1
|
Zhang T, Jiang S, Li T, Liu Y, Zhang Y. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. ACS OMEGA 2023; 8:25165-25184. [PMID: 37483233 PMCID: PMC10357434 DOI: 10.1021/acsomega.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
Biologically equivalent replacements of key moieties in molecules rationalize scaffold hopping, patent busting, or R-group enumeration. Yet, this information may depend upon the expert-defined space, and might be subjective and biased toward the chemistries they get used to. Most importantly, these practices are often informatively incomplete since they are often compromised by a try-and-error cycle, and although they depict what kind of substructures are suitable for the replacement occurrence, they fail to explain the driving forces to support such interchanges. The protein data bank (PDB) encodes a receptor-ligand interaction pattern and could be an optional source to mine structural surrogates. However, manual decoding of PDB has become almost impossible and redundant to excavate the bioisosteric know-how. Therefore, a text parsing workflow has been developed to automatically extract the local structural replacement of a specific structure from PDB by finding spatial and steric interaction overlaps between the fragments in endogenous ligands and particular ligand fragments. Taking the glycosyl domain for instance, a total of 49 520 replacements that overlap on nucleotide ribose were identified and categorized based on their SMILE codes. A predominately ring system, such as aliphatic and aromatic rings, was observed; yet, amide and sulfonamide replacements also occur. We believe these findings may enlighten medicinal chemists on the structure design and optimization of ligands using the bioisosteric replacement strategy.
Collapse
Affiliation(s)
- Tinghao Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Shenghao Jiang
- School of
Computer Science, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Ting Li
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yan Liu
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yuezhou Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
- Ningbo
Institute of Northwestern Polytechnical University, Frontiers Science
Center for Flexible Electronics (FSCFE), Key laboratory of Flexible
Electronics of Zhejiang Province, Ningbo Institute of Northwestern
Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| |
Collapse
|
2
|
Dutkiewicz Z. Computational methods for calculation of protein-ligand binding affinities in structure-based drug design. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Drug design is an expensive and time-consuming process. Any method that allows reducing the time the costs of the drug development project can have great practical value for the pharmaceutical industry. In structure-based drug design, affinity prediction methods are of great importance. The majority of methods used to predict binding free energy in protein-ligand complexes use molecular mechanics methods. However, many limitations of these methods in describing interactions exist. An attempt to go beyond these limits is the application of quantum-mechanical description for all or only part of the analyzed system. However, the extensive use of quantum mechanical (QM) approaches in drug discovery is still a demanding challenge. This chapter briefly reviews selected methods used to calculate protein-ligand binding affinity applied in virtual screening (VS), rescoring of docked poses, and lead optimization stage, including QM methods based on molecular simulations.
Collapse
Affiliation(s)
- Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs , Poznan University of Medical Sciences , ul. Grunwaldzka 6 , 60-780 Poznań , Poznan , 60-780, Poland
| |
Collapse
|
3
|
Zhou J, Saha A, Huang Z, Warshel A. Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome. J Am Chem Soc 2022; 144:7568-7572. [PMID: 35436404 DOI: 10.1021/jacs.2c00853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has been a public health emergency with continuously evolving deadly variants around the globe. Among many preventive and therapeutic strategies, the design of covalent inhibitors targeting the main protease (Mpro) of SARS-CoV-2 that causes COVID-19 has been one of the hotly pursued areas. Currently, about 30% of marketed drugs that target enzymes are covalent inhibitors. Such inhibitors have been shown in recent years to have many advantages that counteract past reservation of their potential off-target activities, which can be minimized by modulation of the electrophilic warhead and simultaneous optimization of nearby noncovalent interactions. This process can be greatly accelerated by exploration of binding affinities using computational models, which are not well-established yet due to the requirement of capturing the chemical nature of covalent bond formation. Here, we present a robust computational method for effective prediction of absolute binding free energies (ABFEs) of covalent inhibitors. This is done by integrating the protein dipoles Langevin dipoles method (in the PDLD/S-LRA/β version) with quantum mechanical calculations of the energetics of the reaction of the warhead and its amino acid target, in water. This approach evaluates the combined effects of the covalent and noncovalent contributions. The applicability of the method is illustrated by predicting the ABFEs of covalent inhibitors of SARS-CoV-2 Mpro and the 20S proteasome. Our results are found to be reliable in predicting ABFEs for cases where the warheads are significantly different. This computational protocol might be a powerful tool for designing effective covalent inhibitors especially for SARS-CoV-2 Mpro and for targeted protein degradation.
Collapse
Affiliation(s)
- Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Rocha-Santos A, Chaves EJ, Grillo IB, de Freitas AS, Araújo DAM, Rocha GB. Thermochemical and Quantum Descriptor Calculations for Gaining Insight into Ricin Toxin A (RTA) Inhibitors. ACS OMEGA 2021; 6:8764-8777. [PMID: 33842748 PMCID: PMC8027999 DOI: 10.1021/acsomega.0c02588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/30/2020] [Indexed: 05/03/2023]
Abstract
In this work, we performed a study to assess the interactions between the ricin toxin A (RTA) subunit of ricin and some of its inhibitors using modern semiempirical quantum chemistry and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods. Two approaches were followed (calculation of binding enthalpies, ΔH bind, and reactivity quantum chemical descriptors) and compared with the respective half-maximal inhibitory concentration (IC50) experimental data, to gain insight into RTA inhibitors and verify which quantum chemical method would better describe RTA-ligand interactions. The geometries for all RTA-ligand complexes were obtained after running classical molecular dynamics simulations in aqueous media. We found that single-point energy calculations of ΔH bind with the PM6-DH+, PM6-D3H4, and PM7 semiempirical methods and ONIOM QM/MM presented a good correlation with the IC50 data. We also observed, however, that the correlation decreased significantly when we calculated ΔH bind after full-atom geometry optimization with all semiempirical methods. Based on the results from reactivity descriptors calculations for the cases studied, we noted that both types of interactions, molecular overlap and electrostatic interactions, play significant roles in the overall affinity of these ligands for the RTA binding pocket.
Collapse
Affiliation(s)
- Acassio Rocha-Santos
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Elton José
Ferreira Chaves
- Department
of Biotechnology, Federal University of
Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Igor Barden Grillo
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Amanara Souza de Freitas
- Department
of Chemical Engineering, Federal University
of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | | | - Gerd Bruno Rocha
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
- . Phone/Fax: +55-83-3216-7437
| |
Collapse
|
5
|
Patra J, Singh D, Jain S, Mahindroo N. Application of Docking for Lead Optimization. MOLECULAR DOCKING FOR COMPUTER-AIDED DRUG DESIGN 2021:271-294. [DOI: 10.1016/b978-0-12-822312-3.00012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Pecina A, Eyrilmez SM, Köprülüoğlu C, Miriyala VM, Lepšík M, Fanfrlík J, Řezáč J, Hobza P. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. Chempluschem 2020; 85:2362-2371. [PMID: 32609421 DOI: 10.1002/cplu.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Quantum mechanical (QM) methods have been gaining importance in structure-based drug design where a reliable description of protein-ligand interactions is of utmost significance. However, strategies i. e. QM/MM, fragmentation or semiempirical (SQM) methods had to be pursued to overcome the unfavorable scaling of QM methods. Various SQM-based approaches have significantly contributed to the accuracy of docking and improvement of lead compounds. Parametrizations of SQM and implicit solvent methods in our laboratory have been instrumental to obtain a reliable SQM-based scoring function. The experience gained in its application for activity ranking of ligands binding to tens of protein targets resulted in setting up a faster SQM/COSMO scoring approach, which outperforms standard scoring methods in native pose identification for two dozen protein targets with ten thousand poses. Recently, SQM/COSMO was effectively applied in a proof-of-concept study of enrichment in virtual screening. Due to its superior performance, feasibility and chemical generality, we propose the SQM/COSMO approach as an efficient tool in structure-based drug design.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Cemal Köprülüoğlu
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| |
Collapse
|
7
|
Singh S, Harmalkar DS, Choi Y, Lee K. Fructose-1,6-bisphosphatase Inhibitors: A Review of Recent (2000- 2017) Advances and Structure-Activity Relationship Studies. Curr Med Chem 2019; 26:5542-5563. [DOI: 10.2174/0929867325666180831133734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022]
Abstract
:
Diabetes mellitus, commonly referred to as diabetes, is the 8th leading cause of
death worldwide. As of 2015, approximately 415 million people were estimated to be diabetic
worldwide, type 2 diabetes being the most common accounting for approximately 90-95% of
all diagnosed cases with increasing prevalence. Fructose-1,6-bisphosphatase is one of the important
therapeutic targets recently discovered to treat this chronic disease. In this focused
review, we have highlighted recent advances and structure-activity relationship studies in the
discovery and development of different fructose-1,6-bisphosphatase inhibitors reported since
the year 2000.
Collapse
Affiliation(s)
- Sarbjit Singh
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | | | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
8
|
Wang M, Mei Y, Ryde U. Host-Guest Relative Binding Affinities at Density-Functional Theory Level from Semiempirical Molecular Dynamics Simulations. J Chem Theory Comput 2019; 15:2659-2671. [PMID: 30811192 DOI: 10.1021/acs.jctc.8b01280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host were calculated at the combined density-functional theory and molecular mechanics (DFT/MM) level of theory. The DFT calculations employed the BLYP functional and the 6-31G* basis set for the ligand. We employed free-energy perturbations (FEP) with the reference-potential approach and used molecular dynamics (MD) simulations with the semiempirical quantum mechanical (SQM) PM6-DH+ method for the ligand as an intermediate level between MM and DFT/MM to improve the convergence. Thus, the relative binding free energy of two ligands was first calculated at the MM level by an alchemical transformation from one ligand to another in both the bound and unbound states. Then, for each ligand the free-energy correction for going from the MM to the SQM/MM potentials was calculated using explicit SQM/MM MD simulations. Finally, the free-energy correction for going from the SQM/MM to the DFT/MM potentials was estimated with FEP without running any DFT/MM simulations. Instead, the free energy was calculated by single-step exponential averaging (ssEA) or employing the cumulant approximation to the second order (CA). The results show that CA converges much better than ssEA, and with 500-4500 DFT/MM single-point energy calculations, converged free energies with a precision of 0.3 kJ/mol can be obtained. These free energies reproduce the experimental binding free energy differences with a mean absolute deviation of 3.4 kJ/mol, a correlation ( R2) of 0.97, and correct signs for all of the eight free-energy differences. This is appreciably better than the results obtained at the SQM/MM level of theory and also slightly better than those obtained with MM. We show that the convergence of the SQM/MM → DFT/MM perturbations can be monitored by the use of Wu and Kofke's bias metric Π and by the standard deviation of the difference between the SQM/MM and DFT/MM energies. Finally, we show that the use of the intermediate SQM/MM MD simulations improves the convergence of the free energies by a factor of at least two, compared to doing direct MM → DFT/MM perturbations.
Collapse
Affiliation(s)
- Meiting Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science , East China Normal University , Shanghai 200062 , China.,Department of Theoretical Chemistry , Lund University, Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science , East China Normal University , Shanghai 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 , China.,Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ulf Ryde
- Department of Theoretical Chemistry , Lund University, Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| |
Collapse
|
9
|
Caldararu O, Olsson MA, Misini Ignjatović M, Wang M, Ryde U. Binding free energies in the SAMPL6 octa-acid host-guest challenge calculated with MM and QM methods. J Comput Aided Mol Des 2018; 32:1027-1046. [PMID: 30203229 DOI: 10.1007/s10822-018-0158-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023]
Abstract
We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular mechanics (MM) and the combined quantum mechanical (QM) and MM (QM/MM) levels, the latter obtained with the reference-potential approach with QM/MM sampling for the MM → QM/MM FEP. The semiempirical QM method PM6-DH+ was employed for the ligand in the latter calculations. Moreover, binding free energies were also estimated from QM/MM optimised structures, combined with COSMO-RS estimates of the solvation energy and thermostatistical corrections from MM frequencies. They were performed at the PM6-DH+ level of theory with the full host and guest molecule in the QM system (and also four water molecules in the geometry optimisations) for 10-20 snapshots from molecular dynamics simulations of the complex. Finally, the structure with the lowest free energy was recalculated using the dispersion-corrected density-functional theory method TPSS-D3, for both the structure and the energy. The two FEP approaches gave similar results (PM6-DH+/MM slightly better for OAM), which were among the five submissions with the best performance in the challenge and gave the best results without any fit to data from the SAMPL5 challenge, with mean absolute deviations (MAD) of 2.4-5.2 kJ/mol and a correlation coefficient (R2) of 0.77-0.93. This is the first time QM/MM approaches give binding free energies that are competitive to those obtained with MM for the octa-acid host. The QM/MM-optimised structures gave somewhat worse performance (MAD = 3-8 kJ/mol and R2 = 0.1-0.9), but the results were improved compared to previous studies of this system with similar methods.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Martin A Olsson
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Majda Misini Ignjatović
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Meiting Wang
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
10
|
Steinmann C, Olsson MA, Ryde U. Relative Ligand-Binding Free Energies Calculated from Multiple Short QM/MM MD Simulations. J Chem Theory Comput 2018; 14:3228-3237. [PMID: 29768915 DOI: 10.1021/acs.jctc.8b00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have devised a new efficient approach to compute combined quantum mechanical (QM) and molecular mechanical (MM, i.e. QM/MM) ligand-binding relative free energies. Our method employs the reference-potential approach with free-energy perturbation both at the MM level (between the two ligands) and from MM to QM/MM (for each ligand). To ensure that converged results are obtained for the MM → QM/MM perturbations, explicit QM/MM molecular dynamics (MD) simulations are performed with two intermediate mixed states. To speed up the calculations, we utilize the fact that the phase space can be extensively sampled at the MM level. Therefore, we run many short QM/MM MD simulations started from snapshots of the MM simulations, instead of a single long simulation. As a test case, we study the binding of nine cyclic carboxylate ligands to the octa-acid deep cavitand. Only the ligand is in the QM system, treated with the semiempirical PM6-DH+ method. We show that for eight of the ligands, we obtain well converged results with short MD simulations (1-15 ps). However, in one case, the convergence is slower (∼50 ps) owing to a mismatch between the conformational preferences of the MM and QM/MM potentials. We test the effect of initial minimization, the need of equilibration, and how many independent simulations are needed to reach a certain precision. The results show that the present approach is about four times faster than using standard MM → QM/MM free-energy perturbations with the same accuracy and precision.
Collapse
Affiliation(s)
- Casper Steinmann
- Department of Chemistry and Bioscience , Aalborg University , Frederik Bajers Vej 7H , DK-9220 Aalborg , Denmark.,Department of Theoretical Chemistry , Lund University , Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Martin A Olsson
- Department of Theoretical Chemistry , Lund University , Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry , Lund University , Chemical Centre , P.O. Box 124, SE-221 00 Lund , Sweden
| |
Collapse
|
11
|
Williams-Noonan BJ, Yuriev E, Chalmers DK. Free Energy Methods in Drug Design: Prospects of “Alchemical Perturbation” in Medicinal Chemistry. J Med Chem 2017; 61:638-649. [DOI: 10.1021/acs.jmedchem.7b00681] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Billy J. Williams-Noonan
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - David K. Chalmers
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Pu C, Yan G, Shi J, Li R. Assessing the performance of docking scoring function, FEP, MM-GBSA, and QM/MM-GBSA approaches on a series of PLK1 inhibitors. MEDCHEMCOMM 2017; 8:1452-1458. [PMID: 30108856 DOI: 10.1039/c7md00184c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/20/2017] [Indexed: 02/05/2023]
Abstract
Over-expressed polo-like kinases 1, a key regulator of cell mitosis, is associated with carcinogenesis and poor prognosis. It is very necessary to develop a reliable computational affinity prediction protocol targeting PLK1. In this study, the performance of different docking scoring function, free energy perturbation, MM-GBSA and QM/MM-GBSA were evaluated. The ranking capability of FEP is the best with rs = 0.854. However, the rs obtained from MM-GBSA can reach 0.767, which requires only about one-eighth of the simulation time of FEP. As for the sampling method, single long molecular dynamics (SLMD) surpass the multiple short molecular dynamics (MSMD) in ranking of the 20 congeneric compounds by about 0.1 in rs. In addition, ligands treated by QM can significantly improve the ranking performance. As for the docking scoring functions, a force field-based scoring function is more suitable for ranking congeneric compounds.
Collapse
Affiliation(s)
- Chunlan Pu
- Cancer Center , West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , 610041 Sichuan , P. R. China . ; ; Tel: +86 28 85164063
| | - Guoyi Yan
- Cancer Center , West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , 610041 Sichuan , P. R. China . ; ; Tel: +86 28 85164063
| | - Jianyou Shi
- Individualized Medication Key Laboratory of Sichuan Province , Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital , Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital , School of Medicine , Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu , 610072 Sichuan , P. R. China .
| | - Rui Li
- Cancer Center , West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , 610041 Sichuan , P. R. China . ; ; Tel: +86 28 85164063
| |
Collapse
|
13
|
Olsson MA, Ryde U. Comparison of QM/MM Methods To Obtain Ligand-Binding Free Energies. J Chem Theory Comput 2017; 13:2245-2253. [DOI: 10.1021/acs.jctc.6b01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin A. Olsson
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221
00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221
00 Lund, Sweden
| |
Collapse
|
14
|
Liu W, Jia X, Wang M, Li P, Wang X, Hu W, Zheng J, Mei Y. Calculations of the absolute binding free energies for Ralstonia solanacearum lectins bound with methyl-α-l-fucoside at molecular mechanical and quantum mechanical/molecular mechanical levels. RSC Adv 2017. [DOI: 10.1039/c7ra06215j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, both a molecular mechanical (MM) method and a hybrid quantum mechanical/molecular mechanical (QM/MM) method have been applied in the study of the binding affinities of methyl-α-l-fucoside to Ralstonia solanacearum lectins.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Precision Spectroscopy
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Xiangyu Jia
- State Key Laboratory of Precision Spectroscopy
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Meiting Wang
- State Key Laboratory of Precision Spectroscopy
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Wenxin Hu
- The Computer Center
- School of Computer Science and Software Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Jun Zheng
- The Computer Center
- School of Computer Science and Software Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
15
|
Olsson MA, Söderhjelm P, Ryde U. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level. J Comput Chem 2016; 37:1589-600. [PMID: 27117350 PMCID: PMC5074236 DOI: 10.1002/jcc.24375] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/15/2022]
Abstract
In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin A Olsson
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| | - Pär Söderhjelm
- Department of Biophysical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| |
Collapse
|
16
|
Ryde U, Söderhjelm P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem Rev 2016; 116:5520-66. [DOI: 10.1021/acs.chemrev.5b00630] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Pär Söderhjelm
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
17
|
|
18
|
Genheden S, Ryde U, Söderhjelm P. Binding affinities by alchemical perturbation using QM/MM with a large QM system and polarizable MM model. J Comput Chem 2015; 36:2114-24. [PMID: 26280564 DOI: 10.1002/jcc.24048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/13/2015] [Accepted: 07/17/2015] [Indexed: 12/19/2022]
Abstract
The most general way to improve the accuracy of binding-affinity calculations for protein-ligand systems is to use quantum-mechanical (QM) methods together with rigorous alchemical-perturbation (AP) methods. We explore this approach by calculating the relative binding free energy of two synthetic disaccharides binding to galectin-3 at a reasonably high QM level (dispersion-corrected density functional theory with a triple-zeta basis set) and with a sufficiently large QM system to include all short-range interactions with the ligand (744-748 atoms). The rest of the protein is treated as a collection of atomic multipoles (up to quadrupoles) and polarizabilities. Several methods for evaluating the binding free energy from the 3600 QM calculations are investigated in terms of stability and accuracy. In particular, methods using QM calculations only at the endpoints of the transformation are compared with the recently proposed non-Boltzmann Bennett acceptance ratio (NBB) method that uses QM calculations at several stages of the transformation. Unfortunately, none of the rigorous approaches give sufficient statistical precision. However, a novel approximate method, involving the direct use of QM energies in the Bennett acceptance ratio method, gives similar results as NBB but with better precision, ∼3 kJ/mol. The statistical error can be further reduced by performing a greater number of QM calculations.
Collapse
Affiliation(s)
- Samuel Genheden
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| | - Pär Söderhjelm
- Department of Biophysical Chemistry, Lund University, Chemical Centre, P. O. Box 124, Lund, SE-221 00, Sweden
| |
Collapse
|
19
|
Zhu S, Travis SM, Elcock AH. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study. J Chem Theory Comput 2013; 9:3151-3164. [PMID: 23914145 PMCID: PMC3731164 DOI: 10.1021/ct400104x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant. Imposition of position restraints in corresponding simulations that used the Amber ff99SB-ILDN force field had little effect on their ability to match experiment. Overall, the study shows that both force fields can work well for predicting the effects of active-site mutations on small molecule binding affinities and demonstrates how a direct combination of experiment and computation can be a powerful strategy for developing an understanding of protein-inhibitor interactions.
Collapse
Affiliation(s)
- Shun Zhu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | | |
Collapse
|
20
|
Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol 2012; 8:e1002612. [PMID: 22807670 PMCID: PMC3395594 DOI: 10.1371/journal.pcbi.1002612] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/29/2012] [Indexed: 12/04/2022] Open
Abstract
Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux. Design of allosterically regulatable enzyme is essential to develop a highly efficient metabolite production. However, mutations on allosteric ligand binding sites often disrupt the catalytic activity of enzyme. To aid the design process of allosterically controllable enzymes, we develop an effective computational strategy to deregulate the allosteric inhibition of enzymes based on sequence evolution analysis of allosteric ligand-binding sites. We analyzed the molecular evolution and amino acid composition of catalytic and allosteric sites of enzymes, and discovered that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We then experimentally tested our strategy of enzyme allosteric regulation and found that the designed mutations effectively deregulated allosteric inhibition of FBPase. We believe that our method will aid the rational design of enzyme allosteric regulation and help to facilitate control of metabolic flux.
Collapse
|
21
|
Correlation between biological activity and binding energy in systems of integrin with cyclic RGD-containing binders: a QM/MM molecular dynamics study. J Mol Model 2012; 18:4917-27. [DOI: 10.1007/s00894-012-1487-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
|
22
|
Steinbrecher T, Case DA, Labahn A. Free energy calculations on the binding of novel thiolactomycin derivatives to E. coli fatty acid synthase I. Bioorg Med Chem 2012; 20:3446-53. [PMID: 22560835 DOI: 10.1016/j.bmc.2012.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 11/16/2022]
Abstract
Finding novel antibiotics to combat the rise of drug resistance in harmful bacteria is of enormous importance for human health. Computational drug design can be employed to aid synthetic chemists in the search for new potent inhibitors. In recent years, molecular dynamics based free energy calculations have emerged as a useful tool to accurately calculate receptor binding affinities of novel or modified ligands. While being significantly more demanding in computational resources than simpler docking algorithms, they can be employed to obtain reliable estimates of the effect individual functional groups have on protein-ligand complex binding constants. Beta-ketoacyl [acyl carrier protein] synthase I, KAS I, facilitates a critical chain elongation step in the fatty acid synthesis pathway. Since the bacterial type II lipid synthesis system is fundamentally different from the mammalian type I multi-enzyme complex, this enzyme represents a promising target for the design of specific antibiotics. In this work, we study the binding of several recently synthesized derivatives of the natural KAS I inhibitor thiolactomycin in detail based on atomistic modeling. From extensive thermodynamic integration calculations the effect of changing functional groups on the thiolactone scaffold was determined. Four ligand modifications were predicted to show improved binding to the E. coli enzyme, pointing the way towards the design of thiolactomycin derivatives with binding constants in the nanomolar range.
Collapse
Affiliation(s)
- Thomas Steinbrecher
- Institut für Physikalische Chemie, Abteilung Theoretische Chemische Biologie, Universität Karlsruhe, KIT, Kaiserstr. 12, 76131 Karlsruhe, Germany.
| | | | | |
Collapse
|
23
|
Use of quantum mechanics/molecular mechanics-based FEP method for calculating relative binding affinities of FBPase inhibitors for type-2 diabetes. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1096-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Reddy MR, Singh UC, Erion MD. Use of a QM/MM-based FEP method to evaluate the anomalous hydration behavior of simple alkyl amines and amides: application to the design of FBPase inhibitors for the treatment of type-2 diabetes. J Am Chem Soc 2011; 133:8059-61. [PMID: 21545145 DOI: 10.1021/ja201637q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Standard molecular mechanics (MM) force fields predict a nearly linear decrease in hydration free energy with each successive addition of a methyl group to ammonia or acetamide, whereas a nonadditive relationship is observed experimentally. In contrast, the non-additive hydration behavior is reproduced directly using a quantum mechanics (QM)/MM-based free-energy perturbation (FEP) method wherein the solute partial atomic charges are updated at every window. Decomposing the free energies into electrostatic and van der Waals contributions and comparing the results with the corresponding free energies obtained using a conventional FEP method and a QM/MM method wherein the charges are not updated suggests that inaccuracies in the electrostatic free energies are the primary reason for the inability of the conventional FEP method to predict the experimental findings. The QM/MM-based FEP method was subsequently used to evaluate inhibitors of the diabetes drug target fructose-1,6-bisphosphatase adenosine 5'-monophosphate and 6-methylamino purine riboside 5'-monophosphate. The predicted relative binding free energy was consistent with the experimental findings, whereas the relative binding free energy predicted using the conventional FEP method differed from the experimental finding by an amount consistent with the overestimated relative solvation free energies calculated for alkylamines. Accordingly, the QM/MM-based FEP method offers potential advantages over conventional FEP methods, including greater accuracy and reduced user input. Moreover, since drug candidates often contain either functionality that is inadequately treated by MM (e.g., simple alkylamines and alkylamides) or new molecular scaffolds that require time-consuming development of MM parameters, these advantages could enable future automation of FEP calculations as well as greatly increase the use and impact of FEP calculations in drug discovery.
Collapse
Affiliation(s)
- M Rami Reddy
- Computer Modelling, Simulations and Design, University of Hyderabad, Hyderabad, India 500 034.
| | | | | |
Collapse
|
25
|
Rathore RS, Aparoy P, Reddanna P, Kondapi AK, Reddy MR. Minimum MD simulation length required to achieve reliable results in free energy perturbation calculations: case study of relative binding free energies of fructose-1,6-bisphosphatase inhibitors. J Comput Chem 2011; 32:2097-103. [PMID: 21503928 DOI: 10.1002/jcc.21791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/07/2011] [Accepted: 02/23/2011] [Indexed: 01/14/2023]
Abstract
In an attempt to establish the criteria for the length of simulation to achieve the desired convergence of free energy calculations, two studies were carried out on chosen complexes of FBPase-AMP mimics. Calculations were performed for varied length of simulations and for different starting configurations using both conventional- and QM/MM-FEP methods. The results demonstrate that for small perturbations, 1248 ps simulation time could be regarded a reasonable yardstick to achieve convergence of the results. As the simulation time is extended, the errors associated with free energy calculations also gradually tapers off. Moreover, when starting the simulation from different initial configurations of the systems, the results are not changed significantly, when performed for 1248 ps. This study carried on FBPase-AMP mimics corroborates well with our previous successful demonstration of requirement of simulation time for solvation studies, both by conventional and ab initio FEP. The establishment of aforementioned criteria of simulation length serves a useful benchmark in drug design efforts using FEP methodologies, to draw a meaningful and unequivocal conclusion.
Collapse
Affiliation(s)
- R S Rathore
- Bioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | | | |
Collapse
|
26
|
Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handb Exp Pharmacol 2011:279-301. [PMID: 21484576 DOI: 10.1007/978-3-642-17214-4_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase), a rate-controlling enzyme of gluconeogenesis, has emerged as an important target for the treatment of type 2 diabetes due to the well-recognized role of excessive endogenous glucose production (EGP) in the hyperglycemia characteristic of the disease. Inhibitors of FBPase are expected to fulfill an unmet medical need because the majority of current antidiabetic medications act primarily on insulin resistance or insulin insufficiency and do not reduce gluconeogenesis effectively or in a direct manner. Despite significant challenges, potent and selective inhibitors of FBPase targeting the allosteric site of the enzyme were identified by means of a structure-guided design strategy that used the natural inhibitor, adenosine monophosphate (AMP), as the starting point. Oral delivery of these anionic FBPase inhibitors was enabled by a novel diamide prodrug class. Treatment of diabetic rodents with CS-917, the best characterized of these prodrugs, resulted in a reduced rate of gluconeogenesis and EGP. Of note, inhibition of gluconeogenesis by CS-917 led to the amelioration of both fasting and postprandial hyperglycemia without weight gain, incidence of hypoglycemia, or major perturbation of lactate or lipid homeostasis. Furthermore, the combination of CS-917 with representatives of the insulin sensitizer or insulin secretagogue drug classes provided enhanced glycemic control. Subsequent clinical evaluations of CS-917 revealed a favorable safety profile as well as clinically meaningful reductions in fasting glucose levels in patients with T2DM. Future trials of MB07803, a second generation FBPase inhibitor with improved pharmacokinetics, will address whether this novel class of antidiabetic agents can provide safe and long-term glycemic control.
Collapse
|
27
|
Wang Z, Wang X, Qu K, Zhu P, Guo N, Zhang R, Abliz Z, Yu H, Zhu H. Binding of cordycepin monophosphate to AMP-activated protein kinase and its effect on AMP-activated protein kinase activation. Chem Biol Drug Des 2010; 76:340-4. [PMID: 20738312 DOI: 10.1111/j.1747-0285.2010.01019.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It had been reported that cordycepin could activate AMP-activated protein kinase. One possible mechanism is that cordycepin mediated AMP-activated protein kinase activation by conversion into cordycepin monophosphate, which acts as an AMP analog to activate AMP-activated protein kinase. To confirm the aforementioned hypothesis, we investigate the binding of cordycepin monophosphate to AMP-activated protein kinase using molecular docking. The modeling results indicate that cordycepin monophosphate binds to AMP-activated protein kinase with high affinity. The hydrogen bonds provide attractive forces between molecules. Our results further identify the key residues contributing to the interaction. Also, the modeling results predict that cordycepin monophosphate and AMP would have similar binding modes with AMP-activated protein kinase. Further investigation of AMP-activated protein kinase activation in vitro provides the evidence that cordycepin monophosphate functioned as an AMP mimic to activate AMP-activated protein kinase.
Collapse
Affiliation(s)
- Zhanli Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
David C, Enescu M. Free Energy Calculations on Disulfide Bridges Reduction in Proteins by Combining ab Initio and Molecular Mechanics Methods. J Phys Chem B 2010; 114:3020-7. [DOI: 10.1021/jp910340t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catalina David
- Laboratoire de Chimie Physique et Rayonnement, UMR CEA E4, University of Franche-Comte, 16 route de Gray, 25030 Besancon, France
| | - Mironel Enescu
- Laboratoire de Chimie Physique et Rayonnement, UMR CEA E4, University of Franche-Comte, 16 route de Gray, 25030 Besancon, France
| |
Collapse
|
29
|
Zhang R, Lev B, Cuervo JE, Noskov SY, Salahub DR. A Guide to QM/MM Methodology and Applications. ADVANCES IN QUANTUM CHEMISTRY 2010. [DOI: 10.1016/s0065-3276(10)59010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
30
|
Dang Q, Brown BS, Liu Y, Rydzewski RM, Robinson ED, van Poelje PD, Reddy MR, Erion MD. Fructose-1,6-bisphosphatase inhibitors. 1. Purine phosphonic acids as novel AMP mimics. J Med Chem 2009; 52:2880-98. [PMID: 19348494 DOI: 10.1021/jm900078f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of FBPase is considered a promising way to reduce hepatic gluconeogenesis and therefore could be a potential approach to treat type 2 diabetes. Herein we report the discovery of a series of purine phosphonic acids as AMP mimics targeting the AMP site of FBPase, which was achieved using a structure-guided drug design approach. These non-nucleotide purine analogues inhibit FBPase in a similar manner and with similar potency as AMP. More importantly, several purine analogues exhibited potent cellular and in vivo glucose-lowering activities, thus achieving proof-of-concept for inhibiting FBPase as a drug discovery target. For example, compounds 4.11 and 4.13 are as equipotent as AMP with regard to FBPase inhibition. Furthermore, compound 4.11 inhibited glucose production in primary rat hepatocytes and significantly lowered blood glucose levels in fasted rats.
Collapse
Affiliation(s)
- Qun Dang
- Department of Medicinal Chemistry, Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA. Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 2008; 51:6237-55. [PMID: 18785728 DOI: 10.1021/jm800562d] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pietro Cozzini
- Department of General and Inorganic Chemistry, University of Parma, Via G.P. Usberti 17/A 43100, Parma,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|