem 2024; 268:116297. [PMID: 38458108 DOI: 10.1016/j.ejmech.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
A series of novel 9-alkyl/aryl-2-aryl-6-carbamoylpurines were synthesized, and their activity against Mycobacterium tuberculosis strain H37Rv was assessed. The SAR analysis on the first set of derivatives, with an alkyl or aryl unit at N-9 and a phenolic unit at C-2, showed that the activity depends on the purine ring substituents at N-9 and C-2. A phenyl group at N-9 combined with a 3-hydroxyphenyl or 4-hydroxyphenyl at C-2 improve the activity. The most active compound of this set has a phenyl group at N-9 and a 4-hydroxyphenyl group at C-2, displaying an IC90 = 1.2 μg/mL and a selectivity index higher than 25.5. This compound served as a Hit to design the second set of derivatives. A phenyl group at N-9 was maintained, and the group at C-2 was diversified. The SAR analysis showed that the aryl unit at C-2 must have an oxygen or nitrogen atom bonded in the para position. A proton, a small alkyl or a substituted aryl group may also be bonded to the oxygen. The compound with the 4-methoxyphenyl group at C-2, 1Bd, exhibits the highest activity with an IC90 < 0.19 μg/mL. This compound is highly potent against M. tuberculosis strain H37Rv and non-toxic for VERO mammalian cells with an SI > 153.8. Compound 1Bd was also non-cytotoxic against primary macrophage cultures at IC90, 2xIC90, and 10xIC90 and significantly reduced the bacterial load in M. tuberculosis-infected macrophages at the same concentrations. Compound 1Bd showed a favorable pharmacokinetic profile when administered orally, with major lung and liver accumulation. In vivo antimycobacterial efficacy of 1Bd was tested at 25 mg/kg. At the tested regimen, a decrease in bacterial burden was observed in the liver. Optimization of the treatment regimen should be performed to fully potentiate the in vivo efficacy of our lead molecule, particularly in the lung, the main target organ of M. tuberculosis.
Collapse
Affiliation(s)
- Carla Correia
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Claúdia Leite
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; PT Government Associate Laboratory ICVS/3B's, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; PT Government Associate Laboratory ICVS/3B's, Portugal
| | - M Fernanda Proença
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; PT Government Associate Laboratory ICVS/3B's, Portugal
| | - M Alice Carvalho
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
3
|
Xia F, Zhang H, Yang H, Zheng M, Min W, Sun C, Yuan K, Yang P. Targeting polyketide synthase 13 for the treatment of tuberculosis. Eur J Med Chem 2023; 259:115702. [PMID: 37544185 DOI: 10.1016/j.ejmech.2023.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Tuberculosis (TB) is one of the most threatening diseases for humans, however, the drug treatment strategy for TB has been stagnant and inadequate, which could not meet current treatment needs. TB is caused by Mycobacterial tuberculosis, which has a unique cell wall that plays a crucial role in its growth, virulence, and drug resistance. Polyketide synthase 13 (Pks13) is an essential enzyme that catalyzes the biosynthesis of the cell wall and its critical role is only found in Mycobacteria. Therefore, Pks13 is a promising target for developing novel anti-TB drugs. In this review, we first introduced the mechanism of targeting Pks13 for TB treatment. Subsequently, we focused on summarizing the recent advance of Pks13 inhibitors, including the challenges encountered during their discovery and the rational design strategies employed to overcome these obstacles, which could be helpful for the development of novel Pks13 inhibitors in the future.
Collapse
Affiliation(s)
- Fei Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haoling Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mingming Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
5
|
Gu T, Lu H, Liu H, Zhang G, Wang Y. Function discovery of a non-ribosomal peptide synthetase-like encoding gene in the nematode-trapping fungus Arthrobotrys oligospora. Front Microbiol 2023; 14:1210288. [PMID: 37520361 PMCID: PMC10373296 DOI: 10.3389/fmicb.2023.1210288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
In this study, the function of a non-ribosomal peptide synthetase-like (NRPS-like) encoding gene AOL_s00188g306 (g306) was investigated to reveal the association between NRPS and nematocidal activity in the nematode-trapping fungus Arthrobotrys oligospora. Sequence analysis indicated that the encoded product of g306 is an adenylation domain of non-ribosomal peptide synthetases and extended short-chain dehydrogenase/reductase domain-containing proteins, and displays a wide substrate spectrum. The Δg306 mutants were more sensitive to chemical stressors than the wild type. Disruption of g306 impeded the nematocidal efficiency of A. oligospora. Metabolomics analysis showed that secondary metabolite biosynthesis and lipid metabolism were altered in the mutants. The phenotypic changes in the mutants can be attributed to the down-regulation of various metabolites, including fatty acyls, prenol lipids, steroidsand steroid derivative, and amino acid derivatives, identified in the present study. This study investigated the association between the non-ribosomal polypeptide-encoding gene g306 and nematicidal activity in A. oligospora, providing a reference for resolving the predation mechanism of nematode-trapping fungus.
Collapse
Affiliation(s)
- Tiantian Gu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Huiwen Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| |
Collapse
|
6
|
Patel KD, Ahmed SF, MacDonald MR, Gulick AM. Structural Studies of Modular Nonribosomal Peptide Synthetases. Methods Mol Biol 2023; 2670:17-46. [PMID: 37184698 DOI: 10.1007/978-1-0716-3214-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The non-ribosomal peptide synthetases (NRPSs) are a family of modular enzymes involved in the production of peptide natural products. Not restricted by the constraints of ribosomal peptide and protein production, the NRPSs are able to incorporate unusual amino acids and other suitable building blocks into the final product. The NRPSs operate with an assembly line strategy in which peptide intermediates are covalently tethered to a peptidyl carrier protein and transported to different catalytic domains for the multiple steps in the biosynthesis. Often the carrier and catalytic domains are joined into a single large multidomain protein. This chapter serves to introduce the NRPS enzymes, using the nocardicin NRPS system as an example that highlights many common features to NRPS biochemistry. We then describe recent advances in the structural biology of NRPSs focusing on large multidomain structures that have been determined.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Monica R MacDonald
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA.
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
7
|
Ishikawa F, Tanabe G. Chemical Labeling of Protein 4'-Phosphopantetheinylation in Surfactin-Producing Nonribosomal Peptide Synthetases. Methods Mol Biol 2023; 2670:285-299. [PMID: 37184711 DOI: 10.1007/978-1-0716-3214-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
4'-Phosphopantetheinylation is an essential posttranslational modification of the primary and secondary metabolic pathways in prokaryotes and eukaryotes. Several peptide-based natural products are biosynthesized by large, multifunctional enzymes known as nonribosomal peptide synthetases (NRPSs), responsible for producing virulence factors and many pharmaceuticals. The thiolation (T) domain serves as a covalent tether for substrates and intermediates in nonribosomal peptide biosynthesis and must be posttranslationally modified with a 4'-phosphopantetheinyl group. To detect 4'-phosphopantetheinylation of NRPS in bacterial proteomes, we developed a 5'-(vinylsulfonylaminodeoxy)adenosine scaffold with a clickable functionality, enabling effective chemical labeling of 4'-phosphopantethylated NRPSs. In this chapter, we describe the design and synthesis of an activity-based protein profiling probe and summarize our work toward developing a series of protocols for the labeling and visualization of 4'-phosphopantetheinylation of endogenous NRPSs in complex proteomes.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan.
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan.
| |
Collapse
|
8
|
Miyanaga A, Kudo F, Eguchi T. Recent advances in the structural analysis of adenylation domains in natural product biosynthesis. Curr Opin Chem Biol 2022; 71:102212. [PMID: 36116190 DOI: 10.1016/j.cbpa.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Adenylation (A) domains catalyze the biosynthetic incorporation of acyl building blocks into nonribosomal peptides and related natural products by selectively transferring acyl substrates onto cognate carrier proteins (CP). The use of noncanonical acyl units, such as nonproteinogenic amino acids and keto acids, by A domains expands the structural diversity of natural products. Furthermore, interrupted A domains, which have embedded auxiliary domains, are able to modify the incorporated acyl units. Structural information on A domains is important for rational protein engineering to generate unnatural compounds. In this review, we summarize recent advances in the structural analysis of A domains. First, we discuss the mechanisms by which A domains recognize noncanonical acyl units. We then focus on the interactions of A domains with CP domains and embedded auxiliary domains.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| |
Collapse
|
9
|
The Rare Actinobacterium Crossiella sp. Is a Potential Source of New Bioactive Compounds with Activity against Bacteria and Fungi. Microorganisms 2022; 10:microorganisms10081575. [PMID: 36013993 PMCID: PMC9415966 DOI: 10.3390/microorganisms10081575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance has become a global problem in recent decades. A gradual reduction in drug discoveries has led to the current antimicrobial resistance crisis. Caves and other subsurface environments are underexplored thus far, and they represent indispensable ecological niches that could offer new molecules of interest to medicine and biotechnology. We explored Spanish show caves to test the bioactivity of the bacteria dwelling in the walls and ceilings, as well as airborne bacteria. We reported the isolation of two strains of the genus Crossiella, likely representing a new species, isolated from Altamira Cave, Spain. In vitro and in silico analyses showed the inhibition of pathogenic Gram-positive and Gram-negative bacteria, and fungi, as well as the taxonomical distance of both strains from their closest relative, Crossiella cryophila. The presence of an exclusive combination of gene clusters involved in the synthesis of lanthipeptides, lasso peptides, nonribosomal peptides and polyketides indicates that species of this genus could represent a source of new compounds. Overall, there is promising evidence for antimicrobial discovery in subterranean environments, which increases the possibility of identifying new bioactive molecules.
Collapse
|
10
|
Mishra SH, Kancherla AK, Marincin KA, Bouvignies G, Nerli S, Sgourakis N, Dowling DP, Frueh DP. Global protein dynamics as communication sensors in peptide synthetase domains. SCIENCE ADVANCES 2022; 8:eabn6549. [PMID: 35857508 PMCID: PMC9286511 DOI: 10.1126/sciadv.abn6549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 05/04/2023]
Abstract
Biological activity is governed by the timely redistribution of molecular interactions, and static structural snapshots often appear insufficient to provide the molecular determinants that choreograph communication. This conundrum applies to multidomain enzymatic systems called nonribosomal peptide synthetases (NRPSs), which assemble simple substrates into complex metabolites, where a dynamic domain organization challenges rational design to produce new pharmaceuticals. Using a nuclear magnetic resonance (NMR) atomic-level readout of biochemical transformations, we demonstrate that global structural fluctuations help promote substrate-dependent communication and allosteric responses, and impeding these global dynamics by a point-site mutation hampers allostery and molecular recognition. Our results establish global structural dynamics as sensors of molecular events that can remodel domain interactions, and they provide new perspectives on mechanisms of allostery, protein communication, and NRPS synthesis.
Collapse
Affiliation(s)
- Subrata H. Mishra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aswani K. Kancherla
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules (LBM), Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolaos Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Yang J, Banas VS, Patel KD, Rivera GSM, Mydy LS, Gulick AM, Wencewicz TA. An acyl-adenylate mimic reveals the structural basis for substrate recognition by the iterative siderophore synthetase DesD. J Biol Chem 2022; 298:102166. [PMID: 35750210 PMCID: PMC9356276 DOI: 10.1016/j.jbc.2022.102166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Siderophores are conditionally essential metabolites used by microbes for environmental iron sequestration. Most Streptomyces strains produce hydroxamate-based desferrioxamine (DFO) siderophores composed of repeating units of N1-hydroxy-cadaverine (or N1-hydroxy-putrescine) and succinate. The DFO biosynthetic operon, desABCD, is highly conserved in Streptomyces; however, expression of desABCD alone does not account for the vast structural diversity within this natural product class. Here, we report the in vitro reconstitution and biochemical characterization of four DesD orthologs from Streptomyces strains that produce unique DFO siderophores. Under in vitro conditions, all four DesD orthologs displayed similar saturation steady-state kinetics (Vmax = 0.9–2.5 μM⋅min−1) and produced the macrocyclic trimer DFOE as the favored product, suggesting a conserved role for DesD in the biosynthesis of DFO siderophores. We further synthesized a structural mimic of N1-hydroxy-N1-succinyl-cadaverine (HSC)-acyl-adenylate, the HSC-acyl sulfamoyl adenosine analog (HSC-AMS), and obtained crystal structures of DesD in the ATP-bound, AMP/PPi-bound, and HSC-AMS/Pi-bound forms. We found HSC-AMS inhibited DesD orthologs (IC50 values = 48–53 μM) leading to accumulation of linear trimeric DFOG and di-HSC at the expense of macrocyclic DFOE. Addition of exogenous PPi enhanced DesD inhibition by HSC-AMS, presumably via stabilization of the DesD–HSC-AMS complex, similar to the proposed mode of adenylate stabilization where PPi remains buried in the active site. In conclusion, our data suggest that acyl-AMS derivatives may have utility as chemical probes and bisubstrate inhibitors to reveal valuable mechanistic and structural insight for this unique family of adenylating enzymes.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Victoria S Banas
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
| | - Gerry S M Rivera
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Lisa S Mydy
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
12
|
Corpuz JC, Sanlley JO, Burkart MD. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth Syst Biotechnol 2022; 7:677-688. [PMID: 35224236 PMCID: PMC8857579 DOI: 10.1016/j.synbio.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products. With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein (PCP) and its partner enzymes, NRPS enzymology and control remains fertile ground for discovery. This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes, including the phosphopantetheinyl transferase (PPTase), adenylation (A) domain, condensation (C) domain, thioesterase (TE) domain and other tailoring enzymes within the synthetase. Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Javier O. Sanlley
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
13
|
Fortinez CM, Bloudoff K, Harrigan C, Sharon I, Strauss M, Schmeing TM. Structures and function of a tailoring oxidase in complex with a nonribosomal peptide synthetase module. Nat Commun 2022; 13:548. [PMID: 35087027 PMCID: PMC8795117 DOI: 10.1038/s41467-022-28221-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are large modular enzymes that synthesize secondary metabolites and natural product therapeutics. Most NRPS biosynthetic pathways include an NRPS and additional proteins that introduce chemical modifications before, during or after assembly-line synthesis. The bacillamide biosynthetic pathway is a common, three-protein system, with a decarboxylase that prepares an NRPS substrate, an NRPS, and an oxidase. Here, the pathway is reconstituted in vitro. The oxidase is shown to perform dehydrogenation of the thiazoline in the peptide intermediate while it is covalently attached to the NRPS, as the penultimate step in bacillamide D synthesis. Structural analysis of the oxidase reveals a dimeric, two-lobed architecture with a remnant RiPP recognition element and a dramatic wrapping loop. The oxidase forms a stable complex with the NRPS and dimerizes it. We visualized co-complexes of the oxidase bound to the elongation module of the NRPS using X-ray crystallography and cryo-EM. The three active sites (for adenylation, condensation/cyclization, and oxidation) form an elegant arc to facilitate substrate delivery. The structures enabled a proof-of-principle bioengineering experiment in which the BmdC oxidase domain is embedded into the NRPS.
Collapse
Affiliation(s)
- Camille Marie Fortinez
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Kristjan Bloudoff
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Connor Harrigan
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Mike Strauss
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada.
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada.
| |
Collapse
|
14
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
15
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
16
|
Zhao S, Schaub AJ, Tsai SC, Luo R. Development of a Pantetheine Force Field Library for Molecular Modeling. J Chem Inf Model 2021; 61:856-868. [PMID: 33534558 PMCID: PMC8266206 DOI: 10.1021/acs.jcim.0c01384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pantetheine is ubiquitous in nature in various forms of pantetheine-containing ligands (PCLs), including coenzyme A and phosphopantetheine. Lack of scalable force field libraries for PCLs has hampered the computational studies of biological macromolecules containing PCLs. We describe here the development of the first generation Pantetheine Force Field (PFF) library that is compatible with Amber force fields; parameterized using Gasteiger, AM1-BCC, or RESP charging methods combined with gaff2 and ff14SB parameter sets. In addition, a "plug-and-play" strategy was employed to enable the systematic charging of computationally expensive molecules sharing common substructural motifs. The validation studies performed on the PFF library showed promising performance where molecular dynamics (MD) simulations results were compared with experimental data of three representative systems. The PFF library represents the first force field library capable of modeling systems containing PCLs in silico and will aid in various applications including protein engineering and drug discovery.
Collapse
Affiliation(s)
- Shiji Zhao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Andrew J Schaub
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Shiou-Chuan Tsai
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
17
|
Miyanaga A, Kurihara S, Chisuga T, Kudo F, Eguchi T. Structural Characterization of Complex of Adenylation Domain and Carrier Protein by Using Pantetheine Cross-Linking Probe. ACS Chem Biol 2020; 15:1808-1812. [PMID: 32608966 DOI: 10.1021/acschembio.0c00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylation domains (A-domains) are responsible for selective incorporation of carboxylic acid substrates in the biosynthesis of various natural products. Each A-domain must recognize a cognate carrier protein (CP) for functional substrate transfer. The transient interactions between an A-domain and CP have been investigated by using acyl vinylsulfonamide adenosine inhibitors as probes to determine the structures of several A-domain-CP complexes. However, this strategy requires a specific vinylsulfonamide inhibitor that contains an acyl group corresponding to the substrate specificity of a target A-domain in every case. Here, we report an alternative strategy for structural characterization of A-domain-CP complexes. We used a bromoacetamide pantetheine cross-linking probe in combination with a Cys mutation to trap the standalone A-domain-CP complex involved in macrolactam polyketide biosynthesis through a covalent linkage, allowing the determination of the complex structure. This strategy facilitates the structural determination of A-domain-CP complexes.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Shohei Kurihara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
18
|
Alexander EM, Kreitler DF, Guidolin V, Hurben AK, Drake E, Villalta PW, Balbo S, Gulick AM, Aldrich CC. Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen Klebsiella oxytoca. ACS Infect Dis 2020; 6:1976-1997. [PMID: 32485104 PMCID: PMC7354218 DOI: 10.1021/acsinfecdis.0c00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tilimycin is an enterotoxin produced by the opportunistic pathogen Klebsiella oxytoca that causes antibiotic-associated hemorrhagic colitis (AAHC). This pyrrolobenzodiazepine (PBD) natural product is synthesized by a bimodular nonribosomal peptide synthetase (NRPS) pathway composed of three proteins: NpsA, ThdA, and NpsB. We describe the functional and structural characterization of the fully reconstituted NRPS system and report the steady-state kinetic analysis of all natural substrates and cofactors as well as the structural characterization of both NpsA and ThdA. The mechanism of action of tilimycin was confirmed using DNA adductomics techniques through the detection of putative N-2 guanine alkylation after tilimycin exposure to eukaryotic cells, providing the first structural characterization of a PBD-DNA adduct formed in cells. Finally, we report the rational design of small-molecule inhibitors that block tilimycin biosynthesis in whole cell K. oxytoca (IC50 = 29 ± 4 μM) through the inhibition of NpsA (KD = 29 ± 4 nM).
Collapse
Affiliation(s)
- Evan M. Alexander
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dale F. Kreitler
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric Drake
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Peter W. Villalta
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
19
|
Gram-scale preparation of the antibiotic lead compound salicyl-AMS, a potent inhibitor of bacterial salicylate adenylation enzymes. Methods Enzymol 2020. [PMID: 32416922 DOI: 10.1016/bs.mie.2020.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Salicyl-AMS (1) is a potent inhibitor of salicylate adenylation enzymes used in bacterial siderophore biosynthesis and a promising lead compound for the treatment of tuberculosis. An optimized, multigram synthesis is presented, which provides salicyl-AMS as its sodium salt (1·Na) in three synthetic steps followed by a two-step salt formation process. The synthesis proceeds in 11.6% overall yield from commercially available adenosine 2',3'-acetonide and provides highly purified material.
Collapse
|
20
|
Reimer JM, Eivaskhani M, Harb I, Guarné A, Weigt M, Schmeing TM. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 2020; 366:366/6466/eaaw4388. [PMID: 31699907 DOI: 10.1126/science.aaw4388] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are biosynthetic enzymes that synthesize natural product therapeutics using a modular synthetic logic, whereby each module adds one aminoacyl substrate to the nascent peptide. We have determined five x-ray crystal structures of large constructs of the NRPS linear gramicidin synthetase, including a structure of a full core dimodule in conformations organized for the condensation reaction and intermodular peptidyl substrate delivery. The structures reveal differences in the relative positions of adjacent modules, which are not strictly coupled to the catalytic cycle and are consistent with small-angle x-ray scattering data. The structures and covariation analysis of homologs allowed us to create mutants that improve the yield of a peptide from a module-swapped dimodular NRPS.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Maximilian Eivaskhani
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Ingrid Harb
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Alba Guarné
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
| | - T Martin Schmeing
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
21
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
22
|
Corpuz JC, Podust LM, Davis TD, Jaremko MJ, Burkart MD. Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis. RSC Chem Biol 2020; 1:8-12. [PMID: 33305272 PMCID: PMC7723355 DOI: 10.1039/c9cb00015a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Using a covalent chemical probe and X-ray crystallography coupled to nuclear magnetic resonance data, we elucidated the dynamic molecular basis of protein recognition between the carrier protein and adenylation domain in pyoluteorin biosynthesis. These findings reveal a unique binding mode, which contrasts previously solved carrier protein and partner protein interfaces. The interface interactions of a type II peptidyl carrier protein and partner enzyme are observed to be unique and dynamic.![]()
Collapse
Affiliation(s)
- Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0755, USA
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
23
|
Ishikawa F, Nohara M, Nakamura S, Nakanishi I, Tanabe G. Precise Probing of Residue Roles by NRPS Code Swapping: Mutation, Enzymatic Characterization, Modeling, and Substrate Promiscuity of Aryl Acid Adenylation Domains. Biochemistry 2020; 59:351-363. [PMID: 31894971 DOI: 10.1021/acs.biochem.9b00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aryl acids are most commonly found in iron-scavenging siderophores but are not limited to them. The nonribosomal peptide synthetase (NRPS) codes of aryl acids remain poorly elucidated relative to those of amino acids. Here, we defined more precisely the role of active-site residues in aryl acid adenylation domains (A-domains) by gradually grafting the NRPS codes used for salicylic acid (Sal) into an archetypal aryl acid A-domain, EntE [specific for the substrate 2,3-dihydroxybenzoic acid (DHB)]. Enzyme kinetics and modeling studies of these EntE variants demonstrated that the NRPS code residues at positions 236, 240, and 339 collectively regulate the substrate specificity toward DHB and Sal. Furthermore, the EntE variants exhibited the ability to activate the non-native aryl acids 3-hydroxybenzoic acid, 3-aminobenzoic acid, 3-fluorobenzoic acid, and 3-chlorobenzoic acid. These studies enhance our knowledge of the NRPS codes of aryl acids and could be exploited to reprogram aryl acid A-domains for non-native aryl acids.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Laboratory of Pharmaceutical Organic Chemistry, Faculty of Pharmacy , Kindai University , 3-4-1 Kowakae , Higashi-Osaka , Osaka 577-8502 , Japan
| | - Maya Nohara
- Laboratory of Pharmaceutical Organic Chemistry, Faculty of Pharmacy , Kindai University , 3-4-1 Kowakae , Higashi-Osaka , Osaka 577-8502 , Japan
| | - Shinya Nakamura
- Laboratory of Computational Drug Design and Discovery, Faculty of Pharmacy , Kindai University , 3-4-1 Kowakae , Higashi-Osaka , Osaka 577-8502 , Japan
| | - Isao Nakanishi
- Laboratory of Computational Drug Design and Discovery, Faculty of Pharmacy , Kindai University , 3-4-1 Kowakae , Higashi-Osaka , Osaka 577-8502 , Japan
| | - Genzoh Tanabe
- Laboratory of Pharmaceutical Organic Chemistry, Faculty of Pharmacy , Kindai University , 3-4-1 Kowakae , Higashi-Osaka , Osaka 577-8502 , Japan
| |
Collapse
|
24
|
Gulick AM, Aldrich CC. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Nat Prod Rep 2019; 35:1156-1184. [PMID: 30046790 DOI: 10.1039/c8np00044a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to early 2018 The Nonribosomal Peptide Synthetases (NRPSs) and Polyketide Synthases (PKSs) are families of modular enzymes that produce a tremendous diversity of natural products, with antibacterial, antifungal, immunosuppressive, and anticancer activities. Both enzymes utilize a fascinating modular architecture in which the synthetic intermediates are covalently attached to a peptidyl- or acyl-carrier protein that is delivered to catalytic domains for natural product elongation, modification, and termination. An investigation of the structural mechanism therefore requires trapping the often transient interactions between the carrier and catalytic domains. Many novel chemical probes have been produced to enable the structural and functional investigation of multidomain NRPS and PKS structures. This review will describe the design and implementation of the chemical tools that have proven to be useful in biochemical and biophysical studies of these natural product biosynthetic enzymes.
Collapse
Affiliation(s)
- Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 955 Main St, Buffalo, NY 14203, USA.
| | | |
Collapse
|
25
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. ACTA ACUST UNITED AC 2019; 46:515-536. [DOI: 10.1007/s10295-018-2084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
Abstract
Nonproteinogenic amino acids are the unique building blocks of nonribosomal peptides (NRPs) and hybrid nonribosomal peptide–polyketides (NRP–PKs) and contribute to their diversity of chemical structures and biological activities. In the biosynthesis of NRPs and NRP–PKs, adenylation enzymes select and activate an amino acid substrate as an aminoacyl adenylate, which reacts with the thiol of the holo form of the carrier protein to afford an aminoacyl thioester as the electrophile for the condensation reaction. Therefore, the substrate specificity of adenylation enzymes is a key determinant of the structure of NRPs and NRP–PKs. Here, we focus on nonproteinogenic amino acid selective adenylation enzymes, because understanding their unique selection mechanisms will lead to accurate functional predictions and protein engineering toward the rational biosynthesis of designed molecules containing amino acids. Based on recent progress in the structural analysis of adenylation enzymes, we discuss the nonribosomal codes of nonproteinogenic amino acid selective adenylation enzymes.
Collapse
|
27
|
Patel K, Butala S, Khan T, Suvarna V, Sherje A, Dravyakar B. Mycobacterial siderophore: A review on chemistry and biology of siderophore and its potential as a target for tuberculosis. Eur J Med Chem 2018; 157:783-790. [PMID: 30142615 DOI: 10.1016/j.ejmech.2018.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis is known to secrete low molecular mass compounds called siderophores especially under low iron conditions to chelate iron from host environment. Iron is essential for growth and other essential processes to sustain life of the bacterium in the host. Hence targeting siderophore is considered to be an alternative approach to prevent further virulence of bacterium into the host. This review article presents classification of siderophores, their role in transporting iron into the tubercular cell, biosynthesis of mycobactins, viability of siderophore as a therapeutic target and also focuses on overview on various approaches to target siderophore. The approaches encompass mutation effect on genes involved in siderophore recycling, synthetic as well as natural compounds that can inhibit further spread of bacterium by targeting siderophore.
Collapse
Affiliation(s)
- Kavitkumar Patel
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India.
| | - Sahil Butala
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Atul Sherje
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Bhushan Dravyakar
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| |
Collapse
|
28
|
Kolbe K, Veleti SK, Johnson EE, Cho YW, Oh S, Barry CE. Role of Chemical Biology in Tuberculosis Drug Discovery and Diagnosis. ACS Infect Dis 2018; 4:458-466. [PMID: 29364647 DOI: 10.1021/acsinfecdis.7b00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of chemical techniques to study biological systems (often referred to currently as chemical biology) has become a powerful tool for both drug discovery and the development of novel diagnostic strategies. In tuberculosis, such tools have been applied to identifying drug targets from hit compounds, matching high-throughput screening hits against large numbers of isolated protein targets and identifying classes of enzymes with important functions. Metabolites unique to mycobacteria have provided important starting points for the development of innovative tools. For example, the unique biology of trehalose has provided both novel diagnostic strategies as well as probes of in vivo biological processes that are difficult to study any other way. Other mycobacterial metabolites are potentially valuable starting points and have the potential to illuminate new aspects of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sri Kumar Veleti
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Emma E. Johnson
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Young-Woo Cho
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|
29
|
Reimer JM, Haque AS, Tarry MJ, Schmeing TM. Piecing together nonribosomal peptide synthesis. Curr Opin Struct Biol 2018; 49:104-113. [DOI: 10.1016/j.sbi.2018.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
30
|
Ishikawa F, Tanabe G, Kakeya H. Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Curr Top Microbiol Immunol 2018; 420:321-349. [PMID: 30178264 DOI: 10.1007/82_2018_133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
31
|
Ishikawa F, Kasai S, Kakeya H, Tanabe G. Visualizing the Adenylation Activities and Protein-Protein Interactions of Aryl Acid Adenylating Enzymes. Chembiochem 2017; 18:2199-2204. [DOI: 10.1002/cbic.201700361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Shota Kasai
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
32
|
Abstract
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
33
|
Payne JAE, Schoppet M, Hansen MH, Cryle MJ. Diversity of nature's assembly lines - recent discoveries in non-ribosomal peptide synthesis. MOLECULAR BIOSYSTEMS 2017; 13:9-22. [PMID: 27853778 DOI: 10.1039/c6mb00675b] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The biosynthesis of complex natural products by non-ribosomal peptide synthetases (NRPSs) and the related polyketide synthases (PKSs) represents a major source of important bioactive compounds. These large, multi-domain machineries are able to produce a fascinating range of molecules due to the nature of their modular architectures, which allows natural products to be assembled and tailored in a modular, step-wise fashion. In recent years there has been significant progress in characterising the important domains and underlying mechanisms of non-ribosomal peptide synthesis. More significantly, several studies have uncovered important examples of novel activity in many NRPS domains. These discoveries not only greatly increase the structural diversity of the possible products of NRPS machineries but - possibly more importantly - they improve our understanding of what is a highly important, yet complex, biosynthetic apparatus. In this review, several recent examples of novel NRPS function will be introduced, which highlight the range of previously uncharacterised activities that have now been detected in the biosynthesis of important natural products by these mega-enzyme synthetases.
Collapse
Affiliation(s)
- Jennifer A E Payne
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | - Melanie Schoppet
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | | - Max J Cryle
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
34
|
Tarry MJ, Haque AS, Bui KH, Schmeing TM. X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture. Structure 2017; 25:783-793.e4. [PMID: 28434915 DOI: 10.1016/j.str.2017.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
Nonribosomal peptide synthetases (NRPS) are macromolecular machines that produce peptides with diverse activities. Structural information exists for domains, didomains, and even modules, but little is known about higher-order organization. We performed a multi-technique study on constructs from the dimodular NRPS DhbF. We determined a crystal structure of a cross-module construct including the adenylation (A) and peptidyl carrier protein (PCP) domains from module 1 and the condensation domain from module 2, complexed with an adenosine-vinylsulfonamide inhibitor and an MbtH-like protein (MLP). The action of the inhibitor and the role of the MLP were investigated using adenylation reactions and isothermal titration calorimetry. In the structure, the PCP and A domains adopt a novel conformation, and noncovalent, cross-module interactions are limited. We calculated envelopes of dimodular DhbF using negative-stain electron microscopy. The data show large conformational variability between modules. Together, our results suggest that NRPSs lack a uniform, rigid supermodular architecture.
Collapse
Affiliation(s)
- Michael J Tarry
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Asfarul S Haque
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
35
|
Ulrich V, Cryle MJ. SNaPe: a versatile method to generate multiplexed protein fusions using synthetic linker peptides for in vitro applications. J Pept Sci 2016; 23:16-27. [PMID: 27910178 DOI: 10.1002/psc.2943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 11/10/2022]
Abstract
Understanding the structure and function of protein complexes and multi-domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon Sortase-mediated and Native chemical ligation using synthetic Peptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps - sortase-mediated and native chemical ligation - together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Veronika Ulrich
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.,The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
36
|
Ji C, Sharma I, Pratihar D, Hudson LL, Maura D, Guney T, Rahme LG, Pesci EC, Coleman JP, Tan DS. Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa. ACS Chem Biol 2016; 11:3061-3067. [PMID: 27658001 PMCID: PMC5117135 DOI: 10.1021/acschembio.6b00575] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular
signaling systems regulated
by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate
bacterial cell–cell communication via small-molecule natural
products and control the production of a variety of virulence factors.
The MvfR system is activated by and controls the biosynthesis of the
quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis
of these quinolones is catalyzed by the anthranilyl-CoA synthetase
PqsA. To develop inhibitors of PqsA as novel potential antivirulence
antibiotics, we report herein the design and synthesis of sulfonyladeonsine-based
mimics of the anthranilyl-AMP reaction intermediate that is bound
tightly by PqsA. Biochemical, microbiological, and pharmacological
studies identified two potent PqsA inhibitors, anthranilyl-AMS (1) and anthranilyl-AMSN (2), that decreased HHQ
and PQS production in P. aeruginosa strain
PA14. However, these compounds did not inhibit
production of the virulence factor pyocyanin. Moreover, they exhibited
limited bacterial penetration in compound accumulation studies. This
work provides the most potent PqsA inhibitors reported to date and
sets the stage for future efforts to develop analogues with improved
cellular activity to investigate further the complex relationships
between quinolone biosynthesis and virulence factor production in P. aeruginosa and the therapeutic potential of targeting
PqsA.
Collapse
Affiliation(s)
| | | | | | - L. Lynn Hudson
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - Damien Maura
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
| | | | - Laurence G. Rahme
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Shriners Hospitals for
Children Boston, Boston, Massachusetts 02114, United States
| | - Everett C. Pesci
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - James P. Coleman
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | | |
Collapse
|
37
|
Gulick AM. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr Opin Chem Biol 2016; 35:89-96. [PMID: 27676239 DOI: 10.1016/j.cbpa.2016.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/09/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) catalyze the assembly line biosynthesis of peptide natural products that play important roles in microbial signaling and communication. These multidomain enzymes use an integrated carrier protein that delivers the growing peptide to the catalytic domains, requiring coordinated conformational changes that allow the proper sequence of synthetic steps. Recent structural studies of NRPSs have described important conformational states and illustrate the critical role of a small subdomain within the adenylation domains. This subdomain alternates between catalytic conformations and also serves as a linker domain, providing further conformational flexibility to enable the carrier to project from the core of NRPS. These studies are described along with remaining questions in the study of the structural dynamics of NRPSs.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA; Department of Structural Biology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
38
|
Kittilä T, Cryle MJ. Capturing the Structure of the Substrate Bound Condensation Domain. Cell Chem Biol 2016; 23:315-6. [PMID: 26991098 DOI: 10.1016/j.chembiol.2016.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Condensation domains of nonribosomal peptide synthetase machineries have so far escaped detailed structural analysis. In this issue of Cell Chemical Biology, Bloudoff et al. (2016) describe a protein tethering technique that allowed the authors to obtain structural information on the substrate bound state of the first condensation domain from calcium-dependent antibiotic biosynthesis, thus opening a new window into how these important biosynthetic machineries function.
Collapse
Affiliation(s)
- Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; EMBL Australia Monash University, Clayton, VIC 3800, Australia; The Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia.
| |
Collapse
|
39
|
Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 2016; 529:235-8. [PMID: 26762461 PMCID: PMC4843164 DOI: 10.1038/nature16163] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Many important natural products are produced by multidomain nonribosomal peptide synthetases (NRPSs)1–4. During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighboring catalytic domains in an assembly line fashion5. Understanding the structural basis for catalysis with NRPSs will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-NRPSs modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering novel NRPSs.
Collapse
|
40
|
Kasai S, Ishikawa F, Suzuki T, Dohmae N, Kakeya H. A chemical proteomic probe for detecting native carrier protein motifs in nonribosomal peptide synthetases. Chem Commun (Camb) 2016; 52:14129-14132. [DOI: 10.1039/c6cc07793e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An activity-based probe coupled to a 5′-(vinylsulfonylaminodeoxy)adenosine scaffold with a clickable alkyne functionality selectively targets native carrier protein motifs in nonribosomal peptide synthetases.
Collapse
Affiliation(s)
- Shota Kasai
- Department of System Chemotherapy and Molecular Sciences
- Division of Bioinformatics and Chemical Genomics
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
| | - Fumihiro Ishikawa
- Department of System Chemotherapy and Molecular Sciences
- Division of Bioinformatics and Chemical Genomics
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
| | - Takehiro Suzuki
- Biomolecular Characterization Unit
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences
- Division of Bioinformatics and Chemical Genomics
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
| |
Collapse
|
41
|
Abstract
The nonribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains.
Collapse
|
42
|
Alonzo DA, Magarvey NA, Schmeing TM. Characterization of cereulide synthetase, a toxin-producing macromolecular machine. PLoS One 2015; 10:e0128569. [PMID: 26042597 PMCID: PMC4455996 DOI: 10.1371/journal.pone.0128569] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/28/2015] [Indexed: 01/14/2023] Open
Abstract
Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride.
Collapse
Affiliation(s)
- Diego A. Alonzo
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Nathan A. Magarvey
- Department of Chemistry & Chemical Biology, McMaster University, M.G. DeGroote Institute for Infectious Disease Research, 1200 Main St. W, Hamilton, Ontario L8N 3Z5, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
- Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, QC H3G 0B1, Canada
| |
Collapse
|
43
|
Tarry MJ, Schmeing TM. Specific disulfide cross-linking to constrict the mobile carrier domain of nonribosomal peptide synthetases. Protein Eng Des Sel 2015; 28:163-70. [PMID: 25713404 DOI: 10.1093/protein/gzv009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/03/2015] [Indexed: 01/03/2023] Open
Abstract
Nonribosomal peptide synthetases are large, multi-domain enzymes that produce peptide molecules with important biological activity such as antibiotic, antiviral, anti-tumor, siderophore and immunosuppressant action. The adenylation (A) domain catalyzes two reactions in the biosynthetic pathway. In the first reaction, it activates the substrate amino acid by adenylation and in the second reaction it transfers the amino acid onto the phosphopantetheine arm of the adjacent peptide carrier protein (PCP) domain. The conformation of the A domain differs significantly depending on which of these two reactions it is catalyzing. Recently, several structures of A-PCP di-domains have been solved using mechanism-based inhibitors to trap the PCP domain in the A domain active site. Here, we present an alternative strategy to stall the A-PCP di-domain, by engineering a disulfide bond between the native amino acid substrate and the A domain. Size exclusion studies showed a significant shift in apparent size when the mutant A-PCP was provided with cross-linking reagents, and this shift was reversible in the presence of high concentrations of reducing agent. The cross-linked protein crystallized readily in several of the conditions screened and the best crystals diffracted to ≈8 Å.
Collapse
Affiliation(s)
- Michael J Tarry
- Department of Biochemistry, McGill University, Montréal, QC, Canada H3G 0B1
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC, Canada H3G 0B1 Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, QC, Canada H3G 0B1
| |
Collapse
|
44
|
Tieu W, Polyak SW, Paparella AS, Yap MY, Soares da Costa TP, Ng B, Wang G, Lumb R, Bell JM, Turnidge JD, Wilce MCJ, Booker GW, Abell AD. Improved Synthesis of Biotinol-5'-AMP: Implications for Antibacterial Discovery. ACS Med Chem Lett 2015; 6:216-20. [PMID: 25699152 DOI: 10.1021/ml500475n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
An improved synthesis of biotinol-5'-AMP, an acyl-AMP mimic of the natural reaction intermediate of biotin protein ligase (BPL), is reported. This compound was shown to be a pan inhibitor of BPLs from a series of clinically important bacteria, particularly Staphylococcus aureus and Mycobacterium tuberculosis, and kinetic analysis revealed it to be competitive against the substrate biotin. Biotinol-5'-AMP also exhibits antibacterial activity against a panel of clinical isolates of S. aureus and M. tuberculosis with MIC values of 1-8 and 0.5-2.5 μg/mL, respectively, while being devoid of cytotoxicity to human HepG2 cells.
Collapse
Affiliation(s)
- William Tieu
- School
of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ashleigh S. Paparella
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Min Y. Yap
- School
of Biomedical Science, Monash University, Victoria 3800, Australia
| | - Tatiana P. Soares da Costa
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Belinda Ng
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Geqing Wang
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Richard Lumb
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | - Jan M. Bell
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | - John D. Turnidge
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | | | - Grant W. Booker
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- School
of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
45
|
Tieu W, Jarrad AM, Paparella AS, Keeling KA, Soares da Costa TP, Wallace JC, Booker GW, Polyak SW, Abell AD. Heterocyclic acyl-phosphate bioisostere-based inhibitors of Staphylococcus aureus biotin protein ligase. Bioorg Med Chem Lett 2014; 24:4689-4693. [DOI: 10.1016/j.bmcl.2014.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023]
|
46
|
Sundlov JA, Gulick AM. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1482-92. [PMID: 23897471 PMCID: PMC3727328 DOI: 10.1107/s0907444913009372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/07/2013] [Indexed: 12/21/2022]
Abstract
The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain-carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.
Collapse
Affiliation(s)
- Jesse A. Sundlov
- Hauptman–Woodward Medical Research Institute and Department of Structural Biology, University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Andrew M. Gulick
- Hauptman–Woodward Medical Research Institute and Department of Structural Biology, University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
47
|
Ishikawa F, Haushalter RW, Lee DJ, Finzel K, Burkart MD. Sulfonyl 3-alkynyl pantetheinamides as mechanism-based cross-linkers of acyl carrier protein dehydratase. J Am Chem Soc 2013; 135:8846-9. [PMID: 23718183 DOI: 10.1021/ja4042059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyl carrier proteins (ACPs) play a central role in acetate biosynthetic pathways, serving as tethers for substrates and growing intermediates. Activity and structural studies have highlighted the complexities of this role, and the protein-protein interactions of ACPs have recently come under scrutiny as a regulator of catalysis. As existing methods to interrogate these interactions have fallen short, we have sought to develop new tools to aid their study. Here we describe the design, synthesis, and application of pantetheinamides that can cross-link ACPs with catalytic β-hydroxy-ACP dehydratase (DH) domains by means of a 3-alkynyl sulfone warhead. We demonstrate this process by application to the Escherichia coli fatty acid synthase and apply it to probe protein-protein interactions with noncognate carrier proteins. Finally, we use solution-phase protein NMR spectroscopy to demonstrate that sulfonyl 3-alkynyl pantetheinamide is fully sequestered by the ACP, indicating that the crypto-ACP closely mimics the natural DH substrate. This cross-linking technology offers immediate potential to lock these biosynthetic enzymes in their native binding states by providing access to mechanistically cross-linked enzyme complexes, presenting a solution to ongoing structural challenges.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | | | | | |
Collapse
|
48
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
49
|
Nonoo RH, Armstrong A, Mann DJ. Kinetic Template-Guided Tethering of Fragments. ChemMedChem 2012; 7:2082-6. [DOI: 10.1002/cmdc.201200404] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Indexed: 11/11/2022]
|
50
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|