1
|
Minasyan AS, Peacey M, Allen T, Nesterova IV. Sequence Context in DNA i-Motifs Can Nurture Very Stable and Persistent Kinetic Traps. Chembiochem 2024:e202400647. [PMID: 39370401 DOI: 10.1002/cbic.202400647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
I-motifs are non-canonical DNA structures with recognized biological significance and a proven utility in material engineering. Consequently, understanding and control of i-motif properties is essential to sustain progress across both disciplines. In this work, we systematically investigate how proximity to the most common form of DNA, a double-stranded duplex, influences the thermodynamic and kinetic properties of adjacent i-motifs. We demonstrate that double-stranded stems in i-motif loops promote kinetic trapping of very stable and persistent partially folded conformations. Further, we investigate pathways toward rational control over a folding topology makeup.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Merlin Peacey
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
2
|
Yang L, Li Q, Ge Z, Fan C, Huang W. DNA Mechanics: From Single Stranded to Self-Assembled. NANO LETTERS 2024; 24:11768-11778. [PMID: 39259830 DOI: 10.1021/acs.nanolett.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
DNA encodes genetic information and forms various structural conformations with distinct physical, chemical, and biological properties. Over the past 30 years, advancements in force manipulation technology have enabled the precise manipulation of DNA at nanometer and piconewton resolutions. This mini-review discusses these force manipulation techniques for exploring the mechanical properties of DNA at the single-molecule level. We summarize the distinct mechanical features of different DNA forms while considering the impact of the force geometry. We highlight the role of DNA mechanics in origami structures that serve as self-assembled building blocks or mechanically responsive/active nanomachines. Accordingly, we emphasize how DNA mechanics are integral to the functionality of origami structures for achieving mechanical capabilities. Finally, we provide an outlook on the intrinsic mechanical properties of DNA, from single stranded to self-assembled higher-dimensional structures. This understanding is expected to inspire new design strategies in DNA mechanics, paving the way for innovative applications and technologies.
Collapse
Affiliation(s)
- Linfeng Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenmao Huang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Guneri D, Alexandrou E, El Omari K, Dvořáková Z, Chikhale RV, Pike DTS, Waudby CA, Morris CJ, Haider S, Parkinson GN, Waller ZAE. Structural insights into i-motif DNA structures in sequences from the insulin-linked polymorphic region. Nat Commun 2024; 15:7119. [PMID: 39164244 PMCID: PMC11336075 DOI: 10.1038/s41467-024-50553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.
Collapse
Affiliation(s)
- Dilek Guneri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Effrosyni Alexandrou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Zuzana Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Rupesh V Chikhale
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Daniel T S Pike
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher A Waudby
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher J Morris
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Shozeb Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- UCL Centre for Advanced Research Computing, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Gary N Parkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Zoë A E Waller
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
4
|
El-Khoury R, Damha MJ. End-ligation can dramatically stabilize i-motifs at neutral pH. Chem Commun (Camb) 2023; 59:3715-3718. [PMID: 36883338 DOI: 10.1039/d2cc07063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Stabilizing i-motif structures at neutral pH and physiological temperature remains a major challenge. Here, we demonstrate the use of chemical end-ligation to stabilize intramolecular i-motifs at both acidic and neutral pH. We also demonstrate that combining 2'-deoxy-2'-fluoroarabinocytidine substitutions and end-ligation results in an i-motif with an unparalleled thermal stability of 54 °C at neutral pH. Overall, the ligated i-motifs presented herein may be used in screens for selective i-motif ligands and proteins and could find important applications in nanotechnology.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montréal, H3A0B8, Canada.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, H3A0B8, Canada.
| |
Collapse
|
5
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
6
|
Kim SE, Hong SC. Two Opposing Effects of Monovalent Cations on the Stability of i-Motif Structure. J Phys Chem B 2023; 127:1932-1939. [PMID: 36811958 DOI: 10.1021/acs.jpcb.2c07069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
At acidic pH, cytosine-rich single-stranded DNA can be folded into a tetraplex structure called i-motif (iM). In recent studies, the effect of monovalent cations on the stability of iM structure has been addressed, but a consensus about the issue has not been reached yet. Thus, we investigated the effects of various factors on the stability of iM structure using fluorescence resonance energy transfer (FRET)-based analysis for three types of iM derived from human telomere sequences. We confirmed that the protonated cytosine-cytosine (C:C+) base pair is destabilized as the concentration of monovalent cations (Li+, Na+, K+) increases and that Li+ has the greatest tendency of destabilization. Intriguingly, monovalent cations would play an ambivalent role in iM formation by making single-stranded DNA flexible and pliant for an iM structure. In particular, we found that Li+ has a notably greater flexibilizing effect than Na+ and K+. All taken together, we conclude that the stability of iM structure is controlled by the subtle balance of the two counteractive effects of monovalent cations: electrostatic screening and disruption of cytosine base pairing.
Collapse
Affiliation(s)
- Sung Eun Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea, Department of Physics, Korea University, Seoul 02841, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea, Department of Physics, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Fang J, Xie C, Tao Y, Wei D. An overview of single-molecule techniques and applications in the study of nucleic acid structure and function. Biochimie 2023; 206:1-11. [PMID: 36179939 DOI: 10.1016/j.biochi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acids are an indispensable component in all known life forms. The biological processes are regulated by Nucleic acids, which associate to form special high-order structures. since the high-level structures of nucleic acids are related to gene expression in cancer cells or viruses, it is very likely to become a potential drug target. Traditional biochemical methods are limited to distinguish the conformational distribution and dynamic transition process of single nucleic acid structure. The ligands based on the intermediate and transition states between different conformations are not designed by traditional biochemical methods. The single-molecule techniques enable real-time observation of the individual nucleic acid behavior due to its high resolution. Here, we introduce the application of single-molecule techniques in the study of small molecules to recognize nucleic acid structures, such as single-molecule FRET, magnetic tweezers, optical tweezers and atomic force microscopy. At the same time, we also introduce the specific advantages of single-molecule technology compared with traditional biochemical methods and some problems arisen in current research.
Collapse
Affiliation(s)
- Junkang Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Congbao Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
8
|
i-Motif folding intermediates with zero-nucleotide loops are trapped by 2'-fluoroarabinocytidine via F···H and O···H hydrogen bonds. Commun Chem 2023; 6:31. [PMID: 36797370 PMCID: PMC9935537 DOI: 10.1038/s42004-023-00831-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
G-quadruplex and i-motif nucleic acid structures are believed to fold through kinetic partitioning mechanisms. Such mechanisms explain the structural heterogeneity of G-quadruplex metastable intermediates which have been extensively reported. On the other hand, i-motif folding is regarded as predictable, and research on alternative i-motif folds is limited. While TC5 normally folds into a stable tetrameric i-motif in solution, we report that 2'-deoxy-2'-fluoroarabinocytidine (araF-C) substitutions can prompt TC5 to form an off-pathway and kinetically-trapped dimeric i-motif, thereby expanding the scope of i-motif folding landscapes. This i-motif is formed by two strands, associated head-to-head, and featuring zero-nucleotide loops which have not been previously observed. Through spectroscopic and computational analyses, we also establish that the dimeric i-motif is stabilized by fluorine and non-fluorine hydrogen bonds, thereby explaining the superlative stability of araF-C modified i-motifs. Comparative experimental findings suggest that the strength of these interactions depends on the flexible sugar pucker adopted by the araF-C residue. Overall, the findings reported here provide a new role for i-motifs in nanotechnology and also pose the question of whether unprecedented i-motif folds may exist in vivo.
Collapse
|
9
|
Gong X, Lin X, Wang S, Ji D, Shu B, Huang ZS, Li D. Regulation of c-Kit gene transcription selectively by bisacridine derivative through promoter dual i-motif structures. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194912. [PMID: 36754277 DOI: 10.1016/j.bbagrm.2023.194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND c-Kit protein is a signal transduction protein involved in multiple signal pathways, which play an important role in a variety of cellular events such as cell proliferation, apoptosis and differentiation. Special DNA secondary structures on the promoter of c-Kit gene, including G-quadruplex and i-motif structures, could act as "molecular switch" for gene transcriptional regulation, which are potentially important target for development of new anti-cancer drugs. METHODS We screened and evaluated the effect of compounds on c-Kit through several experiments, including SPR, FRET, CD, MST, NMR, dual-luciferase reporter assay, Western blot, qPCR, immunofluorescence, MTT assay, colony formation, cell scrape, cell apoptosis, cell cycle analysis, and transwell assay. RESULTS After extensive screening, we found that bisacridine derivative B05 had selective binding and stabilization to dual i-motif structures on c-Kit gene promoter, which could down-regulate c-Kit gene transcription and translation, resulting in inhibition of cell proliferation and metastasis. B05 exhibited potent anti-tumor activity on HGC-27 cells, and strongly suppressed tumor growth in HGC-27 xenograft mice model. CONCLUSIONS B05 could interact with c-Kit promoter dual i-motif structures with excellent selectivity, which make it possible for selective regulation of gene transcription and translation. B05 could be further developed for selective anti-cancer agent targeting c-Kit promoter i-motifs. GENERAL SIGNIFICANCE i-Motifs on different proto-oncogene promoters are diversified, and especially binding of dual i-motifs on the same promoter simultaneously could significantly down-regulate gene transcription with decreased dosage, and therefore increasing the selectivity. This new strategy shed bight light on development of selective DNA-targeting ligands.
Collapse
Affiliation(s)
- Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Xiaomin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China.
| |
Collapse
|
10
|
Wimberger L, Rizzuto FJ, Beves JE. Modulating the Lifetime of DNA Motifs Using Visible Light and Small Molecules. J Am Chem Soc 2023; 145:2088-2092. [PMID: 36688871 DOI: 10.1021/jacs.2c13232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we regulate the formation of dissipative assemblies built from DNA using a merocyanine photoacid that responds to visible light. The operation of our system and the relative distribution of species within it are controlled by irradiation time, initial pH value, and the concentration of a small-molecule binder that inhibits the reaction cycle. This approach is modular, does not require DNA modification, and can be used for several DNA sequences and lengths. Our system design allows for waste-free control of dissipative DNA nanotechnology, toward the generation of nonequilibrium, life-like nanodevices.
Collapse
Affiliation(s)
- Laura Wimberger
- School of Chemistry, UNSW Sydney, Sydney NSW 2052, Australia
| | - Felix J Rizzuto
- School of Chemistry, UNSW Sydney, Sydney NSW 2052, Australia
| | | |
Collapse
|
11
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
12
|
Pokhrel P, Hu C, Mao H. Ensemble Force Spectroscopy by Shear Forces. J Vis Exp 2022:10.3791/63741. [PMID: 35969056 PMCID: PMC10373445 DOI: 10.3791/63741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Single-molecule techniques based on fluorescence and mechanochemical principles provide superior sensitivity in biological sensing. However, due to the lack of high throughput capabilities, the application of these techniques is limited in biophysics. Ensemble force spectroscopy (EFS) has demonstrated high throughput in the investigation of a massive set of molecular structures by converting mechanochemical studies of individual molecules into those of molecular ensembles. In this protocol, the DNA secondary structures (i-motifs) were unfolded in the shear flow between the rotor and stator of a homogenizer tip at shear rates up to 77796/s. The effects of flow rates and molecular sizes on the shear forces experienced by the i-motif were demonstrated. The EFS technique also revealed the binding affinity between DNA i-motifs and ligands. Furthermore, we have demonstrated a click chemistry reaction that can be actuated by shear force (i.e., mechano-click chemistry). These results establish the effectiveness of using shear force to control the conformation of molecular structures.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University
| | - Changpeng Hu
- Department of Chemistry & Biochemistry, Kent State University
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University;
| |
Collapse
|
13
|
Gao B, Zheng YT, Su AM, Sun B, Xi XG, Hou XM. Remodeling the conformational dynamics of I-motif DNA by helicases in ATP-independent mode at acidic environment. iScience 2022; 25:103575. [PMID: 34988409 PMCID: PMC8704484 DOI: 10.1016/j.isci.2021.103575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/09/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
I-motifs are noncanonical four-stranded DNA structures formed by C-rich sequences at acidic environment with critical biofunctions. The particular pH sensitivity has inspired the development of i-motifs as pH sensors and DNA motors in nanotechnology. However, the folding and regulation mechanisms of i-motifs remain elusive. Here, using single-molecule FRET, we first show that i-motifs are more dynamic than G4s. Impressively, i-motifs display a high diversity of six folding species with slow interconversion. Further results indicate that i-motifs can be linearized by Replication protein A. More importantly, we identified a number of helicases with high specificity to i-motifs at low pH. All these helicases directly act on and efficiently resolve i-motifs into intermediates independent of ATP, although they poorly unwind G4 or duplex at low pH. Owing to the extreme sensitivity to helicases and no need for ATP, i-motif may be applied as a probe for helicase sensing both in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ya-Ting Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ai-Min Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Corresponding author
| |
Collapse
|
14
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
15
|
Pandey S, Xiang Y, Walpita Kankanamalage DVD, Jayawickramarajah J, Leng Y, Mao H. Measurement of Single-Molecule Forces in Cholesterol and Cyclodextrin Host-Guest Complexes. J Phys Chem B 2021; 125:11112-11121. [PMID: 34523939 PMCID: PMC8788999 DOI: 10.1021/acs.jpcb.1c03916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological host molecules such as β-cyclodextrins (β-CDs) have been used to remove cholesterol guests from membranes and artery plaques. In this work, we calibrated the host-guest intermolecular mechanical forces (IMMFs) between cholesterol and cyclodextrin complexes by combining single-molecule force spectroscopy in optical tweezers and computational molecular simulations for the first time. Compared to native β-CD, methylated beta cyclodextrins complexed with cholesterols demonstrated higher mechanical stabilities due to the loss of more high-energy water molecules inside the methylated β-CD cavities. This result is consistent with the finding that methylated β-CD is more potent at solubilizing cholesterols than β-CD, suggesting that the IMMF can serve as a novel indicator to evaluate the solubility of small molecules such as cholesterols. Importantly, we found that the force spectroscopy measured in such biological host-guest complexes is direction-dependent: pulling from the alkyl end of the cholesterol molecule resulted in a larger IMMF than that from the hydroxyl end of the cholesterol molecule. Molecular dynamics coupled with umbrella sampling simulations further revealed that cholesterol molecules tend to enter or leave from the wide opening of cyclodextrins. Such an orientation rationalizes that cyclodextrins are rather efficient at extracting cholesterols from the phospholipid bilayer in which hydroxyl groups of cholesterols are readily exposed to the hydrophobic cavities of cyclodextrins. We anticipate that the IMMF measured by both experimental and computational force spectroscopy measurements help elucidate solubility mechanisms not only for cholesterols in different environments but also to host-guest systems in general, which have been widely exploited for their solubilization properties in drug delivery, for example.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| | - Yuan Xiang
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | | | | | - Yongsheng Leng
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| |
Collapse
|
16
|
Hu C, Jonchhe S, Pokhrel P, Karna D, Mao H. Mechanical unfolding of ensemble biomolecular structures by shear force. Chem Sci 2021; 12:10159-10164. [PMID: 34377405 PMCID: PMC8336480 DOI: 10.1039/d1sc02257a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/11/2021] [Indexed: 01/09/2023] Open
Abstract
Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s-1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu(i) catalyzed azide-alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| |
Collapse
|
17
|
Minasyan AS, Chakravarthy S, Vardelly S, Joseph M, Nesterov EE, Nesterova IV. Rational design of guiding elements to control folding topology in i-motifs with multiple quadruplexes. NANOSCALE 2021; 13:8875-8883. [PMID: 33949568 PMCID: PMC8210535 DOI: 10.1039/d1nr00611h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleic acids are versatile scaffolds that accommodate a wide range of precisely defined operational characteristics. Rational design of sensing, molecular computing, nanotechnology, and other nucleic acid devices requires precise control over folding conformations in these macromolecules. Here, we report a new approach that empowers well-defined conformational transitions in DNA molecular devices. Specifically, we develop tools for precise folding of multiple DNA quadruplexes (i-motifs) within the same oligonucleotide strand. To accomplish this task, we modify a DNA strand with kinetic control elements (hairpins and double stranded stems) that fold on a much faster timescale and consequently guide quadruplexes toward the targeted folding topology. To demonstrate that such guiding elements indeed facilitate formation of the targeted folding topology, we thoroughly characterize the folding/unfolding transitions through a combination of thermodynamic techniques, size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). Furthermore, we extend SAXS capabilities to produce a direct insight on the shape and dimensions of the folded quadruplexes by computing their electron density maps from solution scattering data.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Mark Joseph
- Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Evgueni E Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
18
|
Karna D, Pan W, Pandey S, Suzuki Y, Mao H. Mechanochemical properties of DNA origami nanosprings revealed by force jumps in optical tweezers. NANOSCALE 2021; 13:8425-8430. [PMID: 33908965 PMCID: PMC8170849 DOI: 10.1039/d0nr08605c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By incorporating pH responsive i-motif elements, we have constructed DNA origami nanosprings that respond to pH changes in the environment. Using an innovative force jump approach in optical tweezers, we have directly measured the spring constants and dynamic recoiling responses of the DNA nanosprings under different forces. These DNA nanosprings exhibited 3 times slower recoiling rates compared to duplex DNA backbones. In addition, we observed two distinct force regions which show different spring constants. In the entropic region below 2 pN, a spring constant of ∼0.03 pN nm-1 was obtained, whereas in the enthalpic region above 2 pN, the nanospring was 17 times stronger (0.5 pN nm-1). The force jump gave a more accurate measurement on nanospring constants compared to regular force ramping approaches, which only yielded an average spring constant in a specific force range. Compared to the reported DNA origami nanosprings with a completely different design, our nanospring is up to 50 times stiffer. The drastic increase in the spring constant and the pH responsive feature allow more robust applications of these nanosprings in many mechanobiological processes.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA.
| | | | | | | | | |
Collapse
|
19
|
Gao B, Hou XM. Opposite Effects of Potassium Ions on the Thermal Stability of i-Motif DNA in Different Buffer Systems. ACS OMEGA 2021; 6:8976-8985. [PMID: 33842768 PMCID: PMC8028132 DOI: 10.1021/acsomega.0c06350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
i-motifs are noncanonical DNA structures formed via the stack of intercalating hemi-protonated C+: C base pairs in C-rich DNA strands and play essential roles in the regulation of gene expression. Here, we systematically investigated the impacts of K+ on i-motif DNA folding using different buffer systems. We found that i-motif structures display very different T m values at the same pH and ion strength in different buffer systems. More importantly, K+ disrupts the i-motif formed in the MES and Bis-Tris buffer; however, K+ stabilizes the i-motif in phosphate, citrate, and sodium cacodylate buffers. Next, we selected phosphate buffer and confirmed by single-molecule fluorescence resonance energy transfer that K+ indeed has the stabilizing effect on the folding of i-motif DNA from pH 5.8 to 8.0. Nonetheless, circular dichroism spectra further indicate that the structures formed by i-motif sequences at high K+ concentrations at neutral and alkaline pH are not i-motif but other types of higher-order structures and most likely C-hairpins. We finally proposed the mechanisms of how K+ plays the opposite roles in different buffer systems. The present study may provide new insights into our understanding of the formation and stability of i-motif DNA.
Collapse
Affiliation(s)
| | - Xi-Miao Hou
- . Phone: +86 29 8708 1664. Fax: +86 29 8708 1664
| |
Collapse
|
20
|
Mondal M, Yang L, Cai Z, Patra P, Gao YQ. A perspective on the molecular simulation of DNA from structural and functional aspects. Chem Sci 2021; 12:5390-5409. [PMID: 34168783 PMCID: PMC8179617 DOI: 10.1039/d0sc05329e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As genetic material, DNA not only carries genetic information by sequence, but also affects biological functions ranging from base modification to replication, transcription and gene regulation through its structural and dynamic properties and variations. The motion and structural properties of DNA involved in related biological processes are also multi-scale, ranging from single base flipping to local DNA deformation, TF binding, G-quadruplex and i-motif formation, TAD establishment, compartmentalization and even chromosome territory formation, just to name a few. The sequence-dependent physical properties of DNA play vital role in all these events, and thus it is interesting to examine how simple sequence information affects DNA and the formation of the chromatin structure in these different hierarchical orders. Accordingly, molecular simulations can provide atomistic details of interactions and conformational dynamics involved in different biological processes of DNA, including those inaccessible by current experimental methods. In this perspective, which is mainly based on our recent studies, we provide a brief overview of the atomistic simulations on how the hierarchical structure and dynamics of DNA can be influenced by its sequences, base modifications, environmental factors and protein binding in the context of the protein-DNA interactions, gene regulation and structural organization of chromatin. We try to connect the DNA sequence, the hierarchical structures of DNA and gene regulation.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China
| | - Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China.,Beijing Advanced Innovation Center for Genomics, Peking University 100871 Beijing China
| |
Collapse
|
21
|
Megalathan A, Wijesinghe KM, Ranson L, Dhakal S. Single-Molecule Analysis of Nanocircle-Embedded I-Motifs under Crowding. J Phys Chem B 2021; 125:2193-2201. [PMID: 33629846 DOI: 10.1021/acs.jpcb.0c09640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytosine (C)-rich regions of single-stranded DNA or RNA can fold into a tetraplex structure called i-motifs, which are typically stable under acidic pHs due to the need for protons to stabilize C-C interactions. While new studies have shown evidence for the formation of i-motifs at neutral and even physiological pH, it is not clear whether i-motifs can stably form in cells where DNA experiences topological constraint and crowding. Similarly, several studies have shown that a molecularly crowded environment promotes the formation of i-motifs at physiological pH; however, whether the intracellular crowding counteracts the topological destabilization of i-motifs is yet to be investigated. In this manuscript, using fluorescence resonance energy transfer (FRET)-based single-molecule analyses of human telomeric (hTel) i-motifs embedded in nanocircles as a proof-of-concept platform, we investigated the overall effects of crowding and topological constraint on the i-motif behavior. The smFRET analysis of the nanoassembly showed that the i-motif remains folded at pH 5.5 but unfolds at higher pHs. However, in the presence of a crowder (30% PEG 6000), i-motifs are formed at physiological pH overcoming the topological constraint imposed by the DNA nanocircles. Analysis of FRET-time traces show that the hTel sequence primarily assumes the folded state at pH ≤7.0 under crowding, but it undergoes slow conformational transitions between the folded and unfolded states at physiological pH. Our demonstration that the i-motif can form under cell-mimic crowding and topologically constrained environments may provide new insights into the potential biological roles of i-motifs and also into the design and development of i-motif-based biosensors, therapy, and other nanotechnological applications.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Leslie Ranson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
22
|
Chen H, Sun H, Zhang W, Zhang Q, Ma J, Li Q, Guo X, Xu K, Tang Y. Chelerythrine as a fluorescent light-up ligand for an i-motif DNA structure. NEW J CHEM 2021. [DOI: 10.1039/d0nj04863a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fluorescent light-up ligand for an i-motif structure has been reported in this study.
Collapse
Affiliation(s)
- Hongbo Chen
- Shenzhou Space Biology Science and Technology Coorporation, Ltd
- China Academy of Space Technology
- Beijing
- P. R. China
- Space Biology Research and Technology Center
| | - Hongxia Sun
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Wende Zhang
- Shenzhou Space Biology Science and Technology Coorporation, Ltd
- China Academy of Space Technology
- Beijing
- P. R. China
- Space Biology Research and Technology Center
| | - Qin Zhang
- Shenzhou Space Biology Science and Technology Coorporation, Ltd
- China Academy of Space Technology
- Beijing
- P. R. China
- Space Biology Research and Technology Center
| | - Jun Ma
- Shenzhou Space Biology Science and Technology Coorporation, Ltd
- China Academy of Space Technology
- Beijing
- P. R. China
- Space Biology Research and Technology Center
| | - Qian Li
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Xiaomeng Guo
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Kanyan Xu
- Shenzhou Space Biology Science and Technology Coorporation, Ltd
- China Academy of Space Technology
- Beijing
- P. R. China
- Space Biology Research and Technology Center
| | - Yalin Tang
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| |
Collapse
|
23
|
Zhang X, Zhang Y, Zhang W. Dynamic topology of double-stranded telomeric DNA studied by single-molecule manipulation in vitro. Nucleic Acids Res 2020; 48:6458-6470. [PMID: 32496520 PMCID: PMC7337930 DOI: 10.1093/nar/gkaa479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The dynamic topological structure of telomeric DNA is closely related to its biological function; however, no such structural information on full-length telomeric DNA has been reported due to difficulties synthesizing long double-stranded telomeric DNA. Herein, we developed an EM-PCR and TA cloning-based approach to synthesize long-chain double-stranded tandem repeats of telomeric DNA. Using mechanical manipulation assays based on single-molecule atomic force microscopy, we found that mechanical force can trigger the melting of double-stranded telomeric DNA and the formation of higher-order structures (G-quadruplexes or i-motifs). Our results show that only when both the G-strand and C-strand of double-stranded telomeric DNA form higher-order structures (G-quadruplexes or i-motifs) at the same time (e.g. in the presence of 100 mM KCl under pH 4.7), that the higher-order structure(s) can remain after the external force is removed. The presence of monovalent K+, single-wall carbon nanotubes (SWCNTs), acidic conditions, or short G-rich fragments (∼30 nt) can shift the transition from dsDNA to higher-order structures. Our results provide a new way to regulate the topology of telomeric DNA.
Collapse
Affiliation(s)
- Xiaonong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Yingqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
24
|
Paul S, Hossain SS, Samanta A. Insights into the Folding Pathway of a c-MYC-Promoter-Based i-Motif DNA in Crowded Environments at the Single-Molecule Level. J Phys Chem B 2020; 124:763-770. [DOI: 10.1021/acs.jpcb.9b10633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sk Saddam Hossain
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
25
|
Benabou S, Ruckebusch C, Sliwa M, Aviñó A, Eritja R, Gargallo R, de Juan A. Study of conformational transitions of i-motif DNA using time-resolved fluorescence and multivariate analysis methods. Nucleic Acids Res 2020; 47:6590-6605. [PMID: 31199873 PMCID: PMC6649798 DOI: 10.1093/nar/gkz522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022] Open
Abstract
Recently, the presence of i-motif structures at C-rich sequences in human cells and their regulatory functions have been demonstrated. Despite numerous steady-state studies on i-motif at neutral and slightly acidic pH, the number and nature of conformation of this biological structure are still controversial. In this work, the fluorescence lifetime of labelled molecular beacon i-motif-forming DNA sequences at different pH values is studied. The influence of the nature of bases at the lateral loops and the presence of a Watson–Crick-stabilized hairpin are studied by means of time-correlated single-photon counting technique. This allows characterizing the existence of several conformers for which the fluorophore has lifetimes ranging from picosecond to nanosecond. The information on the existence of different i-motif structures at different pH values has been obtained by the combination of classical global decay fitting of fluorescence traces, which provides lifetimes associated with the events defined by the decay of each sequence and multivariate analysis, such as principal component analysis or multivariate curve resolution based on alternating least squares. Multivariate analysis, which is seldom used for this kind of data, was crucial to explore similarities and differences of behaviour amongst the different DNA sequences and to model the presence and identity of the conformations involved in the pH range of interest. The results point that, for i-motif, the intrachain contact formation and its dissociation show lifetimes ten times faster than for the open form of DNA sequences. They also highlight that the presence of more than one i-motif species for certain DNA sequences according to the length of the sequence and the composition of the bases in the lateral loop.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
26
|
Megalathan A, Cox BD, Wilkerson PD, Kaur A, Sapkota K, Reiner JE, Dhakal S. Single-molecule analysis of i-motif within self-assembled DNA duplexes and nanocircles. Nucleic Acids Res 2019; 47:7199-7212. [PMID: 31287873 PMCID: PMC6698746 DOI: 10.1093/nar/gkz565] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
The cytosine (C)-rich sequences that can fold into tetraplex structures known as i-motif are prevalent in genomic DNA. Recent studies of i-motif-forming sequences have shown increasing evidence of their roles in gene regulation. However, most of these studies have been performed in short single-stranded oligonucleotides, far from the intracellular environment. In cells, i-motif-forming sequences are flanked by DNA duplexes and packed in the genome. Therefore, exploring the conformational dynamics and kinetics of i-motif under such topologically constrained environments is highly relevant in predicting their biological roles. Using single-molecule fluorescence analysis of self-assembled DNA duplexes and nanocircles, we show that the topological environments play a key role on i-motif stability and dynamics. While the human telomere sequence (C3TAA)3C3 assumes i-motif structure at pH 5.5 regardless of topological constraint, it undergoes conformational dynamics among unfolded, partially folded and fully folded states at pH 6.5. The lifetimes of i-motif and the partially folded state at pH 6.5 were determined to be 6 ± 2 and 31 ± 11 s, respectively. Consistent with the partially folded state observed in fluorescence analysis, interrogation of current versus time traces obtained from nanopore analysis at pH 6.5 shows long-lived shallow blockades with a mean lifetime of 25 ± 6 s. Such lifetimes are sufficient for the i-motif and partially folded states to interact with proteins to modulate cellular processes.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| | - Bobby D Cox
- Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, VA 23284, USA
| | - Peter D Wilkerson
- Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, VA 23284, USA
| | - Anisa Kaur
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| | - Kumar Sapkota
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| | - Joseph E Reiner
- Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, VA 23284, USA
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| |
Collapse
|
27
|
Abdelhamid MA, Fábián L, MacDonald CJ, Cheesman MR, Gates AJ, Waller ZA. Redox-dependent control of i-Motif DNA structure using copper cations. Nucleic Acids Res 2019; 46:5886-5893. [PMID: 29800233 PMCID: PMC6159522 DOI: 10.1093/nar/gky390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Previous computational studies have shown that Cu+ can act as a substitute for H+ to support formation of cytosine (C) dimers with similar conformation to the hemi-protonated base pair found in i-motif DNA. Through a range of biophysical methods, we provide experimental evidence to support the hypothesis that Cu+ can mediate C–C base pairing in i-motif DNA and preserve i-motif structure. These effects can be reversed using a metal chelator, or exposure to ambient oxygen in the air that drives oxidation of Cu+ to Cu2+, a comparatively weak ligand. Herein, we present a dynamic and redox-sensitive system for conformational control of an i-motif forming DNA sequence in response to copper cations.
Collapse
Affiliation(s)
- Mahmoud As Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - László Fábián
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Colin J MacDonald
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew J Gates
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zoë Ae Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
28
|
Yang YJ, Song L, Zhao XC, Zhang C, Wu WQ, You HJ, Fu H, Zhou EC, Zhang XH. A Universal Assay for Making DNA, RNA, and RNA-DNA Hybrid Configurations for Single-Molecule Manipulation in Two or Three Steps without Ligation. ACS Synth Biol 2019; 8:1663-1672. [PMID: 31264849 DOI: 10.1021/acssynbio.9b00241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite having a great variety of topologies, most DNA, RNA, and RNA-DNA hybrid (RDH) configurations for single-molecule manipulation are composed of several single-stranded (ss) DNA and ssRNA strands, with functional labels at the two ends for surface tethering. On this basis, we developed a simple, robust, and universal amplification-annealing (AA) assay for making all these configurations in two or three steps without inefficient digestion and ligation reactions. As examples, we made ssDNA, short ssDNA with double-stranded (ds) DNA handles, dsDNA with ssDNA handles, replication-fork shaped DNA/RDH/RNA, DNA holiday junction, three-site multiple-labeled and nicked DNA, torsion-constrained RNA/RDH, and short ssRNA with RDH handles. In addition to single-molecule manipulation techniques including optical tweezers, magnetic tweezers, and atomic force microscopy, these configurations can be applied in other surface-tethering techniques as well.
Collapse
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lun Song
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Ma VPY, Salaita K. DNA Nanotechnology as an Emerging Tool to Study Mechanotransduction in Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900961. [PMID: 31069945 PMCID: PMC6663650 DOI: 10.1002/smll.201900961] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Indexed: 05/24/2023]
Abstract
The ease of tailoring DNA nanostructures with sub-nanometer precision has enabled new and exciting in vivo applications in the areas of chemical sensing, imaging, and gene regulation. A new emerging paradigm in the field is that DNA nanostructures can be engineered to study molecular mechanics. This new development has transformed the repertoire of capabilities enabled by DNA to include detection of molecular forces in living cells and elucidating the fundamental mechanisms of mechanotransduction. This Review first describes fundamental aspects of force-induced melting of DNA hairpins and duplexes. This is then followed by a survey of the currently available force sensing DNA probes and different fluorescence-based force readout modes. Throughout the Review, applications of these probes in studying immune receptor signaling, including the T cell receptor and B cell receptor, as well as Notch and integrin signaling, are discussed.
Collapse
Affiliation(s)
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
30
|
Mandal S, Kawamoto Y, Yue Z, Hashiya K, Cui Y, Bando T, Pandey S, Hoque ME, Hossain MA, Sugiyama H, Mao H. Submolecular dissection reveals strong and specific binding of polyamide-pyridostatin conjugates to human telomere interface. Nucleic Acids Res 2019; 47:3295-3305. [PMID: 30820532 PMCID: PMC6468309 DOI: 10.1093/nar/gkz135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023] Open
Abstract
To modulate biological functions, G-quadruplexes in genome are often non-specifically targeted by small molecules. Here, specificity is increased by targeting both G-quadruplex and its flanking duplex DNA in a naturally occurring dsDNA-ssDNA telomere interface using polyamide (PA) and pyridostatin (PDS) conjugates (PA-PDS). We innovated a single-molecule assay in which dissociation constant (Kd) of the conjugate can be separately evaluated from the binding of either PA or PDS. We found Kd of 0.8 nM for PA-PDS, which is much lower than PDS (Kd ∼ 450 nM) or PA (Kd ∼ 35 nM). Functional assays further indicated that the PA-PDS conjugate stopped the replication of a DNA polymerase more efficiently than PA or PDS. Our results not only established a new method to dissect multivalent binding into actions of individual monovalent components, they also demonstrated a strong and specific G-quadruplex targeting strategy by conjugating highly specific duplex-binding molecules with potent quadruplex ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zhizhou Yue
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yunxi Cui
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | | | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
31
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i‐Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Debnath
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Khushnood Fatma
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| |
Collapse
|
32
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i-Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019; 58:2942-2957. [PMID: 30600876 DOI: 10.1002/anie.201813288] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/20/2022]
Abstract
DNA sequences rich in cytosine have the propensity, under acidic pH, to fold into four-stranded intercalated DNA structures called i-motifs. Recent studies have provided significant breakthroughs that demonstrate how chemists can manipulate these structures for nanobiotechnology and therapeutics. The first section of this Minireview discusses the development of advanced functional nanostructures by synthetic conjugation of i-motifs with organic scaffolds and metal nanoparticles and their role in therapeutics. The second section highlights the therapeutic targeting of i-motifs with chemical scaffolds and their significance in biology. For this, first we shed light on the long-lasting debate regarding the stability of i-motifs under physiological conditions. Next, we present a comparative analysis of recently reported small molecules for specifically targeting i-motifs over other abundant DNA structures and modulating their function in cellular systems. These advances provide new insights into i-motif-targeted regulation of gene expression, telomere maintenance, and therapeutic applications.
Collapse
Affiliation(s)
- Manish Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
33
|
Endo M, Xing X, Sugiyama H. Direct Observation of the Formation and Dissociation of Double-Stranded DNA Containing G-Quadruplex/i-Motif Sequences in the DNA Origami Frame Using High-Speed AFM. Methods Mol Biol 2019; 2035:299-308. [PMID: 31444757 DOI: 10.1007/978-1-4939-9666-7_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate the single-molecule operation and observation of the formation and resolution of double-stranded DNA (dsDNA) containing G-quadruplex (GQ)- and counterpart i-motif-forming sequences in the DNA nanostructure. Sequential manipulation of DNA strands in the DNA frame was performed to prepare a topologically controlled GQ/i-motif dsDNA. Using the strand displacement and the addition and removal of K+, the topologically controlled GQ/i-motif dsDNA in the DNA frame was obtained in high yield. The dsDNA was resolved into the single-stranded DNA, GQ, and i-motif by the addition of K+ and operation under acidic conditions. The dissociation of the dsDNA under the GQ and i-motif formation conditions was monitored by high-speed atomic force microscopy. The results indicate that the dsDNA containing the GQ- and i-motif sequence is effectively dissolved when the duplex is helically loosened in the DNA nanoscaffold.
Collapse
Affiliation(s)
- Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Xiwen Xing
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou College of Life Science and Technology, Jinan University, Guangzhou, P. R. China
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
34
|
Punnoose JA, Ma Y, Hoque ME, Cui Y, Sasaki S, Guo AH, Nagasawa K, Mao H. Random Formation of G-Quadruplexes in the Full-Length Human Telomere Overhangs Leads to a Kinetic Folding Pattern with Targetable Vacant G-Tracts. Biochemistry 2018; 57:6946-6955. [PMID: 30480434 PMCID: PMC6684037 DOI: 10.1021/acs.biochem.8b00957] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-Quadruplexes formed in the 3' telomere overhang (∼200 nucleotides) have been shown to regulate biological functions of human telomeres. The mechanism governing the population pattern of multiple telomeric G-quadruplexes is yet to be elucidated inside the telomeric overhang in a time window shorter than thermodynamic equilibrium. Using a single-molecule force ramping assay, we quantified G-quadruplex populations in telomere overhangs over a full physiological range of 99-291 nucleotides. We found that G-quadruplexes randomly form in these overhangs within seconds, which leads to a population governed by a kinetic, rather than a thermodynamic, folding pattern. The kinetic folding gives rise to vacant G-tracts between G-quadruplexes. By targeting these vacant G-tracts using complementary DNA fragments, we demonstrated that binding to the telomeric G-quadruplexes becomes more efficient and specific for telomestatin derivatives.
Collapse
Affiliation(s)
| | - Yue Ma
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Yunxi Cui
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Shogo Sasaki
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Athena Huixin Guo
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), 2-14-16 Naka-cho, Koganeishi, Tokyo 184-8588, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|
35
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
36
|
Decreased water activity in nanoconfinement contributes to the folding of G-quadruplex and i-motif structures. Proc Natl Acad Sci U S A 2018; 115:9539-9544. [PMID: 30181280 DOI: 10.1073/pnas.1805939115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to the small size of a nanoconfinement, the property of water contained inside is rather challenging to probe. Herein, we measured the amount of water molecules released during the folding of individual G-quadruplex and i-motif structures, from which water activities are estimated in the DNA nanocages prepared by 5 × 5 to 7 × 7 helix bundles (cross-sections, 9 × 9 to 15 × 15 nm). We found water activities decrease with reducing cage size. In the 9 × 9-nm cage, water activity was reduced beyond the reach of regular cosolutes such as polyethylene glycol (PEG). With this set of nanocages, we were able to retrieve the change in water molecules throughout the folding trajectory of G-quadruplex or i-motif. We found that water molecules absorbed from the unfolded to the transition states are much fewer than those lost from the transition to the folded states. The overall loss of water therefore drives the folding of G-quadruplex or i-motif in nanocages with reduced water activities.
Collapse
|
37
|
Ren W, Zheng K, Liao C, Yang J, Zhao J. Charge evolution during the unfolding of a single DNA i-motif. Phys Chem Chem Phys 2018; 20:916-924. [PMID: 29230450 DOI: 10.1039/c7cp06235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effective charge and evolution of single chains of a DNA i-motif during its unfolding process are investigated at the single molecule level. Using fluorescence correlation spectroscopy and photon counting histograms, the single chain dimensions and electrical potential of cytosine-rich human telomeric oligonucleotides are monitored, during their unfolding from the i-motif to the random coil state. It is discovered that the effective charge density of the DNA chain is very sensitive to conformation changes and the results remarkably expose the existence of an intermediate state of the unfolding process. A huge difference in pH value exists in the vicinity of the DNA chain and the bulk solution, depending on the salt concentration, as reflected by a down-shift in the pH value of unfolding. The presence of an external salt in the solution helps to stabilize the i-motif structure at low pH values due to the reduction of the effective charge density. It can also destabilize the folded structure in the pH range of the conformation transition due to the elevation of the local pH value, encouraging the deprotonation of the cytosine groups. These results provide new information for understanding the structure and stability of i-motif DNA, and its biological function, as well as the building blocks for smart nanomaterials.
Collapse
Affiliation(s)
- Weibin Ren
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
38
|
Jonchhe S, Shrestha P, Ascencio K, Mao H. A New Concentration Jump Strategy Reveals the Lifetime of i-Motif at Physiological pH without Force. Anal Chem 2018; 90:3205-3210. [DOI: 10.1021/acs.analchem.7b04661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Katia Ascencio
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
39
|
Shrestha P, Cui Y, Wei J, Jonchhe S, Mao H. Single-Molecule Mechanochemical pH Sensing Revealing the Proximity Effect of Hydroniums Generated by an Alkaline Phosphatase. Anal Chem 2018; 90:1718-1724. [DOI: 10.1021/acs.analchem.7b03478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44240, United States
| | - Yunxi Cui
- State
Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Jia Wei
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44240, United States
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44240, United States
| | - Hanbin Mao
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44240, United States
| |
Collapse
|
40
|
Debnath M, Ghosh S, Chauhan A, Paul R, Bhattacharyya K, Dash J. Preferential targeting of i-motifs and G-quadruplexes by small molecules. Chem Sci 2017; 8:7448-7456. [PMID: 29163897 PMCID: PMC5674183 DOI: 10.1039/c7sc02693e] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Abstract
i-Motifs and G-quadruplexes are dynamic nucleic acid secondary structures, which are believed to play key roles in gene expression. We herein report two peptidomimetic ligands (PBP1 and PBP2) that selectively target i-motifs and G-quadruplexes over double-stranded DNA. These peptidomimetics, regioisomeric with respect to the position of triazole/prolinamide motifs, have been synthesized using a modular method involving Cu(i)-catalyzed azide and alkyne cycloaddition. The para-isomer, PBP1 exhibits high selectivity for i-motifs while the meta-isomer PBP2 binds selectively to G-quadruplex structures. Interestingly, these ligands have the ability to induce G-quadruplex or i-motif structures from the unstructured single-stranded DNA conformations, as observed using single molecule Förster resonance energy transfer (smFRET) studies. The quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and dual-luciferase assays indicate that PBP1 upregulates and PBP2 downregulates BCL-2 gene expression in cancer cells.
Collapse
Affiliation(s)
- Manish Debnath
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Shirsendu Ghosh
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India
| | - Ajay Chauhan
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Rakesh Paul
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Kankan Bhattacharyya
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India
| | - Jyotirmayee Dash
- Department of Organic Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| |
Collapse
|
41
|
Selvam S, Mandal S, Mao H. Quantification of Chemical and Mechanical Effects on the Formation of the G-Quadruplex and i-Motif in Duplex DNA. Biochemistry 2017; 56:4616-4625. [PMID: 28738141 DOI: 10.1021/acs.biochem.7b00279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The formation of biologically significant tetraplex DNA species, such as G-quadruplexes and i-motifs, is affected by chemical (ions and pH) and mechanical [superhelicity (σ) and molecular crowding] factors. Because of the extremely challenging experimental conditions, the relative importance of these factors on tetraplex folding is unknown. In this work, we quantitatively evaluated the chemical and mechanical effects on the population dynamics of DNA tetraplexes in the insulin-linked polymorphic region using magneto-optical tweezers. By mechanically unfolding individual tetraplexes, we found that ions and pH have the largest effects on the formation of the G-quadruplex and i-motif, respectively. Interestingly, superhelicity has the second largest effect followed by molecular crowding conditions. While chemical effects are specific to tetraplex species, mechanical factors have generic influences. The predominant effect of chemical factors can be attributed to the fact that they directly change the stability of a specific tetraplex, whereas the mechanical factors, superhelicity in particular, reduce the stability of the competing species by changing the kinetics of the melting and annealing of the duplex DNA template in a nonspecific manner. The substantial dependence of tetraplexes on superhelicity provides strong support that DNA tetraplexes can serve as topological sensors to modulate fundamental cellular processes such as transcription.
Collapse
Affiliation(s)
- Sangeetha Selvam
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44242, United States
| |
Collapse
|
42
|
Qin T, Liu K, Song D, Yang C, Su H. Porphyrin Bound to i-Motifs: Intercalation versus External Groove Binding. Chem Asian J 2017; 12:1578-1586. [DOI: 10.1002/asia.201700398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Tingxiao Qin
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Kunhui Liu
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chunfan Yang
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Hongmei Su
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| |
Collapse
|
43
|
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Center for Molecular Biology of RNA, Santa Cruz, California 95064
| |
Collapse
|
44
|
Sutherland C, Cui Y, Mao H, Hurley LH. A Mechanosensor Mechanism Controls the G-Quadruplex/i-Motif Molecular Switch in the MYC Promoter NHE III1. J Am Chem Soc 2016; 138:14138-14151. [DOI: 10.1021/jacs.6b09196] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caleb Sutherland
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Laurence H. Hurley
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
- University of Arizona, College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East
Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
45
|
Kang HJ, Cui Y, Yin H, Scheid A, Hendricks WPD, Schmidt J, Sekulic A, Kong D, Trent JM, Gokhale V, Mao H, Hurley LH. A Pharmacological Chaperone Molecule Induces Cancer Cell Death by Restoring Tertiary DNA Structures in Mutant hTERT Promoters. J Am Chem Soc 2016; 138:13673-13692. [PMID: 27643954 DOI: 10.1021/jacs.6b07598] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of human telomerase reverse transcriptase (hTERT) is necessary for limitless replication in tumorigenesis. Whereas hTERT is transcriptionally silenced in normal cells, most tumor cells reactivate hTERT expression by alleviating transcriptional repression through diverse genetic and epigenetic mechanisms. Transcription-activating hTERT promoter mutations have been found to occur at high frequencies in multiple cancer types. These mutations have been shown to form new transcription factor binding sites that drive hTERT expression, but this model cannot fully account for differences in wild-type (WT) and mutant promoter activation and has not yet enabled a selective therapeutic strategy. Here, we demonstrate a novel mechanism by which promoter mutations activate hTERT transcription, which also sheds light on a unique therapeutic opportunity. Promoter mutations occur in a core promoter region that forms tertiary structures consisting of a pair of G-quadruplexes involved in transcriptional silencing. We show that promoter mutations exert a detrimental effect on the folding of one of these G-quadruplexes, resulting in a nonfunctional silencer element that alleviates transcriptional repression. We have also identified a small drug-like pharmacological chaperone (pharmacoperone) molecule, GTC365, that acts at an early step in the G-quadruplex folding pathway to redirect mutant promoter G-quadruplex misfolding, partially reinstate the correct folding pathway, and reduce hTERT activity through transcriptional repression. This transcription-mediated repression produces cancer cell death through multiple routes including both induction of apoptosis through inhibition of hTERT's role in regulating apoptosis-related proteins and induction of senescence by decreasing telomerase activity and telomere length. We demonstrate the selective therapeutic potential of this strategy in melanoma cells that overexpress hTERT.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- University of Arizona , College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Yunxi Cui
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Holly Yin
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Amy Scheid
- College of Science, University of Arizona , 1040 East Fourth Street, Tucson, Arizona 85721, United States
| | - William P D Hendricks
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Jessica Schmidt
- Department of Dermatology, Mayo Clinic , 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Aleksandar Sekulic
- Department of Dermatology, Mayo Clinic , 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Deming Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Jeffrey M Trent
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Vijay Gokhale
- BIO5 Institute , 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Laurence H Hurley
- University of Arizona , College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States.,BIO5 Institute , 1657 East Helen Street, Tucson, Arizona 85721, United States.,Arizona Cancer Center , 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| |
Collapse
|
46
|
McKim M, Buxton A, Johnson C, Metz A, Sheardy RD. Loop Sequence Context Influences the Formation and Stability of the i-Motif for DNA Oligomers of Sequence (CCCXXX)4, where X = A and/or T, under Slightly Acidic Conditions. J Phys Chem B 2016; 120:7652-61. [DOI: 10.1021/acs.jpcb.6b04561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mikeal McKim
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Alexander Buxton
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Courtney Johnson
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Amanda Metz
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Richard D. Sheardy
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| |
Collapse
|
47
|
Cui Y, Kong D, Ghimire C, Xu C, Mao H. Mutually Exclusive Formation of G-Quadruplex and i-Motif Is a General Phenomenon Governed by Steric Hindrance in Duplex DNA. Biochemistry 2016; 55:2291-9. [DOI: 10.1021/acs.biochem.6b00016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Deming Kong
- Key
Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chiran Ghimire
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Cuixia Xu
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
48
|
Fujii T, Sugimoto N. Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Phys Chem Chem Phys 2016; 17:16719-22. [PMID: 26058487 DOI: 10.1039/c5cp02794b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stability of i-motif structures at neutral pH is of interest due to the potential of these structures to impact gene expression. A systematic investigation of loop sequence and length revealed that certain loop nucleobases stabilize i-motif quadruplexes.
Collapse
Affiliation(s)
- Taiga Fujii
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
49
|
Cogoi S, Xodo LE. G4 DNA in ras genes and its potential in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:663-74. [PMID: 26855080 DOI: 10.1016/j.bbagrm.2016.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/24/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
It is now well established that in the human genome the canonical double helix coexists with folded G-quadruplex structures that are known to have important biological functions. In this review we summarize the current knowledge on quadruplex formation in the promoters of the ras genes that are mutated in about 30% of all human cancers. We describe the nuclear proteins that recognize these unusual DNA structures and discuss their function in transcription. We also examine the formation of G-quadruplexes in the 5'-untranslated region of the ras transcripts and conclude this review by reporting strategies that use either ras G-quadruplexes or proteins recognizing the ras G-quadruplexes as targets of anticancer small molecules.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Luigi E Xodo
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
50
|
Devi G, He L, Xu B, Li T, Shao F. In-stem thiazole orange reveals the same triplex intermediate for pH and thermal unfolding of i-motifs. Chem Commun (Camb) 2016; 52:7261-4. [DOI: 10.1039/c6cc01643j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The unfolding pathway of human telomeric i-motifs was monitored by both monomer and exciplex fluorescence of in-stem thiazole orange. A uniform triplex intermediate was determined upon unfolding i-motifs against either pH or thermal denaturation.
Collapse
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Lei He
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Baochang Xu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Fangwei Shao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|