1
|
Zandipak R, Bahramifar N, Younesi H, Zolfigol MA. Electro-photocatalyst effect of N-S-doped carbon dots and covalent organic triazine framework heterostructures for boosting photocatalytic degradation of phenanthrene in water. CHEMOSPHERE 2024; 364:142980. [PMID: 39097109 DOI: 10.1016/j.chemosphere.2024.142980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
In the present study, we introduce a covalent organic triazine framework polymer (COTF-P) using 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with triazine-based amine. The resulting dark red COTF-P illustrated potential behavior as a photocatalyst under visible light. Due to the inadequate solar energy capture and ultrafast charge recombination of the resulting COTF-P, the prepared COTF-P has been decorated with CQDs (N-CQD and N-S-CQD) to build a Z-scheme CQDs/COTF-P heterojunction photocatalyst and utilizes as photocatalyst for the breakdown of phenanthrene (PHE) exposed to visible light. The prepared COTF-P and CQDs/COTF-P were fully characterized, analyzing the textural (N2 isotherms), structural (XRD and FTIR), chemical (EDX and XPS), morphological (FESEM and TEM), optical (DRS-UV-Vis and photoluminescence), and electrochemical properties (EIS impedance, transient photocurrent, and flat band potential). The prepared N-S-CQD/COTF-P heterojunction displayed optimum activity for the photocatalytic oxidation of PHE from water, owing to an enhanced separation of the photogenerated charges and lower bandgap value, 2.1 vs. 1.9 eV. The N-S-CQD/COTF-P heterojunction showed acceptable stability in terms of activity and structural properties after 5 cycles of reuse. The mechanism of activation highlights the importance played by superoxide radicals and hydroxyl radicals. This project sheds light on the potential use of CQDs for the decoration of polymers, extending the absorbance in the visible region and boosting the migration of charge, which boosts the activity of the resulting material.
Collapse
Affiliation(s)
- Raziyeh Zandipak
- Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, P.O. Box: 46414-356, Mazandaran, Iran
| | - Nader Bahramifar
- Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, P.O. Box: 46414-356, Mazandaran, Iran.
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, P.O. Box: 46414-356, Mazandaran, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
2
|
González D, Pazo-Carballo C, Camú E, Hidalgo-Rosa Y, Zarate X, Escalona N, Schott E. Adsorption properties of M-UiO-66 (M = Zr(IV); Hf(IV) or Ce(IV)) with BDC or PDC linker. Dalton Trans 2024; 53:10486-10498. [PMID: 38840533 DOI: 10.1039/d4dt00941j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The increasing CO2 emissions and their direct impact on climate change due to the greenhouse effect are environmental issues that must be solved as soon as possible. Metal-organic frameworks (MOFs) are one class of crystalline adsorbent materials that are thought to have enormous potential in CO2 capture applications. In this research, the effect of changing the metal center between Zr(IV), Ce(IV), and Hf(IV), and the linker between BDC and PDC has been fully studied. Thus, the six UiO-66 isoreticular derivatives have been synthesized and characterized by FTIR, PXRD, TGA, and N2 adsorption. We also report the BET surface area, CO2 adsorption capacities, kinetics, and the adsorption isosteric heat (Qst) of the UiO-66 derivatives mentioned family. The CO2 adsorption kinetics were evaluated using pseudo-first order, pseudo-second order, Avrami's kinetic models, and the rate-limiting step with Boyd's film diffusion, interparticle diffusion, and intraparticle diffusion models. The isosteric heats of CO2 adsorption using various MOFs are in the range 20-65 kJ mol-1 observing differences in adsorption capacities between 1.15 and 4.72 mmol g-1 at different temperatures due to the electrostatic interactions between CO2 and extra-framework metal ions. The isosteric heat of adsorption calculation in this report, which accounts for the unexpectedly high heat released from Zr-UiO-66-PDC, is finally represented as an increase in the interaction of CO2 with the PDC linker and an increase in Qst with defects.
Collapse
Affiliation(s)
- Diego González
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| | - Cesar Pazo-Carballo
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Esteban Camú
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Yoan Hidalgo-Rosa
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | - Néstor Escalona
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| |
Collapse
|
3
|
Agamendran N, Uddin M, Yesupatham MS, Shanmugam M, Augustin A, Kundu T, Kandasamy R, Sasaki K, Sekar K. Nanoarchitectonics Design Strategy of Metal-Organic Framework and Bio-Metal-Organic Framework Composites for Advanced Wastewater Treatment through Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38323568 DOI: 10.1021/acs.langmuir.3c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Freshwater depletion is an alarm for finding an eco-friendly solution to treat wastewater for drinking and domestic applications. Though several methods like chlorination, filtration, and coagulation-sedimentation are conventionally employed for water treatment, these methods need to be improved as they are not environmentally friendly, rely on chemicals, and are ineffective for all kinds of pollutants. These problems can be addressed by employing an alternative solution that is effective for efficient water treatment and favors commercial aspects. Metal organic frameworks (MOFs), an emerging porous material, possess high stability, pore size tunability, greater surface area, and active sites. These MOFs can be tailored; thus, they can be customized according to the target pollutant. Hence, MOFs can be employed as adsorbents that effectively target different pollutants. Bio-MOFs are a kind of MOFs that are incorporated with biomolecules, which also possess properties of MOFs and are used as a nontoxic adsorbent. In this review, we elaborate on the interaction between MOFs and target pollutants, the role of linkers in the adsorption of contaminants, tailoring strategy that can be employed on MOFs and Bio-MOFs to target specific pollutants, and we also highlight the effect of environmental matrices on adsorption of pollutants by MOFs.
Collapse
Affiliation(s)
- Nithish Agamendran
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Maseed Uddin
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Manova Santhosh Yesupatham
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariyappan Shanmugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashil Augustin
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Tanay Kundu
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramani Kandasamy
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
5
|
Wang J, Wang B, Wen Z, Zhao N, Li T, Zhao W. Adsorption Process Optimization and Adsorbent Evaluation Based on Langmuir Isotherm Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16404-16414. [PMID: 37940605 DOI: 10.1021/acs.langmuir.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Adsorption separation is considered one of the most commonly used gas purification methods. At present, the most widely used adsorption methods are mainly pressure swing adsorption (PSA) and temperature swing adsorption (TSA). In both adsorption methods, a comprehensive understanding of the equilibrium data and the adsorption capacity of the adsorbent is essential for process design and optimization, and the adsorption isotherm can provide a powerful aid in this regard. In this study, through mathematical analysis of the Langmuir isotherm model, the optimal cyclic adsorption conditions and the optimal thermodynamic parameters (entropy change and enthalpy change) under PSA and TSA were obtained. In addition, the isotherm model can be used to predict the isobaric adsorption capacity, and the objective function was established according to the cyclic adsorption capacity and the regeneration sensible heat consumption per unit adsorption capacity to calculate the optimal adsorption/desorption temperatures and optimal cyclic adsorption capacity of various adsorbents.
Collapse
Affiliation(s)
- Jinyu Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Zulong Wen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Ning Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, People's Republic of China
| | - Tan Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, People's Republic of China
| | - Wenbo Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
6
|
Liu S, Gao ML, Li CN, Liu L, Han ZB. Superhydrophobic MOFs with enhanced catalytic activity for chemical fixation of CO 2. Dalton Trans 2023; 52:14319-14323. [PMID: 37791918 DOI: 10.1039/d3dt02188b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A general approach to prepare superhydrophobic MOFs (denoted as MOFs-CF3) through a post-decorating strategy for highly efficient chemical fixation of CO2 was demonstrated. The enhanced catalytic activity of MOFs-CF3 is attributed to a synergistic effect between the Lewis acid sites of MOFs and modification of the electron-withdrawing trifluoromethyl group, which resulted in a high CO2 enrichment capacity. The possible mechanism of cycloaddition catalyzed by the MOFs-CF3 catalyst was also proposed.
Collapse
Affiliation(s)
- Shuo Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Ming-Liang Gao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
7
|
Su H, Zhou Y, Huang T, Sun F. Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin. Molecules 2023; 28:5237. [PMID: 37446898 DOI: 10.3390/molecules28135237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Medi-MOF-1 is a highly porous Metal-Organic framework (MOF) constructed from Zn(II) and curcumin. The obtained crystal was characterized using powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). A micrometer-sized crystal with similar morphology was successfully obtained using the solvothermal method. Thanks to its high surface area, good stability, and abound pores, the as-synthesized medi-MOF-1 could be used as a functional porous material to adsorb different gases (H2, CO2, CH4, and N2) and iodine (I2). The activated sample exhibited a high I2 adsorption ability of 1.936 g g-1 at room temperature via vapor diffusion. Meanwhile, the adsorbed I2 could be released slowly in ethanol, confirming the potential application for I2 adsorption.
Collapse
Affiliation(s)
- Hongmin Su
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yang Zhou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tao Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Vodyashkin AA, Sergorodceva AV, Kezimana P, Stanishevskiy YM. Metal-Organic Framework (MOF)-A Universal Material for Biomedicine. Int J Mol Sci 2023; 24:7819. [PMID: 37175523 PMCID: PMC10178275 DOI: 10.3390/ijms24097819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Antonina V. Sergorodceva
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| |
Collapse
|
9
|
Muang-Non P, Markwell-Heys AW, Doonan CJ, White NG. Charge "mis-matched" hydrogen bonded frameworks for cation exchange and dye sorption. Chem Commun (Camb) 2023; 59:4059-4062. [PMID: 36930163 DOI: 10.1039/d3cc00553d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Anionic hydrogen bonded frameworks were synthesised from di or tetra-amidinium hydrogen bond donor components and a charge "mis-matched" tecton possessing a 5- charge but only four hydrogen bond accepting groups. The net negative charge on the framework skeletons necessitates the presence of a cation in the framework channel. In one of the frameworks, the initially incorporated organic cation was rapidly displaced by smaller inorganic cations, or the cationic dye methylene blue. This facilitated the effective and selective removal of this dye from water.
Collapse
Affiliation(s)
- Phonlakrit Muang-Non
- Research School of chemistry, The Australian National University, Canberra, ACT, Australia.
| | - Adrian W Markwell-Heys
- Department of Chemistry and Centre for Advanced Materials, The University of Adelaide, Adelaide, SA, Australia
| | - Christian J Doonan
- Department of Chemistry and Centre for Advanced Materials, The University of Adelaide, Adelaide, SA, Australia
| | - Nicholas G White
- Research School of chemistry, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
10
|
Sanati-Tirgan P, Eshghi H, Mohammadinezhad A. Designing a new method for growing metal-organic framework (MOF) on MOF: synthesis, characterization and catalytic applications. NANOSCALE 2023; 15:4917-4931. [PMID: 36779859 DOI: 10.1039/d2nr06729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks as a unique class of high-surface-area materials have gained considerable attention due to their characteristic properties. In this perspective, herein, we report an eco-friendly and inexpensive route for the synthesis of 4(3H)-quinazolinones using magnetically separable core-shell-like bimetallic Fe3O4-MAA@Co-MOF@Cu-MOF NPs as environmentally-friendly heterogeneous catalysts. To the best of our knowledge, this is the first example of the integration of two different types of MOFs, which contain two different metal ions (Co2+ in the core and Cu2+ in the shell) using an external ligand. Our study not only introduces a novel nanostructured catalyst for the organic reaction but also presents a new strategy for the combination of two MOFs in one particle at the nanometer level. To survey the structural and compositional features of the synthesized nanocatalyst, a variety of spectroscopic and microscopic techniques including FT-IR, XRD, BET, TEM, HR-TEM, FE-SEM, EDX, EDX-mapping, TGA, VSM, and ICP-OES were employed. The combination of magnetic Co-MOF with Cu-MOF leads to achieving unique structural and compositional properties for Fe3O4-MAA@Co-MOF@Cu-MOF NPs with a particle size of 20-70 nm, mesostructure, and relatively large specific surface area (236.16 m2 g-1). The as-prepared nanostructured catalyst can be an excellent environment catalyst for the synthesis of a wide library of 4(3H)-quinazolinones derivatives, including electron-donating and electron-withdrawing aromatic, heteroaromatic, and aliphatic compounds under solvent-free conditions much better than the parent precursors. Moreover, by investigating the longevity of the nanocatalyst, the conclusion could be derived that the aforesaid nanocatalyst is stable under reaction conditions and could be recycled for at least seven recycle runs without a discernible decrease in its catalytic activity.
Collapse
Affiliation(s)
- Parvin Sanati-Tirgan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| | - Arezou Mohammadinezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| |
Collapse
|
11
|
Study of the Counter Cation Effects on the Supramolecular Structure and Electronic Properties of a Dianionic Oxamate-Based {Ni II2} Helicate. Molecules 2023; 28:molecules28052086. [PMID: 36903333 PMCID: PMC10003781 DOI: 10.3390/molecules28052086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Herein, we describe the synthesis, crystal structure, and electronic properties of {[K2(dmso)(H2O)5][Ni2(H2mpba)3]·dmso·2H2O}n (1) and [Ni(H2O)6][Ni2(H2mpba)3]·3CH3OH·4H2O (2) [dmso = dimethyl sulfoxide; CH3OH = methanol; and H4mpba = 1,3-phenylenebis(oxamic acid)] bearing the [Ni2(H2mpba)3]2- helicate, hereafter referred to as {NiII2}. SHAPE software calculations indicate that the coordination geometry of all the NiII atoms in 1 and 2 is a distorted octahedron (Oh) whereas the coordination environments for K1 and K2 atoms in 1 are Snub disphenoid J84 (D2d) and distorted octahedron (Oh), respectively. The {NiII2} helicate in 1 is connected by K+ counter cations yielding a 2D coordination network with sql topology. In contrast to 1, the electroneutrality of the triple-stranded [Ni2(H2mpba)3] 2- dinuclear motif in 2 is achieved by a [Ni(H2O)6]2+ complex cation, where the three neighboring {NiII2} units interact in a supramolecular fashion through four R22(10) homosynthons yielding a 2D array. Voltammetric measurements reveal that both compounds are redox active (with the NiII/NiI pair being mediated by OH- ions) but with differences in formal potentials that reflect changes in the energy levels of molecular orbitals. The NiII ions from the helicate and the counter-ion (complex cation) in 2 can be reversibly reduced, resulting in the highest faradaic current intensities. The redox reactions in 1 also occur in an alkaline medium but at higher formal potentials. The connection of the helicate with the K+ counter cation has an impact on the energy levels of the molecular orbitals; this experimental behavior was further supported by X-ray absorption near-edge spectroscopy (XANES) experiments and computational calculations.
Collapse
|
12
|
Abdelhamid HN. Dye encapsulation and one-pot synthesis of microporous-mesoporous zeolitic imidazolate frameworks for CO 2 sorption and adenosine triphosphate biosensing. Dalton Trans 2023; 52:2506-2517. [PMID: 36734459 DOI: 10.1039/d2dt04084k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One-pot co-precipitation of target molecules e.g. organic dyes and the synthesis of a crystal containing microporous-mesoporous regimes of zeolitic imidazolate frameworks-8 (ZIF-8) are reported. The synthesis method can be used for cationic (rhodamine B (RhB), methylene blue (MB)), and anionic (methyl blue (MeB)) dyes. The crystal growth of the ZIF-8 crystals takes place via an intermediate phase of zinc hydroxyl nitrate (Zn5(OH)8(NO3)2) nanosheets that enabled the adsorption of the target molecules i.e., RhB, MB, and MeB into their layers. The dye molecules play a role during crystal formation. The successful encapsulation of the dye molecules was proved via diffuse reflectance spectroscopy (DRS) and electrochemical measurements e.g., cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The materials were investigated for carbon dioxide (CO2) adsorption and adenosine triphosphate (ATP) biosensing. ZIF-8, RhB@ZIF-8, MB@ZIF-8, and MeB@ZIF-8 offered CO2 adsorption capacities of 0.80, 0.84, 0.85, and 0.53 mmol g-1, respectively. The encapsulated cationic molecules improved the adsorption performance compared to anionic molecules inside the crystal. The materials were also tested as a fluorescent probe for ATP biosensing. The simple synthesis procedure offered new materials with tunable surface properties and the potential for multi-functional applications.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden. .,Nano-Biomedical Diagnostics Laboratory, Assiut University, Assiut, 71516, Egypt.,Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt
| |
Collapse
|
13
|
Advances in Metal-Organic Frameworks for Efficient Separation and Purification of Natural Gas. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
14
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
15
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|
16
|
Xian JY, Huang ZY, Xie XX, Lin CJ, Zhang XJ, Song HY, Zheng SR. A cationic nanotubular metal-organic framework for the removal of Cr2O72– and Iodine. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2022. [DOI: 10.1016/j.cjsc.2022.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Xie Y, Lyu S, Zhang Y, Cai C. Adsorption and Degradation of Volatile Organic Compounds by Metal-Organic Frameworks (MOFs): A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7727. [PMID: 36363319 PMCID: PMC9656840 DOI: 10.3390/ma15217727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) are a major threat to human life and health. The technologies currently used to remove VOCs mainly include adsorption and photocatalysis. Adsorption is the most straightforward strategy, but it cannot ultimately eliminate VOCs. Due to the limited binding surface, the formaldehyde adsorption on conventional photocatalysts is limited, and the photocatalytic degradation efficiency is not high enough. By developing novel metal-organic framework (MOF) materials that can catalytically degrade VOCs at room temperature, the organic combination of new MOF materials and traditional purification equipment can be achieved to optimize adsorption and degradation performance. In the present review, based on the research on the adsorption and removal of VOCs by MOF materials in the past 10 years, starting from the structure and characteristics of MOFs, the classification of which was described in detail, the influencing factors and mechanisms in the process of adsorption and removal of VOCs were summarized. In addition, the research progress of MOF materials was summarized, and its future development in this field was prospected.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sining Lyu
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Zhang
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Changhong Cai
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Ling LL, Jiao L, Liu X, Dong Y, Yang W, Zhang H, Ye B, Chen J, Jiang HL. Potassium-Assisted Fabrication of Intrinsic Defects in Porous Carbons for Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205933. [PMID: 35948462 DOI: 10.1002/adma.202205933] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.
Collapse
Affiliation(s)
- Li-Li Ling
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoshuo Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Yun Dong
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Innovation Campus, Wollongong, NSW, 2522, Australia
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
19
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Nasi H, Chiara di Gregorio M, Wen Q, Shimon LJW, Kaplan‐Ashiri I, Bendikov T, Leitus G, Kazes M, Oron D, Lahav M, van der Boom ME. Directing the Morphology, Packing, and Properties of Chiral Metal-Organic Frameworks by Cation Exchange. Angew Chem Int Ed Engl 2022; 61:e202205238. [PMID: 35594390 PMCID: PMC9542332 DOI: 10.1002/anie.202205238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 11/08/2022]
Abstract
We show that metal-organic frameworks, based on tetrahedral pyridyl ligands, can be used as a morphological and structural template to form a series of isostructural crystals having different metal ions and properties. An iterative crystal-to-crystal conversion has been demonstrated by consecutive cation exchanges. The primary manganese-based crystals are characterized by an uncommon space group (P622). The packing includes chiral channels that can mediate the cation exchange, as indicated by energy-dispersive X-ray spectroscopy on microtome-sectioned crystals. The observed cation exchange is in excellent agreement with the Irving-Williams series (MnZn) associated with the relative stability of the resulting coordination nodes. Furthermore, we demonstrate how the metal cation controls the optical and magnetic properties. The crystals maintain their morphology, allowing a quantitative comparison of their properties at both the ensemble and single-crystal level.
Collapse
Affiliation(s)
- Hadar Nasi
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Qiang Wen
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Linda J. W. Shimon
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Ifat Kaplan‐Ashiri
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Tatyana Bendikov
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Gregory Leitus
- Department of Chemical Research SupportWeizmann Institute of Science7610001RehovotIsrael
| | - Miri Kazes
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Dan Oron
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Michal Lahav
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - Milko E. van der Boom
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| |
Collapse
|
21
|
Gupta RK, Riaz M, Ashafaq M, Gao ZY, Varma RS, Li DC, Cui P, Tung CH, Sun D. Adenine-incorporated metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Lin L, Zhang Q, Ni Y, Shang L, Zhang X, Yan Z, Zhao Q, Chen J. Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Bamonte S, Shubhashish S, Khanna H, Shuster S, Rubio SJB, Suib SL, Alpay SP, Sahoo S. Magnetically Doped Molybdenum Disulfide Layers for Enhanced Carbon Dioxide Capture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27799-27813. [PMID: 35687730 DOI: 10.1021/acsami.2c01820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon capture and storage (CCS) technologies have the potential for reducing greenhouse gas emissions and creating clean energy solutions. One of the major aspects of the CCS technology is designing energy-efficient adsorbent materials for carbon dioxide capture. In this research, using a combination of first-principles theory, synthesis, and property measurements, we explore the CO2 gas adsorption capacity of MoS2 sheets via doping with iron, cobalt, and nickel. We show that substitutional dopants act as active sites for CO2 adsorption. The adsorption performance is determined to be dependent on the type of dopant species as well as its concentration. Nickel-doped MoS2 is found to be the best adsorbent for carbon capture with a relatively high gas adsorption capacity compared to pure MoS2 and iron- and cobalt-doped MoS2. Specifically, Brunauer-Emmett-Teller (BET) measurements show that 8 atom % Ni-MoS2 has the highest surface area (51 m2/g), indicating the highest CO2 uptake relative to the other concentrations and other dopants. Furthermore, we report that doping could lead to different magnetic solutions with changing electronic structures where narrow band gaps and the semimetallic tendency of the substrate are observed and can have an influence on the CO2 adsorption ability of MoS2. Our results provide a key strategy to the characteristic tendencies for designing highly active and optimized MoS2-based adsorbent materials utilizing the least volume of catalysts for CO2 capture and conversion.
Collapse
Affiliation(s)
- Scott Bamonte
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shubhashish Shubhashish
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Harshul Khanna
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Seth Shuster
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Samantha Joy B Rubio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven L Suib
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - S Pamir Alpay
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sanjubala Sahoo
- Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
24
|
Nasi H, Chiara di Gregorio M, Wen Q, Shimon LJW, Kaplan-Ashiri I, Bendikov T, Leitus G, Kazes M, Oron D, Lahav M, van der Boom ME. Directing the Morphology, Packing, and Properties of Chiral MetalOrganic Frameworks by Cation Exchange. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hadar Nasi
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | | | - Qiang Wen
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | - Linda J. W. Shimon
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | | | | | - Gregory Leitus
- Weizmann Institute of Science Molecular Science and Materials Science ISRAEL
| | - Miri Kazes
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | - Dan Oron
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | - Michal Lahav
- Weizmann Institute of Science Molecular Chemistry and Materials Science ISRAEL
| | | |
Collapse
|
25
|
Berdichevsky EK, Downing VA, Hooper RW, Butt NW, McGrath DT, Donnelly LJ, Michaelis VK, Katz MJ. Ultrahigh Size Exclusion Selectivity for Carbon Dioxide from Nitrogen/Methane in an Ultramicroporous Metal-Organic Framework. Inorg Chem 2022; 61:7970-7979. [PMID: 35523004 DOI: 10.1021/acs.inorgchem.2c00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Separations based on molecular size (molecular sieving) are a solution for environmental remediation. We have synthesized and characterized two new metal-organic frameworks (MOFs) (Zn2M; M = Zn, Cd) with ultramicropores (<0.7 nm) suitable for molecular sieving. We explore the synthesis of these MOFs and the role that the DMSO/H2O/DMF solvent mixture has on the crystallization process. We further explore the crystallographic data for the DMSO and methanol solvated structures at 273 and 100 K; this not only results in high-quality structural data but also allows us to better understand the structural features at temperatures around the gas adsorption experiments. Structurally, the main difference between the two MOFs is that the central metal in the trimetallic node can be changed from Zn to Cd and that results in a sub-Å change in the size of the pore aperture, but a stark change in the gas adsorption properties. The separation selectivity of the MOF when M = Zn is infinite given the pore aperture of the MOF can accommodate CO2 while N2 and/or CH4 is excluded from entering the pore. Furthermore, due to the size exclusion behavior, the MOF has an adsorption selectivity of 4800:1 CO2/N2 and 5 × 1028:1 CO2/CH4. When M = Cd, the pore aperture of the MOF increases slightly, allowing N2 and CH4 to enter the pore, resulting in a 27.5:1 and a 10.5:1 adsorption selectivity, respectively; this is akin to UiO-66, a MOF that is not able to function as a molecular sieve for these gases. The data delineate how subtle sub-Å changes to the pore aperture of a framework can drastically affect both the adsorption selectivity and separation selectivity.
Collapse
Affiliation(s)
- Ellan K Berdichevsky
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Victoria A Downing
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Riley W Hooper
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Nathan W Butt
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Devon T McGrath
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Laurie J Donnelly
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Katz
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
26
|
Sasikala V, Vignesh S, Kalyana Sundar J, El Sayed Massoud E. Construction of three-dimensional polymeric d-histidine based metal-organic framework (MOF) for selective sorption of CO2 and copper ion sensing applications. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Tajnšek TK, Svensson Grape E, Willhammar T, Antonić Jelić T, Javornik U, Dražić G, Zabukovec Logar N, Mazaj M. Design and degradation of permanently porous vitamin C and zinc-based metal-organic framework. Commun Chem 2022; 5:24. [PMID: 36697798 PMCID: PMC9814379 DOI: 10.1038/s42004-022-00639-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/04/2022] [Indexed: 01/28/2023] Open
Abstract
Bioapplication is an emerging field of metal-organic frameworks (MOF) utilization, but biocompatible MOFs with permanent porosity are still a rarity in the field. In addition, biocompatibility of MOF constituents is often overlooked when designing bioMOF systems, intended for drug delivery. Herein, we present the a Zn(II) bioMOF based on vitamin C as an independent ligand (bioNICS-1) forming a three-dimensional chiral framework with permanent microporosity. Comprehensive study of structure stability in biorelavant media in static and dynamic conditions demonstrates relatively high structure resistivity, retaining a high degree of its parent specific surface area. Robustness of the 3D framework enables a slow degradation process, resulting in controllable release of bioactive components, as confirmed by kinetic studies. BioNICS-1 can thus be considered as a suitable candidate for the design of a small drug molecule delivery system, which was demonstrated by successful loading and release of urea-a model drug for topical application-within and from the MOF pores.
Collapse
Affiliation(s)
- Tia K. Tajnšek
- grid.454324.00000 0001 0661 0844National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia ,grid.8954.00000 0001 0721 6013Faculty of Inorganic Chemistry and Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Erik Svensson Grape
- grid.10548.380000 0004 1936 9377Stockholm University, Frescativägen 8, 106 91 Stockholm, Sweden
| | - Tom Willhammar
- grid.10548.380000 0004 1936 9377Stockholm University, Frescativägen 8, 106 91 Stockholm, Sweden
| | - Tatjana Antonić Jelić
- grid.4905.80000 0004 0635 7705Ruđer Bošković Institute, Bijenička cesta 54, 1000 Zagreb, Croatia
| | - Uroš Javornik
- grid.454324.00000 0001 0661 0844National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Goran Dražić
- grid.454324.00000 0001 0661 0844National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nataša Zabukovec Logar
- grid.454324.00000 0001 0661 0844National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia ,grid.438882.d0000 0001 0212 6916University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
| | - Matjaž Mazaj
- grid.454324.00000 0001 0661 0844National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Tan L, Wang J, Cai B, Wang C, Ao Z, Wang S. Nitrogen-rich layered carbon for adsorption of typical volatile organic compounds and low-temperature thermal regeneration. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127348. [PMID: 34601402 DOI: 10.1016/j.jhazmat.2021.127348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Carbon-based adsorbents with a high adsorption capacity and low price have been widely used in the removal of volatile organic compounds (VOCs), but the poor gas selectivity and reusability limit their industrial applications. In this work, disc-like nitrogen-rich porous carbon materials (HAT-Xs) were synthesized to remove typical VOCs via adsorption. By controlling the synthesis temperature from 450 to 1000 °C, the C/N ratio of the HAT-Xs increased from 1.85 to 12.56. The HAT-650 synthesized at 650 °C with the high specific surface area of 305 m2 g-1 exhibits the highest adsorption capacity of 141 mg g-1 for ethyl acetate (which is 3.2 times for that of activated carbon), and 39.4 mg g-1 for n-hexane, 48.6 mg g-1 for toluene. Kinetic studies indicated that the adsorption is physical adsorption and that the interior surface diffusion is the main rate-determining step during the adsorption progress, the interior surface diffusion rate of ethyl acetate on HAT-650 is 1.455 mg g-1 min-0.5. At the same time, the desorption and reuse tests show that HAT-650 has excellent reusability with low desorption and regeneration temperature of 120 °C, and high desorption efficiency of 95.2% and that it could be a promising ethyl acetate adsorbent for industrial applications.
Collapse
Affiliation(s)
- Li Tan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China
| | - Jiangen Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China
| | - Bihai Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, Yangzhou 225002, China
| | - Zhimin Ao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangdong 510006, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, the University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
29
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
30
|
Liu M, Liang J, Tian Y, Liu Z. Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm 2022. [DOI: 10.1039/d1ce01567b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a great route designing new MOF ferroelectrics to enrich the scope of ferroelectrics or improving the ferroelectric performance to enhance the opportunity of applications through the strategy of post-synthetic modification (PSM).
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yadong Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
31
|
Hongxiao L, Fan L, Chen H, Zhang X, Gao Y. Nanochannel-Based {BaZn}-Organic Framework for Catalytic Activity on Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation. Dalton Trans 2022; 51:3546-3556. [DOI: 10.1039/d1dt04231a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the integrated properties from chemically dissimilar metals, microporous heterometallic MOFs have wider potential applicability, which prompts us to explore the tendency collocation of different metal cations in the...
Collapse
|
32
|
Hamedi A, Anceschi A, Patrucco A, Hasanzadeh M. A γ-cyclodextrin-based metal-organic framework (γ-CD-MOF): a review of recent advances for drug delivery application. J Drug Target 2021; 30:381-393. [PMID: 34847807 DOI: 10.1080/1061186x.2021.2012683] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relatively new class of porous material known as metal-organic framework (MOF) exhibits unique features such as high specific surface area, controlled porosity and high chemical stability. Many green synthesis approaches for MOFs have been proposed using biocompatible metal ions and linkers to maximise their use in pharmaceutical fields. The involvement of biomolecules as an organic ligand can act promising because of their biocompatibility. Recently, cyclodextrin metal-organic frameworks (CD-MOFs) represent environmentally friendly and biocompatible characteristics that lead them to biomedical applications. They are regarded as a promising nanocarrier for drug delivery, due to their high specific surface area, high porosity, tuneable chemical structure, and easy fabrication. This review focuses on the unique properties of CD-MOF and the recent advances in methods for the synthesis of these porous structures with emphasis on particle size. Then, the state-of-the-art drug delivery systems with various drugs along with the performance of CD-MOFs as efficient drug delivery systems are presented. Particular emphasis is laid on researches investigating the drug delivery potential of γ-CD-MOF.
Collapse
Affiliation(s)
- Asma Hamedi
- Department of Physics, Faculty of Science, Yazd University, Yazd, Iran
| | - Anastasia Anceschi
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Biella (BI), Italy
| | - Alessia Patrucco
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Biella (BI), Italy
| | | |
Collapse
|
33
|
|
34
|
Pattengale B, Neu J, Tada A, Hu G, Karpovich CJ, Brudvig GW. Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Pappuru S, Idrees KB, Chen Z, Shpasser D, Gazit OM. A rare 4-fold interpenetrated metal-organic framework constructed from an anionic indium-based node and a cationic dicopper linker. Dalton Trans 2021; 50:6631-6636. [PMID: 33904554 DOI: 10.1039/d1dt00764e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique 4-fold interpenetrated metal-organic framework, TIF-1, was synthesized by combining an anionic indium node with a cationic linker. This framework shows a rare type of 4-fold interpenetrated dia network, constructed from tessellation of biangular and tetragonal type metal-organic micropores. The porosity of TIF-1 is moderate due to four-fold interpenetration and charge-balancing anions. The cationic feature of this MOF may give good efficiency for selective small anion exchange or separation. In addition, the thermal stability and moderate CO2 adsorption property of the complex were studied.
Collapse
Affiliation(s)
- Sreenath Pappuru
- Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 320003, Israel.
| | - Karam B Idrees
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Dina Shpasser
- Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 320003, Israel.
| | - Oz M Gazit
- Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
36
|
Liu RS, Shi XD, Wang CT, Gao YZ, Xu S, Hao GP, Chen S, Lu AH. Advances in Post-Combustion CO 2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice. CHEMSUSCHEM 2021; 14:1428-1471. [PMID: 33403787 DOI: 10.1002/cssc.202002677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Collapse
Affiliation(s)
- Ru-Shuai Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Dong Shi
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng-Tong Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu-Zhou Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shuang Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
37
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Dong XY, Zhang RZ, Zhang TK, Liu FY. Novel Designing of Chemically Modified Electrode (CME) of the Bio‐MOF‐1 for the Detection of Dopamine Based on Inhibition of [Ru(bpy)
3
]
2+
/DBAE System. ELECTROANAL 2021. [DOI: 10.1002/elan.201900758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- X. Y. Dong
- Department of Chemistry School of Chemical Engineering Dalian University of Technology Dalian 110624 PR China
| | - R. Z. Zhang
- Department of Chemistry School of Chemical Engineering Dalian University of Technology Dalian 110624 PR China
| | - T. K. Zhang
- Department of Chemistry School of Chemical Engineering Dalian University of Technology Dalian 110624 PR China
| | - F. Y. Liu
- Department of Chemistry School of Chemical Engineering Dalian University of Technology Dalian 110624 PR China
| |
Collapse
|
39
|
Hamedi A, Anceschi A, Trotta F, Hasanzadeh M, Caldera F. Rapid temperature-assisted synthesis of nanoporous γ-cyclodextrin-based metal–organic framework for selective CO2 adsorption. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-020-01039-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
do Pim WD, Mendonça FG, Brunet G, Facey GA, Chevallier F, Bucher C, Baker RT, Murugesu M. Anion-Dependent Catalytic C-C Bond Cleavage of a Lignin Model within a Cationic Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:688-695. [PMID: 33356092 DOI: 10.1021/acsami.0c19212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of heterogeneous catalysts capable of selectively converting lignin model compounds into products of added value offers an exciting avenue to explore in the production of renewable chemical feedstocks. The use of metal-organic frameworks (MOFs) in such chemical transformations relies largely on the presence of accessible open metal sites found within highly porous networks that simultaneously allow for fast transport and strong interactions with desired substrates. Here, we present the first systematic study on the modulation of catalytic performance of a cationic framework, [Cu2(L)(H2O)2](NO3)2·5.5H2O (L = 1,1'-bis(3,5-dicarboxylatophenyl)-4,4'-bipyridinium), achieved through the exchange of anionic guests. Remarkably, the catalytic activity proves to be highly anion-dependent, with a nearly 10-fold increase toward the aerobic C-C bond cleavage of a lignin model compound when different anionic species are incorporated within the MOF. Moreover, we demonstrate that the cationic nature of the MOF, imparted by the incorporation of viologen moieties within the linker, tunes the electrophilicity of the active copper(II) sites, resulting in stronger interactions with the substrate. As such, the copper-based framework exhibits enhanced catalytic performance when compared to its neutral counterpart, emphasizing the appeal of charged frameworks for use as green heterogeneous catalysts.
Collapse
Affiliation(s)
- Walace D do Pim
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Fernanda G Mendonça
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gabriel Brunet
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Glenn A Facey
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Floris Chevallier
- Université Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allee d'Italie, 69364 Lyon, France
| | - Christophe Bucher
- Université Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allee d'Italie, 69364 Lyon, France
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
41
|
Lee J, Lee K, Kim J. Fiber-Based Gas Filter Assembled via In Situ Synthesis of ZIF-8 Metal Organic Frameworks for an Optimal Adsorption of SO 2: Experimental and Theoretical Approaches. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1620-1631. [PMID: 33395254 DOI: 10.1021/acsami.0c19957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For environmental protection from exposure to airborne toxic gases, metal organic frameworks (MOFs) have drawn great attention as gas adsorbent options, with their advantages in chemical tailorability and large porosity. To develop a fiber-based gas filter that is effective against SO2 gas, zeolite imidazole framework-8 (ZIF-8) was applied to polypropylene nonwoven by various methods. Among the tested methods, the sol-gel impregnation method showed the highest ZIF-8 loading efficiency. There existed an optimal loading of ZIF-8 for the maximum adsorption efficiency, and it was associated with the accessibility of gas molecules to the ZIF-8 pores and active sites. Dominant adsorption processes and mechanisms were investigated by fitting the theoretical sorption models to experimental data. The results demonstrate that the increased ZIF-8 loading to fibers, beyond a certain level, may hinder the diffusivity and increase the barrier effect, eventually decreasing the adsorption efficiency. This study is novel and significant in that a multifaceted approach, including experimental analysis, theoretical investigation, and computational modeling, was made for scrutinizing the intricate phenomena occurring in the gas sorption process. The results of this study provide the fundamental yet practical information on the manufacturing considerations for the optimal design of MOF-loaded fibrous adsorbents.
Collapse
Affiliation(s)
- Jinwook Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeongeun Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Republic of Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Vilela SMF, Navarro JAR, Barbosa P, Mendes RF, Pérez-Sánchez G, Nowell H, Ananias D, Figueiredo F, Gomes JRB, Tomé JPC, Paz FAA. Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. J Am Chem Soc 2021; 143:1365-1376. [DOI: 10.1021/jacs.0c10421] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sérgio M. F. Vilela
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A. R. Navarro
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain
| | - Paula Barbosa
- Department of Materials & Ceramic Engineering, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Germán Pérez-Sánchez
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Harriott Nowell
- Diamond Light Source, Didcot OX11 0DE, Oxfordshire, United Kingdom
| | - Duarte Ananias
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Physics, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe Figueiredo
- Department of Materials & Ceramic Engineering, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José R. B. Gomes
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P. C. Tomé
- Departamento de Engenharia Química, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Gandara-Loe J, Pastor-Perez L, Bobadilla LF, Odriozola JA, Reina TR. Understanding the opportunities of metal–organic frameworks (MOFs) for CO2 capture and gas-phase CO2 conversion processes: a comprehensive overview. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00034a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid increase in the concentration of atmospheric carbon dioxide is one of the most pressing problems facing our planet.
Collapse
Affiliation(s)
- J. Gandara-Loe
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
| | - L. Pastor-Perez
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
- Chemical & Process Engineering Department
| | - L. F. Bobadilla
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
| | - J. A. Odriozola
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
- Chemical & Process Engineering Department
| | - T. R. Reina
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
- Chemical & Process Engineering Department
| |
Collapse
|
44
|
Zulys A, Yulia F, Muhadzib N, Nasruddin. Biological Metal–Organic Frameworks (Bio-MOFs) for CO2 Capture. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04522] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Agustino Zulys
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Fayza Yulia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Naufal Muhadzib
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Nasruddin
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
45
|
Das R, Muthukumar D, Pillai RS, Nagaraja CM. Rational Design of a Zn II MOF with Multiple Functional Sites for Highly Efficient Fixation of CO 2 under Mild Conditions: Combined Experimental and Theoretical Investigation. Chemistry 2020; 26:17445-17454. [PMID: 32767456 DOI: 10.1002/chem.202002688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Indexed: 02/06/2023]
Abstract
The development of efficient heterogeneous catalysts suitable for carbon capture and utilization (CCU) under mild conditions is a promising step towards mitigating the growing concentration of CO2 in the atmosphere. Herein, we report the construction of a hydrogen-bonded 3D framework, {[Zn(hfipbba)(MA)]⋅3 DMF}n (hfipbba=4,4'-(hexaflouroisopropylene)bis(benzoic acid)) (HbMOF1) utilizing ZnII center, a partially fluorinated, long-chain dicarboxylate ligand (hfipbba), and an amine-rich melamine (MA) co-ligand. Interestingly, the framework possesses two types of 1D channels decorated with CO2 -philic (-NH2 and -CF3 ) groups that promote the highly selective CO2 adsorption by the framework, which was supported by computational simulations. Further, the synergistic involvement of both Lewis acidic and basic sites exposed in the confined 1D channels along with high thermal and chemical stability rendered HbMOF1 a good heterogeneous catalyst for the highly efficient fixation of CO2 in a reaction with terminal/internal epoxides at mild conditions (RT and 1 bar CO2 ). Moreover, in-depth theoretical studies were carried out using periodic DFT to obtain the relative energies for each stage involved in the catalytic reaction and an insight mechanistic details of the reaction is presented. Overall, this work represents a rare demonstration of rational design of a porous ZnII MOF incorporating multiple functional sites suitable for highly efficient fixation of CO2 with terminal/internal epoxides at mild conditions supported by comprehensive theoretical studies.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - D Muthukumar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Renjith S Pillai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - C Mallaiah Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
46
|
Wang J, Wang F, Duan H, Li Y, Xu J, Huang Y, Liu B, Zhang T. Polyvinyl Chloride-Derived Carbon Spheres for CO 2 Adsorption. CHEMSUSCHEM 2020; 13:6426-6432. [PMID: 33047881 DOI: 10.1002/cssc.202002230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Polyvinyl chloride (PVC) is the world's third-most widely produced plastic polymer. Directly transforming PVC to carbonaceous materials for CO2 capture provides an environmentally friendly and attractive strategy to recycle plastics. In this work, a simple and effective method was developed to prepare PVC-derived carbon spheres. In this method, the classical "spheroidization" process shaped the original PVC powders into millimeter spheres, and a special dehalogenation and cross-linking process in the presence of a phase-transfer catalyst transferred the thermoplasticity of the PVC-spheres into thermosetting, which stabilized the shape. Furthermore, by rationally adjusting the activation conditions, the porous structure of the carbon spheres was well optimized. With a specific surface area up to 1738 m2 g-1 and the developed microporous structure, the as-prepared carbon spheres showed not only excellent performance in pure CO2 adsorption (8.93 mmol g-1 , 39.3 wt% at 0 °C and 5.47 mmol g-1 , 24.1 wt% at 25 °C), but also outstanding adsorption capacity and recyclability in low-concentration CO2 capture, even superior to conventional molecular sieves.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fanan Wang
- Fujian Eco-materials Engineering Research Center, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Hongmin Duan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Yang Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinming Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| |
Collapse
|
47
|
Wang H, Liu Y, Li J. Designer Metal-Organic Frameworks for Size-Exclusion-Based Hydrocarbon Separations: Progress and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002603. [PMID: 32644246 DOI: 10.1002/adma.202002603] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The separation of hydrocarbons is of primary importance in the petrochemical industry but remains a challenging process. Hydrocarbon separations have traditionally relied predominantly on costly and energy-intensive heat-driven procedures such as low-temperature distillations. Adsorptive separation based on porous solids represents an alternative technology that is potentially more energy efficient for the separation of some hydrocarbons. Great efforts have been made recently not only in the development of adsorbents with optimal separation performance but also toward the subsequent implementation of adsorption-based separation technology. Emerging as a relatively new class of multifunctional porous materials, metal-organic frameworks (MOFs) hold substantial promise as adsorbents for highly efficient separation of hydrocarbons. This is because of their exceptional and intrinsic porosity tunability, which enables size-exclusion-based separations that render the highest possible separation selectivity. In this review, recent advances in the development of MOFs for separation of selected groups of hydrocarbons are reviewed, including methane/C2 hydrocarbons, normal alkanes, alkane isomers, and alkane/alkene/alkyne and C8 alkylaromatics, with a particular focus on separations based on the size-exclusion mechanism. Insights into tailor-made structures, material design strategies, and structure-property relationships will be elucidated. In addition, the existing challenges and possible future directions of this important research field will be discussed.
Collapse
Affiliation(s)
- Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
48
|
Heterometallic trinuclear cluster-based microporous metal-organic framework with high adsorption selectivity of CO2 over N2. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Li J, Bhatt PM, Li J, Eddaoudi M, Liu Y. Recent Progress on Microfine Design of Metal-Organic Frameworks: Structure Regulation and Gas Sorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002563. [PMID: 32671894 DOI: 10.1002/adma.202002563] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Indexed: 05/18/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as an important and unique class of functional crystalline hybrid porous materials in the past two decades. Due to their modular structures and adjustable pore system, such distinctive materials have exhibited remarkable prospects in key applications pertaining to adsorption such as gas storage, gas and liquid separations, and trace impurity removal. Evidently, gaining a better understanding of the structure-property relationship offers great potential for the enhancement of a given associated MOF property either by structural adjustments via isoreticular chemistry or by the design and construction of new MOF structures via the practice of reticular chemistry. Correspondingly, the application of isoreticular chemistry paves the way for the microfine design and structure regulation of presented MOFs. Explicitly, the microfine tuning is mainly based on known MOF platforms, focusing on the modification and/or functionalization of a precise part of the MOF structure or pore system, thus providing an effective approach to produce richer pore systems with enhanced performances from a limited number of MOF platforms. Here, the latest progress in this field is highlighted by emphasizing the differences and connections between various methods. Finally, the challenges together with prospects are also discussed.
Collapse
Affiliation(s)
- Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
50
|
|