1
|
Krishna RH, Chandraprabha MN, Monika P, Br T, Chaudhary V, Manjunatha C. Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review. Biotechnol Genet Eng Rev 2024; 40:3611-3652. [PMID: 36424727 DOI: 10.1080/02648725.2022.2147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/29/2022] [Indexed: 11/27/2022]
Abstract
Last decade has witnessed impressive progress in the fields of medicine and bioengineering with the aid of nanomaterials. Nanomaterials are favoured for their improved bio-chemical as well as mechanical properties with tremendous applications in biomedical domains such as disease diagnosis, targeted drug delivery, medical imaging, in vitro diagnostics, designing innovatory cross-functional implants and regenerative tissue engineering. The current situation insists upon crafting nanotools that are capable of catering to biological needs and construct more efficient biomedical strategies. In the recent years, surface functionalization and capping with biomolecules has initiated substantial interest towards research. In this regard, search of suitable biofunctionalized nanoparticles seem to be like finding pearls from ocean. Conjugating biological molecules with inorganic materials has paved the way for unravelling innovative functional materials with dramatically improved properties and a wide range of uses. Inorganic nanoparticles such as metals, metal oxides, as well as quantum dots have been hybridised or conjugated with biomolecules such as proteins, peptides, carbohydrates, and nucleic acids. The present review reports on various biomolecule functionalized inorganic nanomaterials highlighting the biomolecule-inorganic nanoparticle interaction studies, the mechanism of functionalization, antimicrobial efficacy of the functionalised nanoconjugates and its use in various biomedical applications.
Collapse
Affiliation(s)
- R Hari Krishna
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Tanuja Br
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - C Manjunatha
- Center for Nanomaterials and devices, Department of Chemistry, RV College of Engineering, Bangalore, India
| |
Collapse
|
2
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
3
|
Ding LG, Ji X, Liu YY, Shi M, Li JD, Liu F, Zhang YY, Yu J, Wu JQ. Covalent Organic Framework-Based Theranostic Platforms for Restricting H1N1 Influenza Virus Infection. Int J Nanomedicine 2024; 19:7399-7414. [PMID: 39071500 PMCID: PMC11278156 DOI: 10.2147/ijn.s461866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Background Influenza A (H1N1) virus is a highly contagious respiratory disease that causes severe illness and death. Vaccines and antiviral drugs are limited by viral variation and drug resistance, so developing efficient integrated theranostic options appears significant in anti-influenza virus infection. Methods In this study, we designed and fabricated covalent organic framework (COF) based theranostic platforms (T705@DATA-COF-Pro), which was composed of an RNA polymerase inhibitor (favipiravir, T705), the carboxyl-enriched COF (DATA-COF) nano-carrier and Cy3-labeled single DNA (ssDNA) probe. Results The multi-porosity COF core provided an excellent micro-environment and smooth delivery for T705. The ssDNA probe coating bound to the nucleic acids of H1N1 selectively, thus controlling drug release and allowing fluorescence imaging. The combination of COF and probe triggered the synergism, promoting drug further therapeutic outcomes. With the aid of T705@DATA-COF-Pro platforms, the H1N1-infected mouse models lightly achieved diagnosis and significantly prolonged survival. Conclusion This research underscores the distinctive benefits and immense potential of COF materials in nano-preparations for virus infection, offering novel avenues for the detection and treatment of H1N1 virus infection.
Collapse
Affiliation(s)
- Luo-Gang Ding
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Xiang Ji
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People’s Republic of China
| | - Yue-Yue Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250100, People’s Republic of China
| | - Min Shi
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Jian-Da Li
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Fei Liu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Yu-Yu Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Jiang Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Jia-Qiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| |
Collapse
|
4
|
Tang X, Zhao S, Luo J, Wang B, Wu X, Deng R, Chang K, Chen M. Smart Stimuli-Responsive Spherical Nucleic Acids: Cutting-Edge Platforms for Biosensing, Bioimaging, and Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310732. [PMID: 38299771 DOI: 10.1002/smll.202310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.
Collapse
Affiliation(s)
- Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xianlan Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
5
|
Dey S, Rivas-Barbosa R, Sciortino F, Zaccarelli E, Zijlstra P. Biomolecular interactions on densely coated nanoparticles: a single-molecule perspective. NANOSCALE 2024; 16:4872-4879. [PMID: 38318671 DOI: 10.1039/d3nr06140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
DNA-modified gold nanoparticles (AuNPs) play a pivotal role in bio-nanotechnology, driving advancements in bio-sensing, bio-imaging, and drug delivery. Synthetic protocols have focused on maximizing the receptor density on particles by fine-tuning chemical conditions, particularly for DNA. Despite their significance, the understanding of hybridization kinetics on functionalized AuNPs is lacking, particularly how this kinetics depends on DNA density and to what extent it varies from particle-to-particle. This study explores the molecular mechanisms of DNA hybridization on densely coated AuNPs by employing a combination of single-molecule microscopy and coarse-grained molecular dynamics simulations providing a quantification of the molecular rate constants for single particles. Our findings demonstrate that DNA receptor density and the presence of spacer strands profoundly impact association kinetics, with short spacers enhancing association rates by up to ∼15-fold. In contrast, dissociation kinetics are largely unaffected by receptor density within the studied range. Single-particle analysis directly reveals variability in hybridization kinetics, which is analyzed in terms of intra- and inter-particle heterogeneity. A coarse-grained DNA model that quantifies hybridization kinetics on densely coated surfaces further corroborates our experimental results, additionally shedding light on how transient base pairing within the DNA coating influences kinetics. This integrated approach underscores the value of single-molecule studies and simulations for understanding DNA dynamics on densely coated nanoparticle surfaces, offering guidance for designing DNA-functionalized nanoparticles in sensor applications.
Collapse
Affiliation(s)
- Swayandipta Dey
- Eindhoven University of Technology, Department of Applied Physics and Science Education, Postbus 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, The Netherlands
| | - Rodrigo Rivas-Barbosa
- Dipartmento di Fisica, Universita' di Roma "La Sapienza", Piazzale Moro 5, Roma I-00185, Italy
| | - Francesco Sciortino
- Dipartmento di Fisica, Universita' di Roma "La Sapienza", Piazzale Moro 5, Roma I-00185, Italy
| | - Emanuela Zaccarelli
- Dipartmento di Fisica, Universita' di Roma "La Sapienza", Piazzale Moro 5, Roma I-00185, Italy
- CNR Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Peter Zijlstra
- Eindhoven University of Technology, Department of Applied Physics and Science Education, Postbus 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
6
|
Toader GA, Nitu FR, Ionita M. Graphene Oxide/Nitrocellulose Non-Covalent Hybrid as Solid Phase for Oligo-DNA Extraction from Complex Medium. Molecules 2023; 28:4599. [PMID: 37375154 DOI: 10.3390/molecules28124599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A nitrocellulose-graphene oxide hybrid that consists of a commercially nitrocellulose (NC) membrane non-covalently modified with graphene oxide (GO) microparticles was successfully prepared for oligonucleotide extraction. The modification of NC membrane was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), which highlighted the principal absorption bands of both the NC membrane at 1641, 1276, and 835 cm-1 (NO2) and of GO in the range of 3450 cm-1 (CH2-OH). The SEM analysis underlined the well-dispersed and uniform coverage of NC membrane with GO, which displayed thin spider web morphology. The wettability assay indicated that the NC-GO hybrid membrane exhibited slightly lower hydrophilic behavior, with a water contact angle of 26.7°, compared to the 15° contact angle of the NC control membrane. The NC-GO hybrid membranes were used to separate oligonucleotides that had fewer than 50 nucleotides (nt) from complex solutions. The features of the NC-GO hybrid membranes were tested for extraction periods of 30, 45, and 60 min in three different complex solutions, i.e., an aqueous medium, an α-Minimum Essential Medium (αMEM), and an αMEM supplemented with fetal bovine serum (FBS). The oligonucleotides were desorbed from the surface of the NC-GO hybrid membrane using Tris-HCl buffer with a pH of 8.0. Out of the three media utilized, the best results were achieved after 60 min incubation of the NC-GO membranes in αMEM, as evidenced by the highest fluorescence emission of 294 relative fluorescence units (r.f.u.). This value corresponded to the extraction of approximately 330-370 pg (≈7%) of the total oligo-DNA. This method is an efficient and effortless way to purify short oligonucleotides from complex solutions.
Collapse
Affiliation(s)
- Georgian A Toader
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Florentin R Nitu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Genetic Lab, Str. Milcov, nr. 5, Sector 1, 012273 Bucuresti, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| |
Collapse
|
7
|
Spatial confinement-based Figure-of-Eight nanoknots accelerated simultaneous detection and imaging of intracellular microRNAs. Anal Chim Acta 2023; 1250:340974. [PMID: 36898820 DOI: 10.1016/j.aca.2023.340974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Developing highly efficient and reliable methods for simultaneous imaging of microRNAs in living cells is often appealed to understanding their synergistic functions and guiding the diagnosis and treatment of human diseases, such as cancers. In this work, we rationally engineered a four-arm shaped nanoprobe that can be stimuli-responsively tied into a Figure-of-Eight nanoknot via spatial confinement-based dual-catalytic hairpin assembly (SPACIAL-CHA) reaction and applied for accelerated simultaneous detection and imaging of different miRNAs in living cells. The four-arm nanoprobe was facilely assembled from a cross-shaped DNA scaffold and two pairs of CHA hairpin probes (21HP-a and 21HP-b for miR-21, while 155HP-a and 155HP-b for miR-155) via the "one-pot" annealing method. The DNA scaffold structurally provided a well-known spatial-confinement effect to improve the localized concentration of CHA probes and shorten their physical distance, resulting in an enhanced intramolecular collision probability and accelerating the enzyme-free reaction. The miRNA-mediated strand displacement reactions can rapidly tie numerous four-arm nanoprobes into Figure-of-Eight nanoknots, yielding remarkably dual-channel fluorescence proportional to the different miRNA expression levels. Moreover, benefiting from the nuclease-resistant DNA structure based on the unique arched DNA protrusions makes the system ideal for operating in complicated intracellular environments. We have demonstrated that the four-arm-shaped nanoprobe is superior to the common catalytic hairpin assembly (COM-CHA) in stability, reaction speed, and amplification sensitivity in vitro and living cells. Final applications in cell imaging have also revealed the capacity of the proposed system for reliable identification of cancer cells (e.g., HeLa and MCF-7) from normal cells. The four-arm nanoprobe shows great potential in molecular biology and biomedical imaging with the above advantages.
Collapse
|
8
|
Wang J, Fu X, Liu S, Liu R, Li J, Wang K, Huang J. Catalyst-Accelerated Circular Cascaded DNA Circuits: Simpler Design, Faster Speed, Higher Gain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205903. [PMID: 36638250 DOI: 10.1002/smll.202205903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
DNA cascaded circuits have great potential in detecting low abundance molecules in complex biological environment due to their powerful signal amplification capability and nonenzymatic feature. However, the problem of the cascaded circuits is that the design is relatively complex and the kinetics is slow. Herein, a new design paradigm called catalyst-accelerated circular cascaded circuits is proposed, where the catalyst inlet is implanted and the reaction speed can be adjusted by the catalyst concentration. This new design is very simple and only requires three hairpin probes. Meanwhile, the results of a series of studies demonstrate that the reaction speed can be accelerated and the sensitivity can be also improved. Moreover, endogenous mRNA can also be used as a catalyst to drive the circuits to amplify the detection of target miRNA in live cells and in mice. These catalyst-accelerated circular cascaded circuits can substantially expand the toolbox for intracellular low abundance molecular detection.
Collapse
Affiliation(s)
- Jiaoli Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Xiaoxiao Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Ruiting Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225012, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China
| |
Collapse
|
9
|
Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
11
|
Liu X, Zhao Y, Ding Y, Wang J, Liu J. Stabilization of Gold Nanoparticles by Hairpin DNA and Implications for Label-Free Colorimetric Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5542-5549. [PMID: 35446580 DOI: 10.1021/acs.langmuir.2c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With extremely high extinction coefficients and other unique optical properties, gold nanoparticles (AuNPs) have received growing interest in developing biosensors. DNA hairpin structures are very popular probes for the detection of not only complementary DNA or RNA but also aptamer targets. This work aims to understand the effect of the structure and sequence of hairpin DNA for the stabilization of AuNPs and its implications in AuNP-based label-free colorimetric biosensors. A series of hairpin DNA with various loop sizes from 4 to 26 bases and sequences (random sequences, poly-A and poly-T) were tested, but they showed similar abilities to protect AuNPs from aggregation. Using hairpin DNA with a tail under the same conditions, optimal protection was achieved with a six-base or longer tail. DNA hairpins are likely adsorbed via their tail regions or with their terminal bases if no tail is present. Molecular dynamics simulations showed that the rigidity of the hairpin loop region disfavored its adsorption to AuNPs, while the flexible tail region is favored. Finally, a DNA sensing assay was conducted using different structured DNA, where hairpin DNA with a tail doubled the sensitivity compared to the tail-free hairpin.
Collapse
Affiliation(s)
- Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Luo T, Li J, He Y, Liu H, Deng Z, Long X, Wan Q, Ding J, Gong Z, Yang Y, Zhong S. Designing a CRISPR/Cas12a- and Au-Nanobeacon-Based Diagnostic Biosensor Enabling Direct, Rapid, and Sensitive miRNA Detection. Anal Chem 2022; 94:6566-6573. [PMID: 35451838 DOI: 10.1021/acs.analchem.2c00401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct, rapid, sensitive, and selective detection of nucleic acids in complex biological fluids is crucial for medical early diagnosis. We herein combine the trans-cleavage ability of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a with Au-nanobeacon to establish a CRISPR-based biosensor, providing rapid miRNA detection with high speed and attomolar sensitivity. In this strategy, we first report that the trans-cleavage activity of CRISPR/cas12a, which was previously reported to be triggered only by target ssDNA or dsDNA, can be activated by the target miRNA directly. Therefore, this method is direct, i.e., does not need the conversion of miRNA into its complementary DNA (cDNA). Meanwhile, as compared to the traditional ssDNA reporters and molecular beacon (MB) reporters, the Au-nanobeacon reporters exhibit improved reaction kinetics and sensitivity. In this assay, the miRNA-21 could be detected with very high sensitivity in only 5 min. Finally, the proposed strategy enables rapid, sensitive, and selective miRNA determination in complex biological samples, providing a potential tool for medical early diagnosis.
Collapse
Affiliation(s)
- Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
13
|
Bustamante-Jaramillo LF, Fingal J, Blondot ML, Rydell GE, Kann M. Imaging of Hepatitis B Virus Nucleic Acids: Current Advances and Challenges. Viruses 2022; 14:v14030557. [PMID: 35336964 PMCID: PMC8950347 DOI: 10.3390/v14030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles. Regardless of infections leading to extreme viral loads, which may reach 1010 virions per mL serum, hepatitis B viruses are of low abundance and productivity in individual cells. Imaging of the infections in cells is thus a particular challenge especially for cccDNA that exists only in a few copies. The review describes the significance of microscopical approaches on genome and transcript detection for understanding hepatitis B virus infections, implications for understanding treatment outcomes, and recent microscopical approaches, which have not been applied in HBV research.
Collapse
Affiliation(s)
- Luisa F. Bustamante-Jaramillo
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Joshua Fingal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Marie-Lise Blondot
- Microbiologie Fondamentale et Pathogénicité (MFP), CNRS UMR 5234, University of Bordeaux, 33076 Bordeaux, France;
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
14
|
Liu X, Wang Y, Effah CY, Wu L, Yu F, Wei J, Mao G, Xiong Y, He L. Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta 2022; 243:123377. [DOI: 10.1016/j.talanta.2022.123377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
15
|
Zhao J, Li Z, Shao Y, Hu W, Li L. Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021; 60:17937-17941. [PMID: 34117823 DOI: 10.1002/anie.202105696] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) functions are tightly regulated by their sub-compartmental location in living cells, and the ability to imaging of mitochondrial miRNAs (mitomiRs) is essential for understanding of the related pathological processes. However, most existing DNA-based methods could not be used for this purpose. Here, we report the development of a DNA nanoreporter technology for imaging of mitomiRs in living cells through near-infrared (NIR) light-controlled DNA strand displacement reactions. The sensing function of the DNA nanoreporters are silent (OFF) during the delivery process, but can be photoactivated (ON) with NIR light after targeted mitochondrial localization, enabling spatially-restricted imaging of two types of cancer-related mitomiRs with improved detection accuracy. Furthermore, we demonstrate imaging of mitomiRs in vivo through spatiotemporally-controlled delivery and activation. Therefore, this study illustrates a simple methodology that may be broadly applicable for investigating the mitomiRs-associated physiological events.
Collapse
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
16
|
Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Cai S, Wang J, Li J, Zhou B, He C, Meng X, Huang J, Wang K. A self-assembled DNA nanostructure as a FRET nanoflare for intracellular ATP imaging. Chem Commun (Camb) 2021; 57:6257-6260. [PMID: 34060563 DOI: 10.1039/d1cc02316k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to the incorporation of gold nanoparticles (AuNPs), previously reported AuNP-based FRET nanoflares still have some problems, such as non-negligible cytotoxicity and a time-consuming preparation procedure. In this communication, a novel AuNP-free FRET nanoflare for intracellular ATP imaging is developed based on a DNA nanostructure, which is self-assembled through cyclic U-type hybridization only involving a certain number of DNA strands.
Collapse
Affiliation(s)
- Shijun Cai
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jiaoli Wang
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jing Li
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Bing Zhou
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Chunmei He
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Xiangxian Meng
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jin Huang
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Kemin Wang
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| |
Collapse
|
18
|
Liu W, Zhong Z, Ma J. Simple way to correct the drift in surface-coupled optical tweezers using the laser reflection pattern. OPTICS EXPRESS 2021; 29:18769-18780. [PMID: 34154126 DOI: 10.1364/oe.423759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
The surface-coupled optical tweezers are widely used to resolve small units of motion in biology. However, such motions could readily be interfered by the drift between the trap and surface. We present a simple and low-cost method to correct the drift both actively and passively based on video tracking the distance between the laser reflection pattern and the reference bead. As a result, we achieved sub-nanometer resolution and stability for the stuck bead over a broad range of averaging time (0.002-100 s) as demonstrated by the Allan deviation analysis. The sub-nanometer resolution was further manifested with step measurement. Finally, in double-stranded DNA and DNA hairpin stretching experiments, an extension resolution of 1-2 nm with the stability over 120 s has been demonstrated under a constant force. This work thus provides an easy way to bring the benefit of nanometer resolution and long-term stability to the surface-coupled optical tweezers.
Collapse
|
19
|
Mukaida A, Adachi R, Akiyama Y, Kamimura M. Facile Preparation of a Hairpin DNA-Gold Nanoparticle Monoconjugate with a Single-Dye Molecule and Lactobionic Acid as Targeting Ligand. ANAL SCI 2021; 37:785-788. [PMID: 33678725 DOI: 10.2116/analsci.20scn07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We established a new design for a single molecular beacon-conjugated gold nanoparticle, named monoMB-GNP, which showed enhanced fluorescence emission only in the presence of the complementary DNA sequence. MonoMB-GNP also showed no apparent toxicity to NIH/3T3 cells at 1 nM, as determined by the water-soluble tetrazolium assay. Importantly, the lactobionic acid was successfully modified on the surface of monoMB-GNP. The proposed nanoparticle has prospects for use in several applications for targetable molecular beacon strategies.
Collapse
Affiliation(s)
- Akane Mukaida
- Department of Materials Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
| | - Rihito Adachi
- Department of Materials Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
| | - Yoshitsugu Akiyama
- Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Masao Kamimura
- Department of Materials Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
| |
Collapse
|
20
|
Cui MR, Gao F, Shu ZY, Ren SK, Zhu D, Chao J. Nucleic Acids-based Functional Nanomaterials for Bioimaging. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00169-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Bidar N, Amini M, Oroojalian F, Baradaran B, Hosseini SS, Shahbazi MA, Hashemzaei M, Mokhtarzadeh A, Hamblin MR, de la Guardia M. Molecular beacon strategies for sensing purpose. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Li J, Wang J, Liu S, Xie N, Quan K, Yang Y, Yang X, Huang J, Wang K. Amplified FRET Nanoflares: An Endogenous mRNA‐Powered Nanomachine for Intracellular MicroRNA Imaging. Angew Chem Int Ed Engl 2020; 59:20104-20111. [DOI: 10.1002/anie.202008245] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Li
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jiaoli Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Shiyuan Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Nuli Xie
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Ke Quan
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering Central South University Changsha P. R. China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| |
Collapse
|
23
|
Li J, Wang J, Liu S, Xie N, Quan K, Yang Y, Yang X, Huang J, Wang K. Amplified FRET Nanoflares: An Endogenous mRNA‐Powered Nanomachine for Intracellular MicroRNA Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jing Li
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jiaoli Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Shiyuan Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Nuli Xie
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Ke Quan
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering Central South University Changsha P. R. China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| |
Collapse
|
24
|
Li C, Luo M, Wang J, Niu H, Shen Z, Wu ZS. Rigidified DNA Triangle-Protected Molecular Beacon from Endogenous Nuclease Digestion for Monitoring microRNA Expression in Living Cells. ACS Sens 2020; 5:2378-2387. [PMID: 32786386 DOI: 10.1021/acssensors.0c00212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Utilizing the nucleic acid-based self-assembly technology, Y-shaped backbone-rigidified DNA triangles with substantially enhanced nuclease resistance are built by designing a Y-shaped backbone in the center of a planar DNA triangle. Along this line, we developed aptamer-targeted DNA triangle-based molecular beacon (Apt-Tri-MB) probes for monitoring the microRNA expression in living cells with high sensitivity and specificity. For the Apt-Tri-MB probe, the MB is protected by the DNA triangle from unwanted enzymatic digestion, and a targeting ligand aptamer is introduced to endow the MB with active tumor cell-targeting capability. Thus, the digestion-induced false-positive signal is avoided, and the background fluorescence, which originates from the passive cell uptake (e.g., transfection) of reporting probes, is substantially suppressed. The imaging capability of the Apt-Tri-MB is superior to the commercial transfection agent-based counterpart and exhibits good universality suitable for imaging different miRNAs by changing the recognition fragment of the MB. Meanwhile, the disadvantages are efficiently circumvented, including the susceptibility of nucleic acids to nuclease-mediated degradation, inability of MB probes to enter cells, lipofectamine-determined cellular cytotoxicity, and nontargeting cell uptake. Inspired by the Y-shaped backbone-rigidified Apt-Tri-MB, we also constructed X-shaped backbone-rigidified quadrangle-based probes (Apt-Qua-MB). The experimental results show that cell imaging and antidegradation capability of Apt-Qua-MB are comparable with Apt-Tri-MB. As a proof-of-concept study, the Apt-Tri-MB is expected to open an exciting avenue for the further application of nucleic acid probes in the cellular level research and clinical disease diagnosis.
Collapse
Affiliation(s)
- Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Mengxue Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jue Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhifa Shen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
25
|
Cheng YH, Liu SJ, Jiang JH. Enzyme-free electrochemical biosensor based on amplification of proximity-dependent surface hybridization chain reaction for ultrasensitive mRNA detection. Talanta 2020; 222:121536. [PMID: 33167244 DOI: 10.1016/j.talanta.2020.121536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 01/03/2023]
Abstract
The ability to recognize mRNA with high efficiency in cells would greatly facilitate the elucidation of mRNA-mediated cellular cascades and their disease associations. However, most traditional electrochemical strategies targeting nucleotides are always confronted with cumbersome interface operation and washing procedures, as well as the high cost of labeling and the strict reaction conditions of tool enzymes, limiting their potential applications. To address these issues, herein we reported, for the first time, a simple label-free, isothermal, non-enzymatic, and ultrasensitive homogeneous electrochemical biosensor based on autonomous proximity-dependent surface hybridization chain reaction (HCR), for sensitive signal amplification and highly specific detection of target survivin mRNA with a detection limit of 3 fM. The target triggers hybridization chain reaction and mRNA-fueled surface hybridization of ferrocene-tagged metastable DNA hairpin probes on proximity-dependent surface hybridization, resulting in the formation of multiple long-range duplex DNA chains which are immobilized onto the gold electrodes with a substantially stable ferrocene-mediated redox current. Thus, a significant electrochemical signal increase is observed dependent on the concentration of the target RNA, with a very low detection limit. Mo-reover, this molecular biosensor also exhibits excellent specificity to distinguish even single base mismatched, with strong reliability. The developed biosensor provides a novel promising tool for ultra-sensitive and selective detection, and it has great potential to be applied in mRNA-related biochemical research and clinical cancer diagnostics in more detail.
Collapse
Affiliation(s)
- Yu-Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Si-Jia Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Key Laboratory of Regenerative Medicine, Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, School of Basic Medical Sciences, Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, PR China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
26
|
Samanta D, Ebrahimi SB, Kusmierz CD, Cheng HF, Mirkin CA. Protein Spherical Nucleic Acids for Live-Cell Chemical Analysis. J Am Chem Soc 2020; 142:13350-13355. [PMID: 32706250 DOI: 10.1021/jacs.0c06866] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the development of a new strategy for the chemical analysis of live cells based on protein spherical nucleic acids (ProSNAs). The ProSNA architecture enables analyte detection via the highly programmable nucleic acid shell or a functional protein core. As a proof-of-concept, we use an i-motif as the nucleic acid recognition element to probe pH in living cells. By interfacing the i-motif with a forced-intercalation readout, we introduce a quencher-free approach that is resistant to false-positive signals, overcoming limitations associated with conventional fluorophore/quencher-based gold NanoFlares. Using glucose oxidase as a functional protein core, we show activity-based, amplified sensing of glucose. This enzymatic system affords greater than 100-fold fluorescence turn on in buffer, is selective for glucose in the presence of close analogs (i.e., glucose-6-phosphate), and can detect glucose above a threshold concentration of ∼5 μM, which enables the study of relative changes in intracellular glucose concentrations.
Collapse
|
27
|
Ebrahimi SB, Samanta D, Mirkin CA. DNA-Based Nanostructures for Live-Cell Analysis. J Am Chem Soc 2020; 142:11343-11356. [DOI: 10.1021/jacs.0c04978] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Tsyrenova B, Khrustalev V, Nenajdenko V. 2 H-Bis-1,2,3-triazolo-isoquinoline: Design, Synthesis, and Photophysical Study. J Org Chem 2020; 85:7024-7035. [PMID: 32340444 DOI: 10.1021/acs.joc.0c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient three-step synthesis of a new heterocyclic system is described wherein the 2H-bis([1,2,3]triazolo)[5,1-a:4',5'-c]isoquinoline ring system is elaborated using a simple synthetic strategy. The approach permits the preparation of target compounds in high yields using readily available arylhydrazines and o-alkynylbenzaldehydes as starting materials. The photophysical properties of the prepared heterocycles were studied to demonstrate that the prepared compounds are attractive blue-emitting fluorophores, exhibiting quantum yields up to 98% and Stokes shifts up to 67 nm. A strong effect of the steric hindrance on the absorption and emission spectra was revealed.
Collapse
Affiliation(s)
- Biligma Tsyrenova
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Victor Khrustalev
- Peoples' Friendship University of Russia, 117198 Moscow, Russia.,N. D. Zelinsky Institute of Organic Chemistry of RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Valentine Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
| |
Collapse
|
29
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
30
|
Shen P, Zhao G, Liu Y, Ge Q, Sun Q. Liposomal Spherical Nucleic Acid Scaffolded Site-Selective Hybridization of Nanoparticles for Visual Detection of MicroRNAs. ACS APPLIED BIO MATERIALS 2020; 3:1656-1665. [PMID: 35021656 DOI: 10.1021/acsabm.9b01222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, the advanced liposomal spherical nucleic acid (L-SNA) is exploited for the first time to establish a spherical, three-dimensional biosensing platform by hybridizing with a set of nanoparticles. By hydrophilic and hydrophobic interactions as well as programmable base-pairing, red-emission quantum dots (QDs), green-emission QDs, and gold nanoparticles (AuNPs) are encapsulated into the internal aqueous core, the intermediate lipid bilayer, and the outer SNA shell, respectively, producing an L-SNA-nanoparticle hybrid. As a result of the site-selective encapsulation, the hybrid constitutes a liposomal fluorescent "core-resonance energy transfer" system surrounded by a SNA shell, as is imaged at the single-particle resolution by confocal microscopy. With the outer SNA shell as three-dimensional substrate for duplex-specific nuclease target recycling reaction, the hybrid is capable of amplified detection of microRNAs, featuring one target to many AuNP-manipulated, dual-emission QD-based ratiometric fluorescence. More importantly, the ratiometric fluorescence facilitates the hybrid to visualize microRNAs with remarkably high resolution, which is exemplified by traffic light-type transition in fluorescence color for diagnosing circulating microRNAs in clinical serum samples. Substantially, the controllable hybridization with functional nanoparticles opens an avenue for the exciting biomedical applications of liposomal spherical nucleic acids.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guihong Zhao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqian Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
31
|
|
32
|
Wang H, Dardir K, Lee KB, Fabris L. Impact of Protein Corona in Nanoflare-Based Biomolecular Detection and Quantification. Bioconjug Chem 2019; 30:2555-2562. [PMID: 31479244 DOI: 10.1021/acs.bioconjchem.9b00495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selective detection and precise quantification of biomolecules in intracellular settings play a pivotal role in the diagnostics and therapeutics of diseases, including various cancers and infectious epidemics. Because of this clinical relevance, nanoprobes with high sensitivity, wide tunability, and excellent biological stability have become of high demand. In particular, nanoflares based on gold nanoparticles have emerged as an attractive candidate for intracellular detection due to their efficient cellular uptake, enhanced binding affinity with complementary targets, and improved biological compatibility. However, nanoprobes, including these nanoflares, are known to be susceptible to the adsorption of proteins present in the biological environment, which leads to the formation of a so-called protein corona layer on their surface, leading to an altered targeting efficiency and cellular uptake. In this work, we leverage the nanoflares platform to demonstrate the effect of protein corona on biomolecular detection, quantification, as well as biological stability against enzymatic degradation. Nanoflares incubated in a biologically relevant concentration of serum albumin proteins (0.50 wt %) were shown to result in more than 20% signal reduction in target detection, with a decrease varying proportionally with the protein concentrations. In addition, similar signal reduction was observed for different serum proteins, and PEG backfilling was found to be ineffective in mitigating the negative impact induced by the corona formation. Furthermore, nuclease resistance in nanoflares was also severely compromised by the presence of the corona shell (∼2-fold increase in hydrolysis activity). This work demonstrates the consequences of an in situ formed protein corona layer on molecular detection/quantification and biological stability of nanoflares in the presence of nuclease enzymes, highlighting the importance of calibrating similar nanoprobes in proper biological media to improve the accuracy of molecular detection and quantification.
Collapse
Affiliation(s)
- Hao Wang
- Department of Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Kholud Dardir
- Department of Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology , Rutgers University , 123 Bevier Road , Piscataway , New Jersey 08854 , United States.,Department of Life and Nanopharmaceutical Science, College of Pharmacy , Kyung Hee University , Seoul 02447 , Republic of Korea
| | - Laura Fabris
- Department of Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
33
|
Liu C, Hu Y, Pan Q, Yi J, Zhang J, He M, He M, Chen T, Chu X. A microRNA-triggered self-powered DNAzyme walker operating in living cells. Biosens Bioelectron 2019; 136:31-37. [DOI: 10.1016/j.bios.2019.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
|
34
|
Wang N, Song L, Xing H, Zhang K, Yang R, Li J. A spherical nucleic acid-based two-photon nanoprobe for RNase H activity assay in living cells and tissues. NANOSCALE 2019; 11:8133-8137. [PMID: 30994698 DOI: 10.1039/c9nr00880b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report here a two-photon nanoprobe for the detection of RNase H activity in living cells and ex vivo tissues by combining a two-photon dye with a spherical nucleic acid (SNA) featuring a DNA/RNA duplex corona and a gold nanoparticle core.
Collapse
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | |
Collapse
|
35
|
Moros M, Kyriazi ME, El-Sagheer AH, Brown T, Tortiglione C, Kanaras AG. DNA-Coated Gold Nanoparticles for the Detection of mRNA in Live Hydra Vulgaris Animals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13905-13911. [PMID: 30525369 DOI: 10.1021/acsami.8b17846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in nanoparticle design have led to the development of nanoparticulate systems that can sense intracellular molecules, alter cellular processes, and release drugs to specific targets in vitro. In this work, we demonstrate that oligonucleotide-coated gold nanoparticles are suitable for the detection of mRNA in live Hydra vulgaris, a model organism, without affecting the animal's integrity. We specifically focus on the detection of Hymyc1 mRNA, which is responsible for the regulation of the balance between stem cell self-renewal and differentiation. Myc deregulation is found in more than half of human cancers, thus the ability to detect in vivo related mRNAs through innovative fluorescent systems is of outmost interest.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | |
Collapse
|
36
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
37
|
Uddin MI, Kilburn TC, Yang R, McCollum GW, Wright DW, Penn JS. Targeted Imaging of VCAM-1 mRNA in a Mouse Model of Laser-Induced Choroidal Neovascularization Using Antisense Hairpin-DNA-Functionalized Gold-Nanoparticles. Mol Pharm 2018; 15:5514-5520. [PMID: 30350640 DOI: 10.1021/acs.molpharmaceut.8b00661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mouse laser-induced choroidal neovascularization (mouse LCNV) recapitulates the "wet" form of human age-related macular degeneration (AMD). Vascular cell adhesion molecule-1 (VCAM-1) is a known inflammatory biomarker, and it increases in the choroidal neovascular tissues characteristic of this experimental model. We have designed and constructed gold nanoparticles (AuNPs) functionalized with hairpin-DNA that incorporates an antisense sequence complementary to VCAM-1 mRNA (AS-VCAM-1 hAuNPs) and tested them as optical imaging probes. The 3' end of the hairpin is coupled to a near-infrared fluorophore that is quenched by the AuNP surface via Förster resonance energy transfer (FRET). Hybridization of the antisense sequence to VCAM-1 mRNA displaces the fluorophore away from the AuNP surface, inducing fluorescent activity. In vitro testing showed that hAuNPs hybridize to an exogenous complementary oligonucleotide within a pH range of 4.5-7.4, and that they are stable at reduced pH. LCNV mice received tail-vein injections of AS-VCAM-1 hAuNPs. Hyperspectral imaging revealed the delivery of AS-VCAM-1 hAuNPs to excised choroidal tissues. Fluorescent images of CNV lesions were obtained, presumably in response to the hybridization of AS-hAuNPs to LCNV-induced VCAM-1 mRNA. This is the first demonstration of systemic delivery of hAuNPs to ocular tissues to facilitate mRNA imaging of any target.
Collapse
Affiliation(s)
- Md Imam Uddin
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Tyler C Kilburn
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - David W Wright
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - John S Penn
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Molecular Physiology and Biophysics , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| |
Collapse
|
38
|
Cheng H, Liu J, Ma W, Duan S, Huang J, He X, Wang K. Low Background Cascade Signal Amplification Electrochemical Sensing Platform for Tumor-Related mRNA Quantification by Target-Activated Hybridization Chain Reaction and Electroactive Cargo Release. Anal Chem 2018; 90:12544-12552. [PMID: 30261719 DOI: 10.1021/acs.analchem.8b02470] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein a low background cascade signal amplification electrochemical sensing platform has been proposed for the ultrasensitive detection of mRNA (mRNA) by coupling the target-activated hybridization chain reaction and electroactive cargo release from mesoporous silica nanocontainers (MSNs). In this sensing platform, the 5'-phosphate-terminated DNA (5'-PO4 cDNA) complement to target mRNA is hybridized with the trigger DNA and anchor DNA on the surface of the MSNs, aiming at forming a double-stranded DNA gate molecule and sealing the methylene blue (MB) in the inner pores of the MSNs. In the presence of target mRNA, the 5'-PO4 cDNA is displaced from the MSNs and competitively hybridizes with mRNA, which led to the liberation of the trigger DNA and the opening of the MSNs pore. The liberated trigger DNA can be then immobilized onto the electrode surface through hybridization with the capture DNA, triggering HCR on the electrode surface. At the same time, the MB released from the MSNs will selectively intercalate into the HCR long dsDNA polymers, giving rise to significant electrochemical response. In addition, due to the λ-exonuclease (λ-Exo) cleavage reaction-assisted target recycling, more amounts of trigger DNA will be liberated and trigger HCR, and numerous MB are uncapped and intercalate into the HCR products. As proof of concept, thymidine kinase 1 (TK1) mRNA was used as a model target. Featured with amplification efficiency, label-free capability, and low background signal, the strategy could quantitatively detect TK1 mRNA down to 2.0 aM with a linear calibration range from 0.1 fM to 1 pM. We have also demonstrated the practical application of our proposed sensing platform for detecting TK1 mRNA in real samples, opening up new avenues for highly sensitive quantification of biomarkers in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jinquan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Shuangdi Duan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
39
|
Zhang K, Song S, Huang S, Yang L, Min Q, Wu X, Lu F, Zhu JJ. Lighting Up MicroRNA in Living Cells by the Disassembly of Lock-Like DNA-Programmed UCNPs-AuNPs through the Target Cycling Amplification Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802292. [PMID: 30260566 DOI: 10.1002/smll.201802292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Intracellular microRNAs imaging based on upconversion nanoprobes has great potential in cancer diagnostics and treatments. However, the relatively low detection sensitivity limits their application. Herein, a lock-like DNA (LLD) generated by a hairpin DNA (H1) hybridizing with a bolt DNA (bDNA) sequence is designed, which is used to program upconversion nanoparticles (UCNPs, NaYF4 @NaYF4 :Yb, Er@NaYF4 ) and gold nanoparticles (AuNPs). The upconversion emission is quenched through luminescence resonance energy transfer (LRET). The multiple LLD can be repeatedly opened by one copy of target microRNA under the aid of fuel hairpin DNA strands (H2) to trigger disassembly of AuNPs from the UCNP, resulting in the lighting up of UCNPs with a high detection signal gain. This strategy is verified using microRNA-21 as model. The expression level of microRNA-21 in various cells lines can be sensitively measured in vitro, meanwhile cancer cells and normal cells can be easily and accurately distinguished by intracellular microRNA-21 imaging via the nanoprobes. The detection limit is about 1000 times lower than that of the previously reported upconversion nanoprobes without signal amplification. This is the first time a nonenzymatic signal amplification method has been combined with UCNPs for imaging intracellular microRNAs, which has great potential for cancer diagnosis.
Collapse
Affiliation(s)
- Keying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Shuting Song
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Yang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xingcai Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Joda H, Moutsiopoulou A, Stone G, Daunert S, Deo S. Design of Gaussia luciferase-based bioluminescent stem-loop probe for sensitive detection of HIV-1 nucleic acids. Analyst 2018; 143:3374-3381. [PMID: 29897056 PMCID: PMC6489121 DOI: 10.1039/c8an00047f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Here we describe the design of a bioluminescent stem-loop probe for the sensitive detection of HIV-1 spliced RNA. In this study, we employed Gaussia luciferase (GLuc), a bioluminescent protein that has several advantages over other bioluminescent proteins, including smaller size, higher bioluminescent intensity, and chemical and thermal stability. GLuc was chemically conjugated to the DABCYL-modified stem-loop probe (SLP) and was purified with a 2-step process to remove unconjugated GLuc and SLP. The binding of the target RNA to the loop region of the SLP results in the open conformation separating the stem part of SLP. GLuc conjugated to the stem acts as a reporter that produces light by a chemical reaction upon adding its substrate, coelenterazine in the presence of the target, while DABCYL serves as a quencher of bioluminescence in the closed conformation of SLP in the absence of the target. The optimized GLuc based-SLP assay resulted in a signal-to-background ratio of 47, which is the highest reported with bioluminescent SLPs and is significantly higher compared to traditional fluorescence-based SLPs that yield low signal to background ratio. Moreover, the assay showed an excellent selectivity against a single and double mismatched nucleic acid target, low detection limit, and ability to detect spiked HIV-1 RNA in human serum matrix.
Collapse
Affiliation(s)
- Hamdi Joda
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, USA.
| | | | | | | | | |
Collapse
|
41
|
Gao X, Wang X, Li Y, He J, Yu HZ. Exonuclease I-Hydrolysis Assisted Electrochemical Quantitation of Surface-Immobilized DNA Hairpins and Improved HIV-1 Gene Detection. Anal Chem 2018; 90:8147-8153. [DOI: 10.1021/acs.analchem.8b01445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoyi Gao
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xinglin Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Yunchao Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Jiale He
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
42
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
43
|
Yang L, Liu B, Wang M, Li J, Pan W, Gao X, Li N, Tang B. A Highly Sensitive Strategy for Fluorescence Imaging of MicroRNA in Living Cells and in Vivo Based on Graphene Oxide-Enhanced Signal Molecules Quenching of Molecular Beacon. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6982-6990. [PMID: 29405060 DOI: 10.1021/acsami.7b19284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In situ imaging of microRNA (miRNA) in living cells and in vivo is beneficial for promoting the studies on miRNA-related physiological and pathological processes. However, the current strategies usually have a low signal-to-background ratio, which greatly affects the sensitivity and imaging performance. To solve this problem, we developed a highly sensitive strategy for fluorescence imaging of miRNA in living cells and in vivo based on graphene oxide (GO)-enhanced signal molecule quenching of a molecular beacon (MB). 2Cy5-MB was designed by coupling two Cy5 molecules onto the opposite ends of MB. The fluorescence intensities of two Cy5 molecules were reduced because of the self-quenching effect. After adsorbing on the GO surface, the fluorescence quenching of the molecules was enhanced by fluorescence resonance energy transfer. This double-quenching effect significantly reduced the fluorescence background. In the presence of one miRNA molecule, the fluorescence signals of two Cy5 molecules were simultaneously recovered. Therefore, a significantly enhanced signal-to-background ratio was obtained, which greatly improved the detection sensitivity. In the presence of miRNA, the fluorescence intensity of 2Cy5-MB-GO recovered about 156 times and the detection limit was 30 pM. Compared with 1Cy5-MB-GO, the elevated fluorescence intensity was enhanced 8 times and the detection limit was reduced by an order of magnitude. Furthermore, fluorescence imaging experiments demonstrated that 2Cy5-MB-GO could visually detect microRNA-21 in various cancer cells and tumor tissues. This simple and effective strategy provides a new sensing platform for highly sensitive detection and simultaneous imaging analysis of multiple low-level biomarkers in living cells and in vivo.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Meimei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Jia Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
44
|
Wang J, Huang J, Quan K, Li J, Wu Y, Wei Q, Yang X, Wang K. Hairpin-fuelled catalytic nanobeacons for amplified microRNA imaging in live cells. Chem Commun (Camb) 2018; 54:10336-10339. [DOI: 10.1039/c8cc06298f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we introduce hairpin-fuelled catalytic nanobeacons for microRNA (miRNA) imaging in live cells with signal amplification capacity.
Collapse
Affiliation(s)
- Jiaoli Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| | - Ke Quan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| | - Jing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| | - Yanan Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| | - Qiaomei Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha
- China
| |
Collapse
|
45
|
Yang L, Li J, Pan W, Wang H, Li N, Tang B. Fluorescence and photoacoustic dual-mode imaging of tumor-related mRNA with a covalent linkage-based DNA nanoprobe. Chem Commun (Camb) 2018; 54:3656-3659. [DOI: 10.1039/c8cc01335g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fluorescence and photoacoustic dual-mode DNA nanoprobe based on covalent linkage was developed for detecting tumor-associated mRNA.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jia Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Hongyu Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
46
|
Liu J, Cui M, Zhou H, Yang W. DNAzyme Based Nanomachine for in Situ Detection of MicroRNA in Living Cells. ACS Sens 2017; 2:1847-1853. [PMID: 29181969 DOI: 10.1021/acssensors.7b00710] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The capability of in situ detection of microRNA in living cells with signal amplification strategy is of fundamental importance, and it will open up a new opportunity in development of diagnosis and prognosis of many diseases. Herein we report a swing DNA nanomachine for intracellular microRNA detection. The surfaces of Au nanoparticles (NPs) are modified by two hairpin DNA. We observe that one DNA (MB2) will open its hairpin structure upon partial hybridization with target miR-21 after entering into cells, and the other part of its hairpin structure could further react with the other hairpin DNA (MB1) to form a Zn2+-specific DNAzyme. This results in the disruption of MB1 through shearing action and the release of fluorescein Cy5. To provide an intelligent DNA nanomachine, MB2 is available again with the shearing action to bind with MB1, which provides effective signal amplification. This target-responsive, DNA nanomachine-based method showed a detection limit of 0.1 nM in vitro, and this approach could be an important step toward intracellular amplified detection and imaging of various analytes in living cells.
Collapse
Affiliation(s)
- Jing Liu
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Markers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- Centre
for Chemistry and Biotechnology, School of Life and Environmental
Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Meirong Cui
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Markers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Hong Zhou
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Markers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- Centre
for Chemistry and Biotechnology, School of Life and Environmental
Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Wenrong Yang
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Markers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- Centre
for Chemistry and Biotechnology, School of Life and Environmental
Sciences, Deakin University, Geelong, Victoria 3217, Australia
| |
Collapse
|
47
|
Zhang J, Zhao Q, Wu Y, Zhang B, Peng W, Piao J, Zhou Y, Gao W, Gong X, Chang J. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Biosens Bioelectron 2017; 97:26-33. [DOI: 10.1016/j.bios.2017.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
48
|
Uddin MI, Jayagopal A, Wong A, McCollum GW, Wright DW, Penn JS. Real-time imaging of VCAM-1 mRNA in TNF-α activated retinal microvascular endothelial cells using antisense hairpin-DNA functionalized gold nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:63-71. [PMID: 28890107 DOI: 10.1016/j.nano.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022]
Abstract
Vascular cell adhesion molecule 1 (VCAM-1) is an important inflammatory biomarker correlating with retinal disease progression. Thus, detection of VCAM-1 mRNA expression levels at an early disease stage could be an important predictive biomarker to assess the risk of disease progression and monitoring treatment response. We have developed VCAM-1 targeted antisense hairpin DNA-functionalized gold nanoparticles (AS-VCAM-1 hAuNP) for the real time detection of VCAM-1 mRNA expression levels in retinal endothelial cells. The AS-VCAM-1 hAuNP fluorescence enhancement clearly visualized the TNF-α induced cellular VCAM-1 mRNA levels with high signal to noise ratios compared to normal serum treated cells. The scrambled hAuNP probes were minimally detectable under same image acquisition conditions. Intracellular hAuNPs were detected using transmission electron microscopy (TEM) analysis of the intact cells. In addition, the AS-VCAM-1 hAuNP probes exhibited no acute toxicity to the retinal microvascular endothelial cells as measured by live-dead assay.
Collapse
Affiliation(s)
- Md Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA..
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alexis Wong
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA..
| |
Collapse
|
49
|
Study on the Fluorescent Activity of N²-Indolyl-1,2,3-triazole. Molecules 2017; 22:molecules22091380. [PMID: 28872608 PMCID: PMC6151483 DOI: 10.3390/molecules22091380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
A new type of blue emitter, N2-Indolyl-1,2,3-triazoles (NITs), with the λmax ranging from 420–480 nm and the Stokes shift from 89–143 nm, were synthesized through the coupling reaction of indoles with triazole derivatives. The influence of different substitution patterns on the optical properties (efficiency, excitation, and emission wavelengths) of the NITs was investigated. In addition, one palladium complex were synthesized by using NITs as the ligands, which, however, exhibited no fluorescent activity, but did show the enhanced co-planarity. Lastly, two bio-active molecule derivatives were explored for the potential use of these novel dyes in related chemical and biological applications.
Collapse
|
50
|
Multiple-targeted graphene-based nanocarrier for intracellular imaging of mRNAs. Anal Chim Acta 2017; 983:1-8. [DOI: 10.1016/j.aca.2017.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
|