1
|
Dessin C, Schachtsiek T, Voss J, Abel AC, Neumann B, Stammler HG, Prota AE, Sewald N. Highly Cytotoxic Cryptophycin Derivatives with Modification in Unit D for Conjugation. Angew Chem Int Ed Engl 2024:e202416210. [PMID: 39324938 DOI: 10.1002/anie.202416210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Cytotoxic payloads for drug conjugates suitable for directed tumor therapy need to be highly potent and require a functional group for conjugation with the homing device (antibody, peptide, or small molecule). Cryptophycins are cyclodepsipeptides that stand out from the realm of natural products due to their extraordinarily high cytotoxicity. However, the installation of a suitable conjugation handle without compromising the toxicity is highly challenging. The unit D, natively 2-hydroxyisocaproic acid (leucic acid), was envisaged as a promising attachment site based on structural information from X-ray analysis. A versatile, scalable and efficient synthetic route towards conjugable cryptophycins with modification in unit D was developed and an array of new cryptophycin analogues was synthesized. Several derivatives, especially those containing lipophilic groups with low steric demand such as alkylated amino groups, exhibit low picomolar cytotoxicity often combined with efficacy against multidrug-resistant tumor cells. The newly established cryptophycin analogues comprise a broad range of relevant functional groups used as conjugation handles, among them amino, hydroxy, carboxy, as well as sulfur-containing derivatives. X-ray crystallographic analysis of a tubulin-bound cryptophycin together with quantitative structure activity relationship manifested rationales for the synthesis of most potent cryptophycin derivatives and further confirmed the suitability of modifications in unit D.
Collapse
Affiliation(s)
- Cedric Dessin
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Schachtsiek
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jona Voss
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Anne-Catherine Abel
- PSI Center for Life Sciences, Forschungsstraße 111, 5232, Villigen PSI, Switzerland
| | - Beate Neumann
- Inorganic and Structural Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Inorganic and Structural Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Andrea E Prota
- PSI Center for Life Sciences, Forschungsstraße 111, 5232, Villigen PSI, Switzerland
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Nisal R, Jayakannan M. Tertiary-Butylbenzene Functionalization as a Strategy for β-Sheet Polypeptides. Biomacromolecules 2022; 23:2667-2684. [DOI: 10.1021/acs.biomac.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Nisal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Ueda A, Makura Y, Kakazu S, Kato T, Umeno T, Hirayama K, Doi M, Oba M, Tanaka M. E-Selective Ring-Closing Metathesis in α-Helical Stapled Peptides Using Carbocyclic α,α-Disubstituted α-Amino Acids. Org Lett 2022; 24:1049-1054. [PMID: 35073100 DOI: 10.1021/acs.orglett.1c04256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an E-selective ring-closing metathesis reaction in α-helical stapled peptides at positions i and i + 4. The use of two chiral carbocyclic α,α-disubstituted α-amino acids, (1S,3S)-Ac5c3OAll and (1R,3S)-Ac5c3OAll, provides a high E-selectivity of a ≤59:1 E:Z ratio, while mixtures with E:Z ratios of 2.1-0.5:1 were produced with standard acyclic (S)-(4-pentenyl)alanine amino acids. A stapled octapeptide composed of (1S,3S)- and (1R,3S)-Ac5c3OAll amino acids showed a right-handed α-helical crystal structure.
Collapse
Affiliation(s)
- Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Sana Kakazu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takuma Kato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Tomohiro Umeno
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuhiro Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
4
|
Garsi JB, Aguiar PM, Hanessian S. Design of Pseudodiproline Dimers as Mimetics of Pro-Pro Units: Stereocontrolled Synthesis, Configurational Relevance, and Structural Properties. J Org Chem 2021; 86:16834-16847. [PMID: 34749500 DOI: 10.1021/acs.joc.1c02061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereocontrolled methods are described for the synthesis of hitherto unreported pseudodiproline dimers in which a cyclopentane carboxylic acid is linked to a pyrrolidine residue by a stereochemically defined hydroxymethylene tether. These proline-cyclopentane (Pro-Cyp) dimers have interesting structural characteristics as seen in their X-ray crystal structures as well as their nuclear magnetic resonance (NMR) spectra in CDCl3. They can be considered to be novel Pro-Pro mimetics, which can be used to replace natural diproline sequences with potential applications in medicinal chemistry. They also represent a new concept in the peptidomimetic design of chimeric proline-based amino acids as carbocyclic hydroxyethylene isosteres of inhibitor molecules, in which the stereodefined bridging hydroxyl group can simulate a tetrahedral intermediate in an enzyme complex.
Collapse
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC, Canada
| | - Pedro M Aguiar
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, H2V 0B3 QC, Canada
| |
Collapse
|
5
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
6
|
Guryanov I, Korzhikov-Vlakh V, Bhattacharya M, Biondi B, Masiero G, Formaggio F, Tennikova T, Urtti A. Conformationally Constrained Peptides with High Affinity to the Vascular Endothelial Growth Factor. J Med Chem 2021; 64:10900-10907. [PMID: 34269584 DOI: 10.1021/acs.jmedchem.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The design of efficient vascular endothelial growth factor (VEGF) inhibitors is a high-priority research area aimed at the treatment of pathological angiogenesis. Among other compounds, v114* has been identified as a potent VEGF-binding peptide. In order to improve the affinity to VEGF, we built a conformational constrain in its structure. To this aim, Cα-tetrasubstituted amino acid Aib was introduced into the N-terminal tail, peptide loop, or C-terminal helix. NMR studies confirmed the stabilization of the helical conformation in proximity to the Aib residue. We found that the induction of the N-terminal helical structure or stabilization of the C-terminal helix can noticeably increase the peptide affinity to the VEGF. These peptides efficiently inhibited VEGF-stimulated cell proliferation as well. The insertion of the non-proteinogenic Aib residue significantly enhanced the stability of the peptides in the vitreous environment. Thus, these Aib-containing peptides are promising candidates for the design of VEGF inhibitors with improved properties.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Madhushree Bhattacharya
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, Helsinki 00014, Finland
| | - Barbara Biondi
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Giulia Masiero
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, Helsinki 00014, Finland.,School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70211, Finland
| |
Collapse
|
7
|
Makura Y, Ueda A, Kato T, Iyoshi A, Higuchi M, Doi M, Tanaka M. X-ray Crystallographic Structure of α-Helical Peptide Stabilized by Hydrocarbon Stapling at i, i + 1 Positions. Int J Mol Sci 2021; 22:ijms22105364. [PMID: 34069753 PMCID: PMC8160927 DOI: 10.3390/ijms22105364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrocarbon stapling is a useful tool for stabilizing the secondary structure of peptides. Among several methods, hydrocarbon stapling at i,i + 1 positions was not extensively studied, and their secondary structures are not clarified. In this study, we investigate i,i + 1 hydrocarbon stapling between cis-4-allyloxy-l-proline and various olefin-tethered amino acids. Depending on the ring size of the stapled side chains and structure of the olefin-tethered amino acids, E- or Z-selectivities were observed during the ring-closing metathesis reaction (E/Z was up to 8.5:1 for 17–14-membered rings and up to 1:20 for 13-membered rings). We performed X-ray crystallographic analysis of hydrocarbon stapled peptide at i,i + 1 positions. The X-ray crystallographic structure suggested that the i,i + 1 staple stabilizes the peptide secondary structure to the right-handed α-helix. These findings are especially important for short oligopeptides because the employed stapling method uses two minimal amino acid residues adjacent to each other.
Collapse
Affiliation(s)
- Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
| | - Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
- Correspondence: (A.U.); (M.T.); Tel.: +81-95-819-2425 (A.U.); +81-95-819-2423 (M.T.)
| | - Takuma Kato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan; (T.K.); (M.D.)
| | - Akihiro Iyoshi
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
| | - Mei Higuchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan; (T.K.); (M.D.)
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.M.); (A.I.); (M.H.)
- Correspondence: (A.U.); (M.T.); Tel.: +81-95-819-2425 (A.U.); +81-95-819-2423 (M.T.)
| |
Collapse
|
8
|
Ueda A, Higuchi M, Sato K, Umeno T, Tanaka M. Design and Synthesis of Helical N-Terminal L-Prolyl Oligopeptides Possessing Hydrocarbon Stapling. Molecules 2020; 25:E4667. [PMID: 33066194 PMCID: PMC7594088 DOI: 10.3390/molecules25204667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023] Open
Abstract
We designed and synthesized helical short oligopeptides with an L-proline on the N-terminus and hydrocarbon stapling on the side chain. Side-chain stapling is a frequently used method for the development of biologically active peptides. Side-chain stapling can stabilize the secondary structures of peptides, and, therefore, stapled peptides may be applicable to peptide-based organocatalysts. Olefin-tethered cis-4-hydroxy-L-proline 1 and L-serine 2 and 8, and (R)-α-allyl-proline 18 were used as cross-linking motifs and incorporated into helical peptide sequences. The Z- and E-selectivities were observed for the ring-closing metathesis reactions of peptides 3 and 11 (i,i+1 series), respectively, while no E/Z-selectivity was observed for that of 19 (i,i+3 series). The stapled peptide B' catalyzed the Michael addition reaction of 1-methylindole to α,β-unsaturated aldehyde, which was seven times faster than that of unstapled peptide B. Furthermore, the high catalytic activity was retained even at lower catalyst loadings (5 mol %) and lower temperatures (0 °C). The circular dichroism spectra of stapled peptide B' showed a right-handed helix with a higher intensity than that of unstapled peptide B. These results indicate that the introduction of side-chain stapling is beneficial for enhancing the catalytic activity of short oligopeptide catalysts.
Collapse
Affiliation(s)
- Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.H.); (K.S.); (T.U.)
| | | | | | | | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.H.); (K.S.); (T.U.)
| |
Collapse
|
9
|
Pal S, Banerjee S, Prabhakaran EN. Helix-Coil Transition at a Glycine Following a Nascent α-Helix: A Synergetic Guidance Mechanism for Helix Growth. J Phys Chem A 2020; 124:7478-7490. [PMID: 32877193 DOI: 10.1021/acs.jpca.0c05489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A detailed understanding of forces guiding the rapid folding of a polypeptide from an apparently random coil state to an ordered α-helical structure following the rate-limiting preorganization of the initial three residue backbones into helical conformation is imperative to comprehending and regulating protein folding and for the rational design of biological mimetics. However, several details of this process are still unknown. First, although the helix-coil transition was proposed to originate at the residue level (J. Chem. Phys. 1959, 31, 526-535; J. Chem. Phys. 1961, 34, 1963-1974), all helix-folding studies have only established it between time-averaged bulk states of a long-lived helix and several transiently populated random coils, along the whole helix model sequence. Second, the predominant thermodynamic forces driving either this two-state transition or the faster helix growth following helix nucleation are still unclear. Third, the conformational space of the random coil state is not well-defined unlike its corresponding α-helix. Here we investigate the restrictions placed on the conformational space of a Gly residue backbone, as a result of it immediately succeeding a nascent α-helical turn. Analyses of the temperature-dependent 1D-, 2D-NMR, FT-IR, and CD spectra and GROMACS MD simulation trajectory of a Gly residue backbone following a model α-helical turn, which is artificially rigidified by a covalent hydrogen bond surrogate, reveal that: (i) the α-helical turn guides the ϕ torsion of the Gly exclusively into either a predominantly populated entropically favored α-helical (α-ϕ) state or a scarcely populated random coil (RC-ϕ) state; (ii) the α-ϕ state of Gly in turn favors the stability of the preceding α-helical turn, while the RC-ϕ state disrupts it, revealing an entropy-driven synergetic guidance for helix growth in the residue following helix nucleation. The applicability of a current synergetic guidance mechanism to explain rapid helix growth in folded and unfolded states of proteins and helical peptides is discussed.
Collapse
Affiliation(s)
- Sunit Pal
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Erode N Prabhakaran
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
10
|
Horsfall AJ, Dunning KR, Keeling KL, Scanlon DB, Wegener KL, Abell AD. A Bimane‐Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. Chembiochem 2020; 21:3423-3432. [DOI: 10.1002/cbic.202000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aimee J. Horsfall
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kylie R. Dunning
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Robinson Research Institute, Adelaide Medical School The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kelly L. Keeling
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Denis B. Scanlon
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kate L. Wegener
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- School of Biological Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| |
Collapse
|
11
|
Pal S, Banerjee S, Kumar A, Prabhakaran EN. H-Bond Surrogate-Stabilized Shortest Single-Turn α-Helices: sp 2 Constraints and Residue Preferences for the Highest α-Helicities. ACS OMEGA 2020; 5:13902-13912. [PMID: 32566857 PMCID: PMC7301546 DOI: 10.1021/acsomega.0c01277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Short α-helical sequences of proteins fail to maintain their native conformation when taken out of their protein context. Several covalent constraints have been designed, including the covalent H-bond surrogate (HBS)-where a peptide backbone i + 4 → i H-bond is replaced by a covalent surrogate-to nucleate α-helix in short sequences (>7 < 15 amino acids). But constraining the shortest sequences (four amino acids) into a single α-helical turn is still a significant challenge. Here, we introduce an HBS model that can be placed in unstructured tetrapeptides without excising any of its residues, and that biases them predominantly into remarkably stable single α-helical turns in varying solvents, pH values, and temperatures. Circular dichroism (CD), Fourier transform infrared (FT-IR) absorption, one-dimensional (1D)-NMR, two-dimensional (2D)-NMR spectral and computational analyses of the HBS-constrained tetrapeptide analogues reveal that (a) the number of sp2 atoms in the HBS-constrained backbone influences their predominance and rigidity in the α-helical conformation; and (b) residue preferences at the unnatural HBS-constrained positions influence their α-helicities, with Moc[GFA]G-OMe (1a) showing the highest known α-helicity (θn→π*MRE ∼-25.3 × 103 deg cm2 dmol-1 at 228 nm) for a single α-helical turn. Current findings benefit chemical biological applications desiring predictable access to single α-helical turns in tetrapeptides.
Collapse
|
12
|
Yu J, Horsley JR, Abell AD. Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins. Phys Chem Chem Phys 2020; 22:8409-8417. [DOI: 10.1039/d0cp00635a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide evidence that bound zinc promotes electron transfer in a peptide by changing the electronic properties of the peptide.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
13
|
Guo C, Yu J, Horsley JR, Sheves M, Cahen D, Abell AD. Backbone-Constrained Peptides: Temperature and Secondary Structure Affect Solid-State Electron Transport. J Phys Chem B 2019; 123:10951-10958. [PMID: 31777245 DOI: 10.1021/acs.jpcb.9b07753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary sequence and secondary structure of a peptide are crucial to charge migration, not only in solution (electron transfer, ET), but also in the solid-state (electron transport, ETp). Hence, understanding the charge migration mechanisms is fundamental to the development of biomolecular devices and sensors. We report studies on four Aib-containing helical peptide analogues: two acyclic linear peptides with one and two electron-rich alkene-based side chains, respectively, and two peptides that are further rigidified into a macrocycle by a side bridge constraint, containing one or no alkene. ETp was investigated across Au/peptide/Au junctions, between 80 and 340 K in combination with the molecular dynamic (MD) simulations. The results reveal that the helical structure of the peptide and electron-rich side chain both facilitate the ETp. As temperature increases, the loss of helical structure, change of monolayer tilt angle, and increase of thermally activated fluctuations affect the conductance of peptides. Specifically, room temperature conductance across the peptide monolayers correlates well with previously observed ET rate constants, where an interplay between backbone rigidity and electron-rich side chains was revealed. Our findings provide new means to manipulate electronic transport across solid-state peptide junctions.
Collapse
Affiliation(s)
- Cunlan Guo
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - John R Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Mordechai Sheves
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David Cahen
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
14
|
Yuen TY, Brown CJ, Tan YS, Johannes CW. Synthesis of Chiral Alkenyl Cyclopropane Amino Acids for Incorporation into Stapled Peptides. J Org Chem 2019; 85:1556-1566. [DOI: 10.1021/acs.joc.9b02659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tsz Ying Yuen
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 8 Biomedical Grove, #07-01, Neuros, Singapore 138665
| | - Christopher J. Brown
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Charles W. Johannes
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| |
Collapse
|
15
|
Ogba OM, Warner NC, O'Leary DJ, Grubbs RH. Recent advances in ruthenium-based olefin metathesis. Chem Soc Rev 2018; 47:4510-4544. [PMID: 29714397 PMCID: PMC6107346 DOI: 10.1039/c8cs00027a] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruthenium-based olefin metathesis catalysts, known for their functional group tolerance and broad applicability in organic synthesis and polymer science, continue to evolve as an enabling technology in these areas. A discussion of recent mechanistic investigations is followed by an overview of selected applications.
Collapse
Affiliation(s)
- O M Ogba
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91775, USA.
| | | | | | | |
Collapse
|
16
|
Abe H, Sato C, Ohishi Y, Inouye M. Metathesis‐Based Stapling of a Pyridine–Acetylene–Phenol Oligomer Having Alkenyl Side Chains after Intermolecular Templation by Native Saccharides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hajime Abe
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
- Faculty of Pharmaceutical Sciences Himeji Dokkyo University Kami‐ono 7‐2‐1 670‐8524 Himeji Hyogo Japan
| | - Chihiro Sato
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
| | - Yuki Ohishi
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
| |
Collapse
|
17
|
Pal S, Prabhakaran EN. Hydrogen bond surrogate stabilized water soluble 310-helix from a disordered pentapeptide containing coded α-amino acids. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Sawyer TK, Partridge AW, Kaan HYK, Juang YC, Lim S, Johannes C, Yuen TY, Verma C, Kannan S, Aronica P, Tan YS, Sherborne B, Ha S, Hochman J, Chen S, Surdi L, Peier A, Sauvagnat B, Dandliker PJ, Brown CJ, Ng S, Ferrer F, Lane DP. Macrocyclic α helical peptide therapeutic modality: A perspective of learnings and challenges. Bioorg Med Chem 2018; 26:2807-2815. [PMID: 29598901 DOI: 10.1016/j.bmc.2018.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Macrocyclic α-helical peptides have emerged as a compelling new therapeutic modality to tackle targets confined to the intracellular compartment. Within the scope of hydrocarbon-stapling there has been significant progress to date, including the first stapled α-helical peptide to enter into clinical trials. The principal design concept of stapled α-helical peptides is to mimic a cognate (protein) ligand relative to binding its target via an α-helical interface. However, it was the proclivity of such stapled α-helical peptides to exhibit cell permeability and proteolytic stability that underscored their promise as unique macrocyclic peptide drugs for intracellular targets. This perspective highlights key learnings as well as challenges in basic research with respect to structure-based design, innovative chemistry, cell permeability and proteolytic stability that are essential to fulfill the promise of stapled α-helical peptide drug development.
Collapse
|
19
|
Sousbie M, Besserer-Offroy É, Brouillette RL, Longpré JM, Leduc R, Sarret P, Marsault É. In Search of the Optimal Macrocyclization Site for Neurotensin. ACS Med Chem Lett 2018. [PMID: 29541365 DOI: 10.1021/acsmedchemlett.7b00500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurotensin exerts potent analgesic effects following activation of its cognate GPCRs. In this study, we describe a systematic exploration, using structure-based design, of conformationally constraining neurotensin (8-13) with the help of macrocyclization and the resulting impacts on binding affinity, signaling, and proteolytic stability. This exploratory study led to a macrocyclic scaffold with submicromolar binding affinity, agonist activity, and greatly improved plasma stability.
Collapse
Affiliation(s)
- Marc Sousbie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Rebecca L. Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
20
|
Lin H, Jiang Y, Hu K, Zhang Q, He C, Wang T, Li Z. An in-tether sulfilimine chiral center induces β-turn conformation in short peptides. Org Biomol Chem 2018; 14:9993-9999. [PMID: 27722542 DOI: 10.1039/c6ob01805j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sulfilimine chiral center in the tether at i, i + 3 positions of short peptides was systematically studied to elucidate the chirality-driven conformational changes. A rare and unexpected type III β-turn structure was induced in short peptides by an in-tether chiral center, supported by circular dichroism spectroscopy, NMR and X-ray crystallography.
Collapse
Affiliation(s)
- Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yixiang Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Kuan Hu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Tao Wang
- Department of Biology, South University of Science and Technology, Shenzhen, 518055, China.
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|
22
|
Yu J, Horsley JR, Abell AD. A controllable mechanistic transition of charge transfer in helical peptides: from hopping to superexchange. RSC Adv 2017. [DOI: 10.1039/c7ra07753j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A controllable mechanistic transition of charge transfer in helical peptides is demonstrated as a direct result of side-bridge gating.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
23
|
Zhang Q, Jiang F, Zhao B, Lin H, Tian Y, Xie M, Bai G, Gilbert AM, Goetz GH, Liras S, Mathiowetz AA, Price DA, Song K, Tu M, Wu Y, Wang T, Flanagan ME, Wu YD, Li Z. Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity. Sci Rep 2016; 6:38573. [PMID: 27934919 PMCID: PMC5146914 DOI: 10.1038/srep38573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022] Open
Abstract
Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity.
Collapse
Affiliation(s)
- Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bingchuan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingsheng Xie
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guoyun Bai
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Adam M Gilbert
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Gilles H Goetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Spiros Liras
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Alan A Mathiowetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - David A Price
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Kun Song
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Meihua Tu
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Yujie Wu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tao Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mark E Flanagan
- Center for Chemistry Innovation and Excellence, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,College of Chemistry, Peking University, Beijing, 100871, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
24
|
Yu J, Horsley JR, Abell AD. Turning electron transfer ‘on-off’ in peptides through side-bridge gating. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Abe H, Kayamori F, Inouye M. Glycosyl-Templated Chiral Helix Stapling of Ethynylpyridine Oligomers by Alkene Metathesis between Inter-Pitch Side Chains. Chemistry 2015; 21:9405-13. [DOI: 10.1002/chem.201501102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 11/10/2022]
|
26
|
Kiss L, Kardos M, Forró E, Fülöp F. Stereocontrolled One-Step Synthesis of Difunctionalised Cispentacin Derivatives through Ring-Opening Metathesis of Norbornene β-Amino Acids. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Horie M, Ousaka N, Taura D, Yashima E. Chiral tether-mediated stabilization and helix-sense control of complementary metallo-double helices. Chem Sci 2015; 6:714-723. [PMID: 28706634 PMCID: PMC5494540 DOI: 10.1039/c4sc02275k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022] Open
Abstract
A series of novel PtII-linked double helices were prepared by inter- or intrastrand ligand-exchange reactions of the complementary duplexes composed of chiral or achiral amidine dimer and achiral carboxylic acid dimer strands joined by trans-PtII-acetylide complexes with PPh3 ligands using chiral and achiral chelating diphosphines. The structure and stability of the PtII-linked double helices were highly dependent on the diphosphine structures. An interstrand ligand exchange took place with chiral and achiral 1,3-diphosphine-based ligands, resulting in trans-PtII-bridged double helices, whose helical structures were quite stable even in dimethyl sulfoxide (DMSO) due to the interstrand cross-link, whereas a 1,2-diphosphine-based ligand produced non-cross-linked cis-PtII-linked duplexes, resulting from an intrastrand ligand-exchange that readily dissociated into single strands in DMSO. When enantiopure 1,3-diphosphine-based ligands were used, the resulting trans-PtII-bridged double helices adopted a preferred-handed helical sense biased by the chirality of the bridged diphosphines. Interestingly, the interstrand ligand exchange with racemic 1,3-diphosphine toward an optically-active PtII-linked duplex, composed of chiral amidine and achiral carboxylic acid strands, was found to proceed in a diastereoselective manner, thus forming complete homochiral trans-PtII-bridged double helices via a unique chiral self-sorting.
Collapse
Affiliation(s)
- Miki Horie
- Department of Molecular Design and Engineering , Graduate School of Engineering , Nagoya University , Chikusa-ku , Nagoya 464-8603 , Japan .
| | - Naoki Ousaka
- Venture Business Laboratory , Nagoya University , Chikusa-ku , Nagoya 464-8603 , Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering , Graduate School of Engineering , Nagoya University , Chikusa-ku , Nagoya 464-8603 , Japan .
| | - Eiji Yashima
- Department of Molecular Design and Engineering , Graduate School of Engineering , Nagoya University , Chikusa-ku , Nagoya 464-8603 , Japan .
| |
Collapse
|
28
|
Sawyer TK, Guerlavais V, Darlak K, Feyfant E. Macrocyclic α-Helical Peptide Drug Discovery. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Macrocyclic α-helical peptides have emerged as a promising new drug class and within the scope of hydrocarbon-stapled peptides such molecules have advanced into the clinic. The overarching concept of designing proteomimetics of an α-helical ‘ligand’ which binds its cognate ‘target’ relative to α-helical interfacing protein-protein interactions has been well-validated and expanded through numerous investigations for a plethora of therapeutic targets oftentimes referred to as “undruggable” with respect to other modalities (e.g., small-molecule or proteins). This chapter highlights the evolution of macrocyclic α-helical peptides in terms of target space, biophysical and computational chemistry, structural diversity and synthesis, drug design and chemical biology. It is noteworthy that hydrocarbon-stapled peptides have successfully risen to the summit of such drug discovery campaigns.
Collapse
|
29
|
Horsley JR, Yu J, Moore KE, Shapter JG, Abell AD. Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires. J Am Chem Soc 2014; 136:12479-88. [PMID: 25122122 PMCID: PMC4156867 DOI: 10.1021/ja507175b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 01/14/2023]
Abstract
Electrochemical studies are reported on a series of peptides constrained into either a 310-helix (1-6) or β-strand (7-9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (1 and 2) and (7 and 8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides 1, 4 and 5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides 3-6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (1 and 7) and saturated tethered peptides (2 and 8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to 7, 8 and 9 provide further insights into the relative roles of backbone rigidity and electron rich side-chains on intramolecular electron transfer. Furthermore, electron population analysis confirms the role of the alkene as a "stepping stone" for electron transfer. These findings provide a new approach for fine-tuning the electronic properties of peptides by controlling backbone rigidity, and through the inclusion of electron rich side-chains. This allows for manipulation of energy barriers and hence conductance in peptides, a crucial step in the design and fabrication of molecular-based electronic devices.
Collapse
Affiliation(s)
- John R. Horsley
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxian Yu
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Katherine E. Moore
- Centre
for Nanoscale Science and Technology, School of Chemical & Physical
Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Joe G. Shapter
- Centre
for Nanoscale Science and Technology, School of Chemical & Physical
Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew D. Abell
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
30
|
Mangold S, O’Leary DJ, Grubbs RH. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection. J Am Chem Soc 2014; 136:12469-78. [PMID: 25102124 PMCID: PMC4156862 DOI: 10.1021/ja507166g] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/27/2022]
Abstract
Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors.
Collapse
Affiliation(s)
- Shane
L. Mangold
- Arnold
and Mabel Beckman Laboratories for Chemical Synthesis, Division of
Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Daniel J. O’Leary
- Department
of Chemistry, Pomona College, Claremont, California 91711, United States
| | - Robert H. Grubbs
- Arnold
and Mabel Beckman Laboratories for Chemical Synthesis, Division of
Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
31
|
Hilinski GJ, Kim YW, Hong J, Kutchukian PS, Crenshaw CM, Berkovitch SS, Chang A, Ham S, Verdine GL. Stitched α-helical peptides via bis ring-closing metathesis. J Am Chem Soc 2014; 136:12314-22. [PMID: 25105213 DOI: 10.1021/ja505141j] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformationally stabilized α-helical peptides are capable of inhibiting disease-relevant intracellular or extracellular protein-protein interactions in vivo. We have previously reported that the employment of ring-closing metathesis to introduce a single all-hydrocarbon staple along one face of an α-helical peptide greatly increases α-helical content, binding affinity to a target protein, cell penetration through active transport, and resistance to proteolytic degradation. In an effort to improve upon this technology for stabilizing a peptide in a bioactive α-helical conformation, we report the discovery of an efficient and selective bis ring-closing metathesis reaction leading to peptides bearing multiple contiguous staples connected by a central spiro ring junction. Circular dichroism spectroscopy, NMR, and computational analyses have been used to investigate the conformation of these "stitched" peptides, which are shown to exhibit remarkable thermal stabilities. Likewise, trypsin proteolysis assays confirm the achievement of a structural rigidity unmatched by peptides bearing a single staple. Furthermore, fluorescence-activated cell sorting (FACS) and confocal microscopy assays demonstrate that stitched peptides display superior cell penetrating ability compared to their stapled counterparts, suggesting that this technology may be useful not only in the context of enhancing the drug-like properties of α-helical peptides but also in producing potent agents for the intracellular delivery of proteins and oligonucleotides.
Collapse
Affiliation(s)
- Gerard J Hilinski
- Department of Chemistry and Chemical Biology and Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mazzier D, Peggion C, Toniolo C, Moretto A. Enhancement of the helical content and stability induced in a linear oligopeptide by ani, i+4 intramolecularly double stapled, overlapping, bicyclic [31, 22, 5]-(E)ene motif. Biopolymers 2014; 102:115-23. [DOI: 10.1002/bip.22438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 10/11/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Daniela Mazzier
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| | - Alessandro Moretto
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova; 35131 Padova Italy
| |
Collapse
|
33
|
Yu J, Horsley JR, Moore KE, . Shapter JG, Abell AD. The effect of a macrocyclic constraint on electron transfer in helical peptides: A step towards tunable molecular wires. Chem Commun (Camb) 2014; 50:1652-4. [DOI: 10.1039/c3cc47885h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Shim SY, Kim YW, Verdine GL. A Newi,i + 3 Peptide Stapling System for α-Helix Stabilization. Chem Biol Drug Des 2013; 82:635-42. [DOI: 10.1111/cbdd.12231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/21/2013] [Accepted: 08/20/2013] [Indexed: 12/01/2022]
Affiliation(s)
- So Youn Shim
- Departments of Chemistry and Chemical Biology, Stem Cell and Regenerative Biology; Harvard University; Cambridge MA 02138 USA
| | - Young-Woo Kim
- Departments of Chemistry and Chemical Biology, Stem Cell and Regenerative Biology; Harvard University; Cambridge MA 02138 USA
- Program in Cancer Chemical Biology; Dana-Farber Cancer Institute; Boston MA 02115 USA
| | - Gregory L. Verdine
- Departments of Chemistry and Chemical Biology, Stem Cell and Regenerative Biology; Harvard University; Cambridge MA 02138 USA
- Program in Cancer Chemical Biology; Dana-Farber Cancer Institute; Boston MA 02115 USA
| |
Collapse
|
35
|
Nomura W, Aikawa H, Ohashi N, Urano E, Meétifiot M, Fujino M, Maddali K, Ozaki T, Nozue A, Narumi T, Hashimoto C, Tanaka T, Pommier Y, Yamamoto N, Komano JA, Murakami T, Tamamura H. Cell-permeable stapled peptides based on HIV-1 integrase inhibitors derived from HIV-1 gene products. ACS Chem Biol 2013; 8:2235-44. [PMID: 23898787 PMCID: PMC7577350 DOI: 10.1021/cb400495h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HIV-1 integrase (IN) is an enzyme which is indispensable for the stable infection of host cells because it catalyzes the insertion of viral DNA into the genome and thus is an attractive target for the development of anti-HIV agents. Earlier, we found Vpr-derived peptides with inhibitory activity against HIV-1 IN. These Vpr-derived peptides are originally located in an α-helical region of the parent Vpr protein. Addition of an octa-arginyl group to the inhibitory peptides caused significant inhibition against HIV replication associated with an increase in cell permeability but also relatively high cytotoxicity. In the current study, stapled peptides, a new class of stabilized α-helical peptidomimetics were adopted to enhance the cell permeability of the above lead peptides. A series of stapled peptides, which have a hydrocarbon link formed by a ruthenium-catalyzed ring-closing metathesis reaction between successive turns of α-helix, were designed, synthesized, and evaluated for biological activity. In cell-based assays some of the stapled peptides showed potent anti-HIV activity comparable with that of the original octa-arginine-containing peptide (2) but with lower cytotoxicity. Fluorescent imaging experiments revealed that these stapled peptides are significantly cell permeable, and CD analysis showed they form α-helical structures, whereas the unstapled congeners form β-sheet structures. The application of this stapling strategy to Vpr-derived IN inhibitory peptides led to a remarkable increase in their potency in cells and a significant reduction of their cytotoxicity.
Collapse
Affiliation(s)
- Wataru Nomura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Haruo Aikawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Emiko Urano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mathieu Meétifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kasthuraiah Maddali
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Taro Ozaki
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ami Nozue
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuo Narumi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chie Hashimoto
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomohiro Tanaka
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jun A. Komano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
36
|
Sundararaju B, Sridhar T, Achard M, Sharma GVM, Bruneau C. Ring Closing and Macrocyclization of β-Dipeptides by Olefin Metathesis. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 2013; 110:E3445-54. [PMID: 23946421 DOI: 10.1073/pnas.1303002110] [Citation(s) in RCA: 500] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.
Collapse
|
38
|
Cochrane SA, Huang Z, Vederas JC. Investigation of the ring-closing metathesis of peptides in water. Org Biomol Chem 2012; 11:630-9. [PMID: 23212663 DOI: 10.1039/c2ob26938d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A systematic study of the ring-closing metathesis (RCM) of unprotected oxytocin and crotalphine peptide analogues in water is reported. The replacement of cysteine with S-allyl cysteine enables RCM to proceed readily in water containing excess MgCl(2) with 30% t-BuOH as a co-solvent. The presence of the sulfur atom is vital for efficient aqueous RCM to occur, with non-sulfur containing analogues undergoing RCM in low yields.
Collapse
Affiliation(s)
- Stephen A Cochrane
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | |
Collapse
|
39
|
Nishio S, Somete T, Sugie A, Kobayashi T, Yaita T, Mori A. Axially Chiral Macrocyclic E-Alkene Bearing Bisazole Component Formed by Sequential C–H Homocoupling and Ring-Closing Metathesis. Org Lett 2012; 14:2476-9. [DOI: 10.1021/ol300755y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shotaro Nishio
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan, and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Somete
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan, and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Atsushi Sugie
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan, and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tohru Kobayashi
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan, and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tsuyoshi Yaita
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan, and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan, and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
40
|
Synthesis, crystal structure, and different local conformations of pyridine–imide oligomers. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Gebreslasie HG, Jacobsen Ø, Görbitz CH. N-(tert-butoxycarbonyl)-O-allyl-L-seryl-α-aminoisobutyryl-L-valine methyl ester: a protected tripeptide with an allylated serine residue. Acta Crystallogr C 2011; 67:o359-63. [PMID: 21881187 DOI: 10.1107/s0108270111029647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/22/2011] [Indexed: 11/10/2022] Open
Abstract
The title compound [systematic name (6S,12S)-methyl 6-(allyloxymethyl)-12-isopropyl-2,2,9,9-tetramethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate], C(21)H(37)N(3)O(7), containing the little studied O-allyl-L-serine residue [Ser(All)], crystallizes in the monoclinic space group C2 with one molecule in the asymmetric unit. The compound is an analogue of the Ser140-Val142 segment of the water channel aquaporin-4 (AQP4). It forms a distorted type-II β-turn with a P(II)-3(10L)-P(II) backbone conformation (P(II) is polyproline II). The overall backbone conformation is markedly different from that of the CO(Pro139)-Val142 stretch of rat AQP4, but is quite similar to the corresponding segment of human AQP4, despite significant differences at the level of the individual residues. The side chain of the Ser(All) residue adopts a gauche conformation relative to the backbone CO-C(α) and C(α)-N bonds. The H atoms of the two CH(2) groups in the Ser(All) side chain are almost eclipsed. The crystal packing of the title compound is divided into one-molecule-thick layers, each layer having a hydrophilic core and distinct hydrophobic interfaces on either side.
Collapse
|
42
|
Fun HK, Arshad S, Dinesh, Vivek S, Nagaraja GK. 1-(tert-But-oxy-carbon-yl)piperidine-4-carb-oxy-lic acid. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o2215. [PMID: 22065499 PMCID: PMC3200981 DOI: 10.1107/s1600536811030145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 11/19/2022]
Abstract
In the title compound, C11H19NO4, the piperidine ring adopts a chair conformation. In the crystal, molecules are linked by intermolecular O—H⋯O and C—H⋯O hydrogen bonds, forming a layer parallel to the bc plane.
Collapse
|
43
|
Estieu-Gionnet K, Guichard G. Stabilized helical peptides: overview of the technologies and therapeutic promises. Expert Opin Drug Discov 2011; 6:937-63. [PMID: 22646216 DOI: 10.1517/17460441.2011.603723] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Helical structures in proteins and naturally occurring peptides play a major role in a variety of biological processes by mediating interactions with proteins and other macromolecules such as nucleic acids and lipid membranes. The use of short synthetic peptides encompassing helical segments to modulate or disrupt such interactions, when associated with human diseases, represents great pharmacological interest. AREAS COVERED Multiple chemical approaches have been developed to increase the conformational and metabolic stabilities of helical peptides and to improve their biomedical potential. After a brief overview of these technologies and the most recent developments, this review will focus on the main therapeutic areas and targets and will discuss their promise. EXPERT OPINION Potential benefits associated with increased helix stability extend beyond simple affinity enhancement. Some peptidomimetic helices are being endowed with features desirable for cellular activity such as increased resistance to proteolysis and/or cell permeability. Recent advances in the field of peptide and related peptidomimetic helices are not just conceptual, but are likely to be of practical utility in the process of optimizing peptides as clinical candidates, and developing medium-size therapeutics.
Collapse
Affiliation(s)
- Karine Estieu-Gionnet
- Institut Européen de Chimie et Biologie , Université de Bordeaux, CNRS UMR 5248, CBMN, 2 rue R. Escarpit, 33607 Pessac , France
| | | |
Collapse
|
44
|
Muppidi A, Wang Z, Li X, Chen J, Lin Q. Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx. Chem Commun (Camb) 2011; 47:9396-8. [PMID: 21773579 DOI: 10.1039/c1cc13320a] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the design of bisarylmethylene bromides as a new class of rigid, distance-matching cysteine cross-linkers. By cross-linking a peptide dual inhibitor of Mdm2/Mdmx containing cysteines at i,i+7 positions, dramatic enhancement in cell permeability was achieved, along with increased helicity and biological activity.
Collapse
Affiliation(s)
- Avinash Muppidi
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
45
|
Ingale S, Gach JS, Zwick MB, Dawson PE. Synthesis and analysis of the membrane proximal external region epitopes of HIV-1. J Pept Sci 2011; 16:716-22. [PMID: 21104968 DOI: 10.1002/psc.1325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The membrane proximal external region (MPER) of gp41 abuts the viral membrane at the base of HIV-1 envelope glycoprotein spikes. The MPER is highly conserved and is rich in Trp and other lipophilic residues. The MPER is also required for the infection of host cells by HIV-1 and is the target of the broadly neutralizing antibodies, 4E10, 2F5, and Z13e1. These neutralizing antibodies are valuable tools for understanding relevant conformations of the MPER and for studying HIV-1 neutralization, but multiple approaches used to elicit MPER binding antibodies with similar neutralization properties have failed. Here we report our efforts to mimic the MPER using linear as well as constrained peptides. Unnatural amino acids were also introduced into the core epitope of 4E10 to probe requirements of antibody binding. Peptide analogs with C-terminal Api or Aib residues designed to be helical transmembrane (TM) domain surrogates exhibit enhanced binding to the 4E10 and Z13e1 antibodies. However, we find that placement of constrained amino acids at nonbinding sites within the core epitope significantly reduce binding. These results are relevant to an understanding of native MPER structure on HIV-1, and form a basis for a chemical synthesis approach to mimic MPER stricture and to construct an MPER-based vaccine.
Collapse
Affiliation(s)
- Sampat Ingale
- Department of Chemistry and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
46
|
Bieniek M, Samojłowicz C, Sashuk V, Bujok R, Śledź P, Lugan N, Lavigne G, Arlt D, Grela K. Rational Design and Evaluation of Upgraded Grubbs/Hoveyda Olefin Metathesis Catalysts: Polyfunctional Benzylidene Ethers on the Test Bench. Organometallics 2011. [DOI: 10.1021/om200463u] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michał Bieniek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Cezary Samojłowicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Volodymyr Sashuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Bujok
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paweł Śledź
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Noël Lugan
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Guy Lavigne
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Dieter Arlt
- University of Cologne, Albertus-Magnus-Platz, 50923 Köln, Germany
| | - Karol Grela
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
47
|
Kim YW, Grossmann TN, Verdine GL. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 2011; 6:761-71. [PMID: 21637196 DOI: 10.1038/nprot.2011.324] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol provides a detailed procedure for the preparation of stapled α-helical peptides, which have proven their potential as useful molecular probes and as next-generation therapeutics. Two crucial features of this protocol are (i) the construction of peptide substrates containing hindered α-methyl, α-alkenyl amino acids and (ii) the ring-closing olefin metathesis (RCM) of the resulting resin-bound peptide substrates. The stapling systems described in this protocol, namely bridging one or two turns of an α-helix, are highly adaptable to most peptide sequences, resulting in favorable RCM kinetics, helix stabilization and promotion of cellular uptake.
Collapse
Affiliation(s)
- Young-Woo Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
48
|
Moretto A, Crisma M, Formaggio F, Toniolo C. Building a bridge between peptide chemistry and organic chemistry: intramolecular macrocyclization reactions and supramolecular chemistry with helical peptide substrates. Biopolymers 2011; 94:721-32. [PMID: 20564031 DOI: 10.1002/bip.21445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In our ongoing efforts to build a bridge between peptide chemistry and organic chemistry, we are currently investigating: (1) two types of intramolecular macrocyclization reactions in 3(10)-helical peptides, and (2) a peptido[2]rotaxane molecular machine as a supramolecular tool using a 3(10)-helical peptide as the axle. More specifically, we studied the following two reactions: (a) the intramolecular ring-closing olefin metathesis between two amino acid residues with side chains bearing an allyl group, and (b) the intramolecular Paternò-Yang photoreaction, using a benzophenone-based amino acid as a photoaffinity reagent for a Met residue. Both reactions involve formation of a new C--C bond. As for the supramolecular system examined, we were able to identify the two stations of a new peptido[2]rotaxane characterized by an -(Aib)(6)- axle and to reversibly switch the aromatic tetramide macrocyclic wheel from one station to the next. This article summarizes the information available in the literature from other groups and the published/unpublished data originated from our laboratory on these research areas.
Collapse
Affiliation(s)
- Alessandro Moretto
- Department of Chemistry, Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy
| | | | | | | |
Collapse
|
49
|
Jacobsen Ø, Maekawa H, Ge NH, Görbitz CH, Rongved P, Ottersen OP, Amiry-Moghaddam M, Klaveness J. Stapling of a 310-Helix with Click Chemistry. J Org Chem 2011; 76:1228-38. [DOI: 10.1021/jo101670a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Øyvind Jacobsen
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, United States
| | - Carl Henrik Görbitz
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Pål Rongved
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Ole Petter Ottersen
- Centre for Molecular Biology and Neuroscience, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway
| | - Mahmood Amiry-Moghaddam
- Centre for Molecular Biology and Neuroscience, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway
| | - Jo Klaveness
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
50
|
Jacobsen Ø, Klaveness J, Rongved P. Structural and pharmacological effects of ring-closing metathesis in peptides. Molecules 2010; 15:6638-77. [PMID: 20877250 PMCID: PMC6257744 DOI: 10.3390/molecules15096638] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022] Open
Abstract
Applications of ring-closing alkene metathesis (RCM) in acyclic α- and β-peptides and closely related systems are reviewed, with a special emphasis on the structural and pharmacological effects of cyclization by RCM.
Collapse
|