1
|
Wilson DWN, Thompson BC, Collauto A, Hooper RX, Knapp CE, Roessler MM, Musgrave RA. Mixed Valence {Ni 2+Ni 1+} Clusters as Models of Acetyl Coenzyme A Synthase Intermediates. J Am Chem Soc 2024; 146:21034-21043. [PMID: 39023163 PMCID: PMC11295191 DOI: 10.1021/jacs.4c06241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Acetyl coenzyme A synthase (ACS) catalyzes the formation and deconstruction of the key biological metabolite, acetyl coenzyme A (acetyl-CoA). The active site of ACS features a {NiNi} cluster bridged to a [Fe4S4]n+ cubane known as the A-cluster. The mechanism by which the A-cluster functions is debated, with few model complexes able to replicate the oxidation states, coordination features, or reactivity proposed in the catalytic cycle. In this work, we isolate the first bimetallic models of two hypothesized intermediates on the paramagnetic pathway of the ACS function. The heteroligated {Ni2+Ni1+} cluster, [K(12-crown-4)2][1], effectively replicates the coordination number and oxidation state of the proposed "Ared" state of the A-cluster. Addition of carbon monoxide to [1]- allows for isolation of a dinuclear {Ni2+Ni1+(CO)} complex, [K(12-crown-2)n][2] (n = 1-2), which bears similarity to the "ANiFeC" enzyme intermediate. Structural and electronic properties of each cluster are elucidated by X-ray diffraction, nuclear magnetic resonance, cyclic voltammetry, and UV/vis and electron paramagnetic resonance spectroscopies, which are supplemented by density functional theory (DFT) calculations. Calculations indicate that the pseudo-T-shaped geometry of the three-coordinate nickel in [1]- is more stable than the Y-conformation by 22 kcal mol-1, and that binding of CO to Ni1+ is barrierless and exergonic by 6 kcal mol-1. UV/vis absorption spectroscopy on [2]- in conjunction with time-dependent DFT calculations indicates that the square-planar nickel site is involved in electron transfer to the CO π*-orbital. Further, we demonstrate that [2]- promotes thioester synthesis in a reaction analogous to the production of acetyl coenzyme A by ACS.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Benedict C. Thompson
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| | - Alberto Collauto
- Department
of Chemistry and Centre for Pulse EPR Spectroscopy, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Reagan X. Hooper
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Caroline E. Knapp
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Maxie M. Roessler
- Department
of Chemistry and Centre for Pulse EPR Spectroscopy, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Rebecca A. Musgrave
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
2
|
Cloutier JP, Zamani F, Zargarian D. Aerobic oxidation-functionalization of the aryl moiety in van Koten's pincer complex (NCN)Ni( ii)Br: relevance to carbon–heteroatom coupling reactions promoted by high-valent nickel species. NEW J CHEM 2022. [DOI: 10.1039/d1nj05162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treating the pincer complex (NCN)NiBr with protic substrates HX (X = OH, OR, or NR2) under aerobic conditions leads to C–X functionalization of the pincer ligand. The crucial importance of aerobic conditions for the success of this coupling reaction implies the formation of high-valent intermediates during the course of the reaction.
Collapse
Affiliation(s)
| | - Fahimeh Zamani
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| | - Davit Zargarian
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| |
Collapse
|
3
|
Sabapathi G, Venuvanalingam P. Oxidative C–C/C–X coupling in organometallic nickel complexes: insights from DFT. NEW J CHEM 2022. [DOI: 10.1039/d2nj02480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiIII and NiIV-center complexes prefer direct reductive elimination than reacting through five-coordinate intermediates. 32+ complex in the presence of Cl− undergoes Cl–Csp2 elimination preferably over Cl–Csp3 and Csp3–Csp2 elimination.
Collapse
Affiliation(s)
- Gopal Sabapathi
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
4
|
Kisgeropoulos EC, Manesis AC, Shafaat HS. Ligand Field Inversion as a Mechanism to Gate Bioorganometallic Reactivity: Investigating a Biochemical Model of Acetyl CoA Synthase Using Spectroscopy and Computation. J Am Chem Soc 2021; 143:849-867. [PMID: 33415980 DOI: 10.1021/jacs.0c10135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biological global carbon cycle is largely regulated through microbial nickel enzymes, including carbon monoxide dehydrogenase (CODH), acetyl coenzyme A synthase (ACS), and methyl coenzyme M reductase (MCR). These systems are suggested to utilize organometallic intermediates during catalysis, though characterization of these species has remained challenging. We have established a mutant of nickel-substituted azurin as a scaffold upon which to develop protein-based models of enzymatic intermediates, including the organometallic states of ACS. In this work, we report the comprehensive investigation of the S = 1/2 Ni-CO and Ni-CH3 states using pulsed EPR spectroscopy and computational techniques. While the Ni-CO state shows conventional metal-ligand interactions and a classical ligand field, the Ni-CH3 hyperfine interactions between the methyl protons and the nickel indicate a closer distance than would be expected for an anionic methyl ligand. Structural analysis instead suggests a near-planar methyl ligand that can be best described as cationic. Consistent with this conclusion, the frontier molecular orbitals of the Ni-CH3 species indicate a ligand-centered LUMO, with a d9 population on the metal center, rather than the d7 population expected for a typical metal-alkyl species generated by oxidative addition. Collectively, these data support the presence of an inverted ligand field configuration for the Ni-CH3 Az species, in which the lowest unoccupied orbital is centered on the ligands rather than the more electropositive metal. These analyses provide the first evidence for an inverted ligand field within a biological system. The functional relevance of the electronic structures of both the Ni-CO and Ni-CH3 species are discussed in the context of native ACS, and an inverted ligand field is proposed as a mechanism by which to gate reactivity both within ACS and in other thiolate-containing metalloenzymes.
Collapse
Affiliation(s)
- Effie C Kisgeropoulos
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anastasia C Manesis
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Gu NX, Oyala PH, Peters JC. H 2 Evolution from a Thiolate-Bound Ni(III) Hydride. J Am Chem Soc 2020; 142:7827-7835. [PMID: 32249575 DOI: 10.1021/jacs.0c00712] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Terminal NiIII hydrides are proposed intermediates in proton reduction catalyzed by both molecular electrocatalysts and metalloenzymes, but well-defined examples of paramagnetic nickel hydride complexes are largely limited to bridging hydrides. Herein, we report the synthesis of an S = 1/2, terminally bound thiolate-NiIII-H complex. This species and its terminal hydride ligand in particular have been thoroughly characterized by vibrational and EPR techniques, including pulse EPR studies. Corresponding DFT calculations suggest appreciable spin leakage onto the thiolate ligand. The hyperfine coupling to the terminal hydride ligand of the thiolate-NiIII-H species is comparable to that of the hydride ligand proposed for the Ni-C hydrogenase intermediate (NiIII-H-FeII). Upon warming, the featured thiolate-NiIII-H species undergoes bimolecular reductive elimination of H2. Associated kinetic studies are discussed and compared with a structurally related FeIII-H species that has also recently been reported to undergo bimolecular H-H coupling.
Collapse
Affiliation(s)
- Nina X Gu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Nebra N. High-Valent Ni III and Ni IV Species Relevant to C-C and C-Heteroatom Cross-Coupling Reactions: State of the Art. Molecules 2020; 25:molecules25051141. [PMID: 32143336 PMCID: PMC7179250 DOI: 10.3390/molecules25051141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Ni catalysis constitutes an active research arena with notable applications in diverse fields. By analogy with its parent element palladium, Ni catalysts provide an appealing entry to build molecular complexity via cross-coupling reactions. While Pd catalysts typically involve a M0/MII redox scenario, in the case of Ni congeners the mechanistic elucidation becomes more challenging due to their innate properties (like enhanced reactivity, propensity to undergo single electron transformations vs. 2e− redox sequences or weaker M–Ligand interaction). In recent years, mechanistic studies have demonstrated the participation of high-valent NiIII and NiIV species in a plethora of cross-coupling events, thus accessing novel synthetic schemes and unprecedented transformations. This comprehensive review collects the main contributions effected within this topic, and focuses on the key role of isolated and/or spectroscopically identified NiIII and NiIV complexes. Amongst other transformations, the resulting NiIII and NiIV compounds have efficiently accomplished: i) C–C and C–heteroatom bond formation; ii) C–H bond functionalization; and iii) N–N and C–N cyclizative couplings to forge heterocycles.
Collapse
Affiliation(s)
- Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
7
|
Bao SJ, Liu CY, Zhang M, Chen XR, Yu H, Li HX, Braunstein P, Lang JP. Metal complexes with the zwitterion 4-(trimethylammonio)benzenethiolate: Synthesis, structures and applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Cloutier JP, Zargarian D. Functionalization of the Aryl Moiety in the Pincer Complex (NCN)NiIIIBr2: Insights on NiIII-Promoted Carbon–Heteroatom Coupling. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Davit Zargarian
- Département de chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
9
|
Chang HC, Lin SH, Hsu YC, Jen SW, Lee WZ. Nickel(iii)-mediated oxidative cascades from a thiol-bearing nickel(ii) precursor to the nickel(iv) product. Dalton Trans 2018; 47:3796-3802. [PMID: 29446427 DOI: 10.1039/c7dt04137c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel(ii) complex, Ni(HPS2)2 (1) that contains two pendant thiols, is rapidly aerobically oxidized in the presence of an amine to produce a diamagnetic nickel(iv) complex, Ni(PS2)2 (2). This process was investigated spectroscopically at a temperature of -80 °C. Absorption spectra revealed that the deprotonation of one pendant thiol of 1 triggers an oxidative cascade; EPR findings indicate that single-spin species comprised of nickel(iii) intermediates are produced in the reaction solution. Possible reaction routes were examined by DFT calculations, in which an energy profile indicates that (i) a self-driven formation of 2 favors a sequential proton/electron transfer pathway; (ii) kinetically trapped nickel(iii) intermediates may respond to the specificity of the coordination of 2 in a cis-form. The overall findings help one to rationalize how a nickel(ii) precursor can be oxidized by O2 to a higher oxidation state.
Collapse
Affiliation(s)
- Hao-Ching Chang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
10
|
Khrizanforov MN, Fedorenko SV, Strekalova SO, Kholin KV, Mustafina AR, Zhilkin MY, Khrizanforova VV, Osin YN, Salnikov VV, Gryaznova TV, Budnikova YH. A Ni(iii) complex stabilized by silica nanoparticles as an efficient nanoheterogeneous catalyst for oxidative C-H fluoroalkylation. Dalton Trans 2018; 45:11976-82. [PMID: 27385649 DOI: 10.1039/c6dt01492e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed Ni(III)-doped silica nanoparticles ([(bpy)xNi(III)]@SiO2) as a recyclable, low-leaching, and efficient oxidative functionalization nanocatalyst for aromatic C-H bonds. The catalyst is obtained by doping the complex [(bpy)3Ni(II)] on silica nanoparticles along with its subsequent electrooxidation to [(bpy)xNi(III)] without an additional oxidant. The coupling reaction of arenes with perfluoroheptanoic acid occurs with 100% conversion of reactants in a single step at room temperature under nanoheterogeneous conditions. The catalyst content is only 1% with respect to the substrates under electrochemical regeneration conditions. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times. The results emphasize immobilization on the silica support and the electrochemical regeneration of Ni(III) complexes as a facile route for developing an efficient nanocatalyst for oxidative functionalization.
Collapse
Affiliation(s)
- Mikhail N Khrizanforov
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Svetlana V Fedorenko
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Sofia O Strekalova
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Kirill V Kholin
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Asiya R Mustafina
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Mikhail Ye Zhilkin
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Vera V Khrizanforova
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Yuri N Osin
- Kazan Federal University, 18 Kremlevskaya St., Kazan 420018, Russian Federation
| | - Vadim V Salnikov
- Kazan Federal University, 18 Kremlevskaya St., Kazan 420018, Russian Federation
| | - Tatyana V Gryaznova
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| | - Yulia H Budnikova
- A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russian Federation.
| |
Collapse
|
11
|
Camasso NM, Canty AJ, Ariafard A, Sanford MS. Experimental and Computational Studies of High-Valent Nickel and Palladium Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00613] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicole M. Camasso
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allan J. Canty
- School
of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School
of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Melanie S. Sanford
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Lee CM, Wu WY, Chiang MH, Bohle DS, Lee GH. Generation of a Mn(IV)–Peroxo or Mn(III)–Oxo–Mn(III) Species upon Oxygenation of Mono- and Binuclear Thiolate-Ligated Mn(II) Complexes. Inorg Chem 2017; 56:10559-10569. [DOI: 10.1021/acs.inorgchem.7b01513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chien-Ming Lee
- Department of Applied
Science, National Taitung University, Taitung 950, Taiwan
| | - Wun-Yan Wu
- Department of Applied
Science, National Taitung University, Taitung 950, Taiwan
| | | | - D. Scott Bohle
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Gene-Hsiang Lee
- Instrumentation
Center, National Taiwan University, Taipei 107, Taiwan
| |
Collapse
|
13
|
Watson MB, Rath NP, Mirica LM. Oxidative C-C Bond Formation Reactivity of Organometallic Ni(II), Ni(III), and Ni(IV) Complexes. J Am Chem Soc 2016; 139:35-38. [PMID: 27997181 DOI: 10.1021/jacs.6b10303] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of the tridentate ligand 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) and the cyclic alkyl/aryl C-donor ligand -CH2CMe2-o-C6H4- (cycloneophyl) allows for the synthesis of isolable organometallic NiII, NiIII, and NiIV complexes. Surprisingly, the five-coordinate NiIII complex is stable both in solution and the solid state, and exhibits limited C-C bond formation reactivity. Oxidation by one electron of this NiIII species generates a six-coordinate NiIV complex, with an acetonitrile molecule bound to Ni. Interestingly, illumination of the NiIV complex with blue LEDs results in rapid formation of the cyclic C-C product at room temperature. This reactivity has important implications for the recently developed dual Ni/photoredox catalytic systems proposed to involve high-valent organometallic Ni intermediates. Additional reactivity studies show the corresponding NiII species undergoes oxidative addition with alkyl halides, as well as rapid oxidation by O2, to generate detectable NiIII and/or NiIV intermediates and followed by C-C bond formation.
Collapse
Affiliation(s)
- Michael B Watson
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M Mirica
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
14
|
Schultz JW, Fuchigami K, Zheng B, Rath NP, Mirica LM. Isolated Organometallic Nickel(III) and Nickel(IV) Complexes Relevant to Carbon-Carbon Bond Formation Reactions. J Am Chem Soc 2016; 138:12928-12934. [PMID: 27599205 DOI: 10.1021/jacs.6b06862] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nickel-catalyzed cross-coupling reactions are experiencing a dramatic resurgence in recent years given their ability to employ a wider range of electrophiles as well as promote stereospecific or stereoselective transformations. In contrast to the extensively studied Pd catalysts that generally employ diamagnetic intermediates, Ni systems can more easily access various oxidation states including odd-electron configurations. For example, organometallic NiIII intermediates with aryl and/or alkyl ligands are commonly proposed as the active intermediates in cross-coupling reactions. Herein, we report the first isolated NiIII-dialkyl complex and show that this species is involved in stoichiometric and catalytic C-C bond formation reactions. Interestingly, the rate of C-C bond formation from a NiIII center is enhanced in the presence of an oxidant, suggesting the involvement of transient NiIV species. Indeed, such a NiIV species was observed and characterized spectroscopically for a nickelacycle system. Overall, these studies suggest that both NiIII and NiIV species could play an important role in a range of Ni-catalyzed cross-coupling reactions, especially those involving alkyl substrates.
Collapse
Affiliation(s)
- Jason W Schultz
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Kei Fuchigami
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Bo Zheng
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M Mirica
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
15
|
Rettenmeier CA, Wenz J, Wadepohl H, Gade LH. Activation of Aryl Halides by Nickel(I) Pincer Complexes: Reaction Pathways of Stoichiometric and Catalytic Dehalogenations. Inorg Chem 2016; 55:8214-24. [DOI: 10.1021/acs.inorgchem.6b01448] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph A. Rettenmeier
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jan Wenz
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Campos J, López-Serrano J, Peloso R, Carmona E. Methyl Complexes of the Transition Metals. Chemistry 2016; 22:6432-57. [PMID: 26991740 DOI: 10.1002/chem.201504483] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 01/11/2023]
Abstract
Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.
Collapse
Affiliation(s)
- Jesús Campos
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química, Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Riccardo Peloso
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química, Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ernesto Carmona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química, Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
17
|
Corona T, Pfaff FF, Acuña-Parés F, Draksharapu A, Whiteoak CJ, Martin-Diaconescu V, Lloret-Fillol J, Browne WR, Ray K, Company A. Reactivity of a Nickel(II) Bis(amidate) Complex with meta-Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species. Chemistry 2015; 21:15029-38. [PMID: 26311073 DOI: 10.1002/chem.201501841] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Herein, we report the formation of a highly reactive nickel-oxygen species that has been trapped following reaction of a Ni(II) precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C-H bonds, C=C bonds, and sulfides) than previously reported well-defined nickel-oxygen species. Remarkably, this species is formed by heterolytic O-O bond cleavage of a Ni-HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a Ni(III) -oxyl compound.
Collapse
Affiliation(s)
- Teresa Corona
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Florian F Pfaff
- Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, 12489 Berlin (Germany)
| | - Ferran Acuña-Parés
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Apparao Draksharapu
- Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Christopher J Whiteoak
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Vlad Martin-Diaconescu
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Julio Lloret-Fillol
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50.,Current address: Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona (Spain)
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Kallol Ray
- Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, 12489 Berlin (Germany)
| | - Anna Company
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50.
| |
Collapse
|
18
|
Tang F, Rath NP, Mirica LM. Stable bis(trifluoromethyl)nickel(III) complexes. Chem Commun (Camb) 2015; 51:3113-6. [PMID: 25598496 DOI: 10.1039/c4cc09594d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic Ni(III) intermediates have been proposed in several Nickel-catalyzed cross-coupling reactions, yet no isolated bis(hydrocarbyl)Ni(III) complexes have been reported to date. Herein we report the synthesis and detailed characterization of stable organometallic Ni(III) complexes that contain two trifluoromethyl ligands and are supported by tetradentate N-donor ligands (R)N4 (R = Me or tBu). Interestingly, the corresponding Ni(II) precursors undergo facile oxidation, including aerobic oxidation, to generate uncommonly stable organometallic Ni(III) complexes that exhibit limited reactivity.
Collapse
Affiliation(s)
- Fengzhi Tang
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, USA.
| | | | | |
Collapse
|
19
|
Chang HC, Lo FC, Liu WC, Lin TH, Liaw WF, Kuo TS, Lee WZ. Ambient Stable Trigonal Bipyramidal Copper(III) Complexes Equipped with an Exchangeable Axial Ligand. Inorg Chem 2015; 54:5527-33. [DOI: 10.1021/acs.inorgchem.5b00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Feng-Chun Lo
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | - Wen-Feng Liaw
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | |
Collapse
|
20
|
Sietzen M, Batke S, Merz L, Wadepohl H, Ballmann J. Phospha Derivatives of Tris(2-aminoethyl)amine (tren) and Tris(3-aminopropyl)amine (trpn): Synthesis and Complexation Studies with Group 4 Metals. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Malte Sietzen
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Sonja Batke
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Lukas Merz
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Mougang-Soumé B, Belanger-Gariépy F, Zargarian D. Synthesis, Characterization, and Oxidation of New POCNimine-Type Pincer Complexes of Nickel. Organometallics 2014. [DOI: 10.1021/om500529e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Davit Zargarian
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Lipschutz MI, Tilley TD. Carbon–Carbon Cross‐Coupling Reactions Catalyzed by a Two‐Coordinate Nickel(II)–Bis(amido) Complex via Observable Ni
I
, Ni
II
, and Ni
III
Intermediates. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, CA 94720 (USA)
| |
Collapse
|
23
|
Lipschutz MI, Tilley TD. Carbon-carbon cross-coupling reactions catalyzed by a two-coordinate nickel(II)-bis(amido) complex via observable Ni(I) , Ni(II) , and Ni(III) intermediates. Angew Chem Int Ed Engl 2014; 53:7290-4. [PMID: 24889777 DOI: 10.1002/anie.201404577] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/13/2014] [Indexed: 11/11/2022]
Abstract
Recently, the development of more sustainable catalytic systems based on abundant first-row metals, especially nickel, for cross-coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a Ni(III) -alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon-carbon cross-coupling system based on a two-coordinate Ni(II) -bis(amido) complex in which a Ni(III) -alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this Ni(III) -alkyl species as well as those of other key Ni(I) and Ni(II) intermediates. The catalytic cycle described herein is also one of the first examples of a two-coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first-row transition metals to accommodate two-coordinate complexes.
Collapse
|
24
|
Batke S, Sietzen M, Wadepohl H, Ballmann J. A tripodal benzylene-linked trisamidophosphine ligand scaffold: synthesis and coordination chemistry with group(IV) metals. Inorg Chem 2014; 53:4144-53. [PMID: 24712705 DOI: 10.1021/ic500163c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A new tripodal trisamidophosphine ligand (1) based on the trisbenzylphosphine backbone has been synthesized in three steps starting from NaPH2 and phthaloyl-protected 2-aminobenzyl bromide. At elevated temperatures, 1 reacts directly with M(NMe2)4 (M = Zr, Hf) to afford the dimethylamido complexes [PN3]M(NMe2) (M = Zr, Hf) (2), which are easily converted into the corresponding triflates [PN3]MOTf (M = Zr, Hf) (3) via reaction with triethylsilyl trifluoromethanesulfonate. The related titanium chloro complex [PN3]TiCl (4-Ti) is obtained from 1 and Bn3TiCl via protonolysis. Triple deprotonation of 1 with n-butyllithium affords the tris-lithium salt Li3[PN3] (1-Li), which serves as a common starting material for the preparation of all the group(IV) chlorides [PN3]MCl (M = Ti, Zr, Hf) (4). Upon treatment of 4-Ti with Bn2Mg(thf)2, formation of a benzyltitanium species is observed, which is converted cleanly into a ligand-CH-activated species (5-Ti).
Collapse
Affiliation(s)
- Sonja Batke
- Anorganisch-Chemisches Institut, Universität Heidelberg , Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
25
|
Zheng B, Tang F, Luo J, Schultz JW, Rath NP, Mirica LM. Organometallic Nickel(III) Complexes Relevant to Cross-Coupling and Carbon–Heteroatom Bond Formation Reactions. J Am Chem Soc 2014; 136:6499-504. [DOI: 10.1021/ja5024749] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bo Zheng
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Fengzhi Tang
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Jia Luo
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Jason W. Schultz
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Nigam P. Rath
- Department
of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M. Mirica
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
26
|
Cao TPA, Nocton G, Ricard L, Le Goff XF, Auffrant A. A tetracoordinated phosphasalen nickel(III) complex. Angew Chem Int Ed Engl 2013; 53:1368-72. [PMID: 24375855 DOI: 10.1002/anie.201309222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 01/21/2023]
Abstract
The oxidation of a Ni(II) complex bearing a tetradentate phosphasalen ligand, which differs from salen by the presence of an iminophosphorane (PN) in place of an imine unit, was easily achieved by addition of a silver salt. The site of this oxidation was investigated with a combination of techniques (NMR, EPR, UV/Vis spectroscopy, X-ray diffraction, magnetic measurements) as well as DFT calculations. All data are in agreement with a high-valent Ni(III) center concentrating the spin density. This markedly differs from precedents in the salen series for which oxidation on the metal was only observed at low temperature or in the presence of additional ligands or anions. Therefore, thanks to the good electron-donating properties of the phosphasalen ligand, [Ni(Psalen)](+) represents a rare example of a tetracoordinated high-valent nickel complex in presence of a phenoxide ligand.
Collapse
Affiliation(s)
- Thi-Phuong-Anh Cao
- Laboratoire Hétéroéléments et Coordination, CNRS, École Polytechnique, Route de Saclay, 91128 Palaiseau (France) http://www.dcph.polytechnique.fr
| | | | | | | | | |
Collapse
|
27
|
Cao TPA, Nocton G, Ricard L, Le Goff XF, Auffrant A. A Tetracoordinated Phosphasalen Nickel(III) Complex. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201309222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Lipschutz MI, Yang X, Chatterjee R, Tilley TD. A Structurally Rigid Bis(amido) Ligand Framework in Low-Coordinate Ni(I), Ni(II), and Ni(III) Analogues Provides Access to a Ni(III) Methyl Complex via Oxidative Addition. J Am Chem Soc 2013; 135:15298-301. [DOI: 10.1021/ja408151h] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Xinzheng Yang
- Institute of Chemistry, Chinese Academy of Sciences, Bejing, 100190, P.R. China
| | - Ruchira Chatterjee
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, United States
| | | |
Collapse
|
29
|
Lai KT, Ho WC, Chiou TW, Liaw WF. Formation of [NiIII(κ1-S2CH)(P(o-C6H3-3-SiMe3-2-S)3)]− via CS2 Insertion into Nickel(III) Hydride Containing [NiIII(H)(P(o-C6H3-3-SiMe3-2-S)3)]−. Inorg Chem 2013; 52:4151-3. [DOI: 10.1021/ic400293k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kuan-Ting Lai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chieh Ho
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzung-Wen Chiou
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
30
|
Bozzini B, Abyaneh MK, Amati M, Gianoncelli A, Gregoratti L, Kaulich B, Kiskinova M. Soft X-ray Imaging and Spectromicroscopy: New Insights in Chemical State and Morphology of the Key Components in Operating Fuel-Cells. Chemistry 2012; 18:10196-210. [DOI: 10.1002/chem.201201313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Benedetto Bozzini
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni s.n., 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim YJ, Han JH. Synthesis, Structure, and Reactivity of the [Fe4S4(SR)4]2-(R = 2-, 3-, and 4-Pyridinemethane) Clusters. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.1.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Pfaff FF, Heims F, Kundu S, Mebs S, Ray K. Spectroscopic capture and reactivity of S = 1/2 nickel(iii)–oxygen intermediates in the reaction of a NiII-salt with mCPBA. Chem Commun (Camb) 2012; 48:3730-2. [DOI: 10.1039/c2cc30716b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Lee WZ, Chiang CW, Lin TH, Kuo TS. A Discrete Five-Coordinate NiIII Complex Resembling the Active Site of the Oxidized Form of Nickel Superoxide Dismutase. Chemistry 2011; 18:50-3. [DOI: 10.1002/chem.201102690] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/20/2011] [Indexed: 11/08/2022]
|
34
|
Bender G, Pierce E, Hill JA, Darty JE, Ragsdale SW. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 2011; 3:797-815. [PMID: 21647480 PMCID: PMC3964926 DOI: 10.1039/c1mt00042j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations.
Collapse
Affiliation(s)
- Güneş Bender
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Jeffrey A. Hill
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Joseph E. Darty
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| |
Collapse
|
35
|
Ferry JG. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol 2011; 22:351-7. [PMID: 21555213 DOI: 10.1016/j.copbio.2011.04.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/18/2011] [Indexed: 12/17/2022]
Abstract
The conversion of biomass to CH4 (biomethanation) involves an anaerobic microbial food chain composed of at least three metabolic groups of which the first two decompose the complex biomass primarily to acetate, formate, and H2. The thermodynamics of these conversions are unfavorable requiring a symbiosis with the CH4-producing group (methanogens) that metabolize the decomposition products to favorable concentrations. The methanogens produce CH4 by two major pathways, conversion of the methyl group of acetate and reduction of CO2 coupled to the oxidation of formate or H2. This review covers recent advances in the fundamental understanding of both methanogenic pathways with the view of stimulating research towards improving the rate and reliability of the overall biomethanation process.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, United States.
| |
Collapse
|
36
|
Bozzini B, Gianoncelli A, Kaulich B, Kiskinova M, Mele C, Prasciolu M. Corrosion of Ni in 1-butyl-1-methyl-pyrrolidinium bis (trifluoromethylsulfonyl) amide room-temperature ionic liquid: an in situ X-ray imaging and spectromicroscopy study. Phys Chem Chem Phys 2011; 13:7968-74. [PMID: 21437296 DOI: 10.1039/c0cp02618b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports a pioneering application of soft X-ray scanning transmission microscopy (STXM), combined with micro-spot X-ray absorption spectroscopy (XAS) and X-ray fluorescence spectroscopy (XRF), for the investigation of the corrosion of metal electrodes in contact with room-temperature ionic liquids (RTIL). Using an open electrochemical cell in vacuo we explore some fundamental aspects of the aggressiveness of the 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide ([BMP][TFSA]) RTIL towards Ni under in situ electrochemical polarisation. The possibility of imaging electrochemically-induced morphological features in conjunction with micro-XAS and XRF spectroscopies has provided unprecedented details regarding the space distribution and chemical state of corrosion products.
Collapse
Affiliation(s)
- Benedetto Bozzini
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Hu X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem Sci 2011. [DOI: 10.1039/c1sc00368b] [Citation(s) in RCA: 466] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Radicals in transition metal catalyzed reactions? transition metal catalyzed radical reactions?: a fruitful interplay anyway: part 3: catalysis by group 10 and 11 elements and bimetallic catalysis. Top Curr Chem (Cham) 2011; 320:323-451. [PMID: 22143611 DOI: 10.1007/128_2011_288] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the current status of transition metal catalyzed reactions involving radical intermediates in organic chemistry. This part focuses on radical-based methods catalyzed by group 10 and group 11 metal complexes. Reductive and redox-neutral C-C bond formations catalyzed by low-valent metal complexes as well as catalytic oxidative methods are reviewed. Catalytic processes which rely on the combination of two metal complexes are also covered.
Collapse
|