1
|
Jeon BK, Cho SY, Lee DH. Stereoselective Approach to the Core Structure of (+)-Phainanoid A via Strategically Engineered Cascade Polyene Cyclization. Org Lett 2024; 26:8079-8083. [PMID: 39291842 DOI: 10.1021/acs.orglett.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stereoselective synthesis of 3b and its cascade polyene cyclization to 18b have been described. Acyclic polyene 3b was prepared from allyl bromide 4 and 1,3-dithiane 5, and intermediates 4 and 5 were synthesized from the commercially available geraniol (6) and cyclopenten-2-one (8), respectively, using enantioselective reduction of ketone, Johnson-Claisen rearrangement, and the Suzuki reaction as key steps. Au(I)-mediated diastereoselective polyene cyclization of 3b efficiently afforded tetracyclic compound 18b.
Collapse
Affiliation(s)
- Bo Keun Jeon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - So Yong Cho
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Duck Hyung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
2
|
Li C, Lu F, Cai Y, Zhang C, Shao Y, Zhang Y, Liu XY, Qin Y. Catalytic Asymmetric Total Synthesis of (-)-Garryine via an Enantioselective Heck Reaction. J Am Chem Soc 2024; 146:1081-1088. [PMID: 38113465 DOI: 10.1021/jacs.3c12171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The first asymmetric total synthesis of the hexacyclic veatchine-type C20-diterpenoid alkaloid (-)-garryine is presented. Key steps include a Pd-catalyzed enantioselective Heck reaction, a radical cyclization, and a photoinduced C-H activation/oxazolidine formation sequence. Of note, a highly enantioselective Heck reaction developed in this work provides efficient access to 6/6/6 tricyclic compounds, in particular, containing a C19-functionalitiy, which is useful for diverse transformations.
Collapse
Affiliation(s)
- Chuang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fei Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yukun Cai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Shao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Tufano E, Lee E, Barilli M, Casali E, Oštrek A, Jung H, Morana M, Kang J, Kim D, Chang S, Zanoni G. Iridium Acylnitrenoid-Initiated Biomimetic Cascade Cyclizations: Stereodefined Access to Polycyclic δ-Lactams. J Am Chem Soc 2023. [PMID: 37926946 DOI: 10.1021/jacs.3c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Ring-fused azacyclic compounds are important building units in the synthesis of biorelevant natural products, pharmaceutical agents, and molecular materials. Herein, we present a new approach to these condensed azacycles by a biomimetic cascade cyclization of arylalkenyl dioxazolones. This cascade reaction was found to proceed with excellent stereoselectivity and a high functional group tolerance. The substrate scope of arylalkenyl dioxazolones turned out to be highly flexible and extendable to additional terminating subunits, such as heteroaryl and alkynyl moieties. This biomimetic cyclization was elucidated to be initiated by an intramolecular transfer of the in situ generated electrophilic Ir-acylnitrenoid to the tethered olefinic double bond, leading to a key N-acylaziridine intermediate, which is in turn reacted with pendant (hetero)arenes or alkynes in a highly regio- and stereoselective manner to produce ring-fused azacyclic compounds.
Collapse
Affiliation(s)
- Eleonora Tufano
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Euijae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Matteo Barilli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andraž Oštrek
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Marta Morana
- Department of Earth Science, University of Firenze, Via G. La Pira 4, 50121 Firenze, Italy
| | - Jihye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
4
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
5
|
Warnica JM, Gleason JL. Mimicking enzymatic cation-π interactions in hydrazide catalyst design: access to trans-decalin frameworks. Chem Commun (Camb) 2023; 59:10496-10499. [PMID: 37559565 DOI: 10.1039/d3cc03351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Chiral bicyclic hydrazide organocatalysts have previously been shown to catalyze the cyclization of (Z)-polyene substrates with high enantioselectivity, but with poor selectivity for the corresponding (E)-polyenes. Here we demonstrate that diazapane carboxylates bearing terphenyl groups efficiently catalyze (E)-polyene bicyclization with enantioselectivities up to 94 : 6 er and with high diastereoselectivity for trans-decalin formation. The catalysts function by simultaneously initiating the cyclization via iminium ion formation and stabilizing intermediates/transition states by cation-π interactions.
Collapse
Affiliation(s)
- Josephine M Warnica
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC, H3A 0B8, Canada.
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
6
|
Fan M, Zou L, Tian K, Chen G, Cheng K, Li Y. Chemistry, bioactivity, biosynthesis, and total synthesis of stemmadenine alkaloids. Nat Prod Rep 2023; 40:1022-1044. [PMID: 36728407 DOI: 10.1039/d2np00052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covering: up to July 2022Stemmadenine alkaloids are a restrictive sub-group of monoterpene indole alkaloids, represented by two congeners: stemmadenine and vallesamine. Their skeleton is defined by the cleavage of the C-3-C-7 bond of the Strychnos group's pentacyclic scaffold in monoterpene indole alkaloids. The parent alkaloid stemmadenine acts as a key intermediate in the biosynthesis of several major monoterpene indole alkaloid families, including regular Strychnos alkaloids, Aspidosperma alkaloids, and Iboga alkaloids. In this review, a complete coverage of the stemmadenine alkaloids, from the early reports till the present day at 2022, are presented, and their diverse biological activities are briefly described. Moreover, the biosynthetic proposal for stemmadenine and the proposed biogenetic conversion of stemmadenine-type alkaloids into vallesamine-type congeners are discussed in detail. Moreover, the successful synthetic strategies to access the strained stemmadenine scaffolds are fully reviewed.
Collapse
Affiliation(s)
- Minghui Fan
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Liangbang Zou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Kaidi Tian
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Guoqing Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Yong Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
7
|
Deguchi H, Hanaya K, Sugai T, Higashibayashi S. Intramolecular cyclization of m-homoprenylphenols through oxidative nucleophilic aromatic substitution. Chem Commun (Camb) 2023; 59:748-751. [PMID: 36541374 DOI: 10.1039/d2cc06026d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We developed an intramolecular cyclization of m-homoprenylphenols and related m-prenylphenols to bicyclic skeletons by hypervalent iodine reagents through an oxidative nucleophilic aromatic substitution using the prenyl group as a carbon nucleophile. The reaction was applicable for the syntheses of 5/6-, 6/6-, and 7/6-fused ring systems.
Collapse
Affiliation(s)
- Hiroki Deguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
8
|
Martí À, Montesinos‐Magraner M, Echavarren AM, Franchino A. H-Bonded Counterion-Directed Catalysis: Enantioselective Gold(I)-Catalyzed Addition to 2-Alkynyl Enones as a Case Study. European J Org Chem 2022; 2022:e202200518. [PMID: 36590458 PMCID: PMC9796400 DOI: 10.1002/ejoc.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Indexed: 01/04/2023]
Abstract
H-bonded counterion-directed catalysis (HCDC) is a strategy wherein a chiral anion that is hydrogen-bonded to the achiral ligand of a metal complex is responsible for enantioinduction. In this article we present the application of H-bonded counterion-directed catalysis to the Au(I)-catalyzed enantioselective tandem cycloisomerization-addition reaction of 2-alkynyl enones. Following the addition of C-, N- or O-centered nucleophiles, bicyclic furans were obtained in moderate to excellent yield and enantioselectivity (28 examples, 59-96 % yield, 62 : 38 to 95 : 5 er). The optimal catalytic system, comprising a phosphinosquaramide Au(I) chloride complex and a BINOL-derived phosphoramidate Ag(I) salt, was selected in a combinatorial fashion from a larger library with the help of high-throughput screening. An enantioselectivity switch of ca. 120 Δee% was observed upon addition of the achiral Au(I) component to the Ag(I) salt.
Collapse
Affiliation(s)
- Àlex Martí
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV) C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Marc Montesinos‐Magraner
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV) C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
| |
Collapse
|
9
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
10
|
Solans MM, Basistyi VS, Law JA, Bartfield NM, Frederich JH. Programmed Polyene Cyclization Enabled by Chromophore Disruption. J Am Chem Soc 2022; 144:6193-6199. [PMID: 35377634 PMCID: PMC10559755 DOI: 10.1021/jacs.2c02144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new polyene cyclization strategy exploiting β-ionyl derivatives was developed. Photoinduced deconjugation of the extended π-system within these chromophores unveils a contrathermodynamic polyene that engages in a Heck bicyclization to afford [4.4.1]-propellanes. This cascade improves upon the limited regioselectivity achieved using existing biomimetic tactics and tolerates both electron-rich and electron-deficient (hetero)aryl groups. The utility of this approach was demonstrated with the diverted total synthesis of taxodione and salviasperanol, two isomeric abietane diterpenes that were previously inaccessible along the same synthetic pathway.
Collapse
Affiliation(s)
- Megan M Solans
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vitalii S Basistyi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James A Law
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Noah M Bartfield
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James H Frederich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
11
|
Affiliation(s)
- Samuel J. Plamondon
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - James L. Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| |
Collapse
|
12
|
Warnica JM, Gleason JL. The stabilized iminium catalyzed ( E)-polyene cyclization: trapping of non-activated terminating groups enabled by cation–π interactions. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cyclic hydrazide catalyst bearing a pendant anthracene catalyzes the polyene cyclization of 1,5-hexadiene-2-carboxaldehydes. Bicyclic closure proceeds in substrates with non-activated terminating groups that fail to react with simple hydrazide catalysts. Computational analysis shows that stabilization through cation–π interactions throughout the reaction sequence leads to the enhanced reactivity of the catalyst.
Collapse
Affiliation(s)
- Josephine M. Warnica
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - James L. Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| |
Collapse
|
13
|
Escofet I, Zuccarello G, Echavarren AM. Gold-catalyzed enantioselective cyclizations and cycloadditions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Kennemur J, Maji R, Scharf MJ, List B. Catalytic Asymmetric Hydroalkoxylation of C-C Multiple Bonds. Chem Rev 2021; 121:14649-14681. [PMID: 34860509 PMCID: PMC8704240 DOI: 10.1021/acs.chemrev.1c00620] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 01/30/2023]
Abstract
Asymmetric hydroalkoxylation of alkenes constitutes a redox-neutral and 100% atom-economical strategy toward enantioenriched oxygenated building blocks from readily available starting materials. Despite their great potential, catalytic enantioselective additions of alcohols across a C-C multiple bond are particularly underdeveloped, especially compared to other hydrofunctionalization methods such as hydroamination. However, driven by some recent innovations, e.g., asymmetric MHAT methods, asymmetric photocatalytic methods, and the development of extremely strong chiral Brønsted acids, there has been a gratifying surge of reports in this burgeoning field. The goal of this review is to survey the growing landscape of asymmetric hydroalkoxylation by highlighting exciting new advances, deconstructing mechanistic underpinnings, and drawing insight from related asymmetric hydroacyloxylation and hydration. A deep appreciation of the underlying principles informs an understanding of the various selectivity parameters and activation modes in the realm of asymmetric alkene hydrofunctionalization while simultaneously evoking the outstanding challenges to the field moving forward. Overall, we aim to lay a foundation for cross-fertilization among various catalytic fields and spur further innovation in asymmetric hydroalkoxylations of C-C multiple bonds.
Collapse
Affiliation(s)
| | | | - Manuel J. Scharf
- Max-Planck-Institut für
Kohlenforschung, Kaiser Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für
Kohlenforschung, Kaiser Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Dupeux A, Michelet V. Gold-Catalyzed Domino Cycloisomerization/Alkoxylation: An Entry to 3,4-Dihydro-1 H-[1,4]oxazino[4,3- a]indole. J Org Chem 2021; 86:17738-17747. [PMID: 34633827 DOI: 10.1021/acs.joc.1c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel and mild synthetic route for the preparation of functionalized polycyclic indole skeletons via a gold-mediated cycloisomerization/alkoxylation of 1,6-aldehyde-yne has been developed. This atom-economical catalytic process that associates IPrAu(MeCN)BF4 and an alcohol demonstrated remarkable selectivity in accessing functionalized 3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole derivatives of high synthetic utility (21 examples, yields of ≤96%) and could be optimized under asymmetric conditions with an enantiomeric excess of ≤86%.
Collapse
Affiliation(s)
- Aurélien Dupeux
- Côte d'Azur University, Institut de Chimie de Nice, Valrose Park, 06108 Nice Cedex 2, France
| | - Véronique Michelet
- Côte d'Azur University, Institut de Chimie de Nice, Valrose Park, 06108 Nice Cedex 2, France
| |
Collapse
|
16
|
Michelet V. Gold-Catalyzed Reactions Towards Diversity: From Simple Substrates to Functionalized Carbo- and Heterocycles. CHEM REC 2021; 21:3884-3896. [PMID: 34747571 DOI: 10.1002/tcr.202100253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Indexed: 12/29/2022]
Abstract
The field of gold catalysis has been in constant expansion during the last twenty years. Based on the precept of π-activation of unsaturated simple substrates, several new rearrangements have been discovered, implying aryl, alkyne, alkene or keto derivatives as key partners. In this personal account, the main contributions in the field of gold catalysis from our group will be highlighted, emphasizing the recent reports, starting from 1,6- and 1,5-enynes and then moving to keto-ynes derivatives. The gold-catalyzed reactions will be presented starting from classical skeletal rearrangements (cycloisomerization) and then domino processes. In each part, the presentation of asymmetric versions will be highlighted.
Collapse
Affiliation(s)
- Véronique Michelet
- Côte d'Azur University, Institut de Chimie de Nice, UMR 7272 CNRS, Valrose Park, Faculty of Sciences, 06108, Nice Cedex 2, France
| |
Collapse
|
17
|
Murakami R, Tanishima H, Naito D, Kawamitsu H, Kamo R, Uchida A, Kawasaki K, Kiyohara C, Matsuo M, Maeda K, Inagaki F. Diastereoselective tricyclization/dimerization of yne-indoles catalyzed by a Au(III) complex featuring an L2/Z-type ligand. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Xue S, Lücht A, Benet-Buchholz J, Kleij AW. Pd/Cu Dual-Catalyzed Asymmetric Synthesis of Highly Functional All-Carbon Quaternary Stereocenters from Vinyl Carbonates. Chemistry 2021; 27:10107-10114. [PMID: 33955608 DOI: 10.1002/chem.202100677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/05/2022]
Abstract
The challenging metal-catalyzed asymmetric synthesis of highly functional quaternary carbon centers using decarboxylative C(sp3 )-C(sp3 ) bond formation reactions is reported. The key substrate, a vinyl cyclic carbonate, is activated to provide concomitantly both the requisite nucleophile (by formal umpolung) and electrophile reaction partner preceding the asymmetric cross-coupling process. A wide screening of reaction conditions, additives and catalyst precursors afforded a protocol that gave access to a series of compounds featuring densely functionalized, elusive quaternary carbon stereocenters in appreciable yield and with enantiomeric ratios (er's) of up to 90 : 10.
Collapse
Affiliation(s)
- Sijing Xue
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Alexander Lücht
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
19
|
Alachouzos G, Frontier AJ. Cyclization Strategies for the Concurrent Installation of Multiple Quaternary Stereogenic Centers. Isr J Chem 2021. [DOI: 10.1002/ijch.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georgios Alachouzos
- Stratingh Institute of Chemistry Rijksuniversiteit Groningen Nijenborgh 4 9747AG Groningen, The Netherlands
| | - Alison J. Frontier
- Department of Chemistry University of Rochester 414 Hutchison Hall, 100 Trustee Road Rochester New York 14627-0216 United States
| |
Collapse
|
20
|
Millán RE, Rodríguez J, Sarandeses LA, Gómez-Bengoa E, Sestelo JP. Indium(III)-Catalyzed Stereoselective Synthesis of Tricyclic Frameworks by Cascade Cycloisomerization Reactions of Aryl 1,5-Enynes. J Org Chem 2021; 86:9515-9529. [PMID: 34170696 DOI: 10.1021/acs.joc.1c00825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The indium(III)-catalyzed cascade cycloisomerization reaction of 1,5-enynes with pendant aryl nucleophiles is reported. The reaction proceeds in cascade under mild reaction conditions, using InI3 (5 mol %) as a catalyst with a range of 1,5-enynes furnished with aryl groups (phenyl and phenol) at alkene (E and Z isomers) and with terminal and internal alkynes. Using 1-bromo-1,5-enynes, a one-pot sequential indium-catalyzed cycloisomerization and palladium-catalyzed cross-coupling with triorganoindium reagents were developed. The double cyclization is stereospecific and operates via a biomimetic cascade cation-olefin through 1,5-enyne cyclization (6-endo-dig) and subsequent C-C hydroarylation or C-O phenoxycyclization. Density functional theory (DFT) computational studies on 1,5-enynyl aryl ethers support a two-step mechanism where the first stereoselective 1,5-enyne cyclization produces a nonclassical carbocation intermediate that evolves to the tricyclic reaction product through a SEAr mechanism. Using this approach, a variety of tricyclic heterocycles such as benzo[b]chromenes, phenanthridines, xanthenes, and spiroheterocyclic compounds are efficiently synthesized with high atom economy.
Collapse
Affiliation(s)
- Ramón E Millán
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Luis A Sarandeses
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, 20009 Donostia-San, Sebastián
| | - José Pérez Sestelo
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| |
Collapse
|
21
|
Mies T, White AJP, Parsons PJ, Barrett AGM. Biomimetic Syntheses of Analogs of Hongoquercin A and B by Late-Stage Derivatization. J Org Chem 2020; 86:1802-1817. [DOI: 10.1021/acs.joc.0c02638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Thomas Mies
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, England
| | - Andrew J. P. White
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, England
| | - Philip J. Parsons
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, England
| | - Anthony G. M. Barrett
- Department of Chemistry, Imperial College, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, England
| |
Collapse
|
22
|
Zheng L, Hua R. Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. Front Chem 2020; 8:580355. [PMID: 33195069 PMCID: PMC7596902 DOI: 10.3389/fchem.2020.580355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Polycyclic scaffolds are omnipresent in natural products and drugs, and the synthetic strategies and methods toward construction of these scaffolds are of particular importance. Compared to simple cyclic ring systems, polycyclic scaffolds have higher structure complexity and diversity, making them suitable for charting broader chemical space, yet bringing challenges for the syntheses. In this review, we surveyed progress in the past decade on synthetic methods for polycyclic natural product scaffolds, in which the key steps are one-pot reactions involving intermolecular or intramolecular alkyne annulation. Synthetic strategies of selected polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro rings are discussed with emphasis on the synthetic efficiency and product diversity. Recent examples containing newly developed synthetic concepts or toolkits such as collective and divergent total synthesis, gold catalysis, C–H functionalization, and dearomative cyclization are highlighted. Finally, several “privileged synthetic strategies” for “privileged polycyclic scaffolds” are summarized, with discussion of remained challenges and future perspectives.
Collapse
Affiliation(s)
- Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Zheng TL, Zhang Y, Gou AL, Cheng F, Liu SZ, Yu L, Cui MY, Xu XT, Zhang K, Wang SH. Au(I)-Catalyzed Cyclization/Semipinacol Rearrangement Reaction of Allenes to Construct Quaternary Carbon-Containing Scaffolds. Org Lett 2020; 22:7073-7077. [PMID: 32886523 DOI: 10.1021/acs.orglett.0c02262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of methods toward the construction of quaternary carbon centers has been a hot topic in recent years. In this work, an Au(I)-catalyzed intramolecular cyclization/semipinacol rearrangement of allene-containing allylic silyl ether was developed to provide a direct strategy for the construction of multisubstituted cyclohexene-type compounds with a quaternary carbon center in moderate to good yields. In particular, this method provides an alternative synthetic strategy for the construction of a multisubstituted spirocyclo[4.5]decane skeleton and may be applied to the synthesis of related bioactive molecules and their derivatives, thus facilitating the corresponding functional studies.
Collapse
Affiliation(s)
- Tian-Lu Zheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ye Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - A-Long Gou
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Fu Cheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Si-Zhan Liu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Lan Yu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ming-Yue Cui
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xue-Tao Xu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, P.R. China
| | - Kun Zhang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, P.R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
24
|
Cai X, Pan Y, Wang C, Qian G, Rong Z. ZnI2-catalyzed carbocyclization of arylalkynes leads to the synthesis of polysubstituted dihydro- and tetrahydroquinoline derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Kutateladze DA, Strassfeld DA, Jacobsen EN. Enantioselective Tail-to-Head Cyclizations Catalyzed by Dual-Hydrogen-Bond Donors. J Am Chem Soc 2020; 142:6951-6956. [PMID: 32223127 PMCID: PMC7293861 DOI: 10.1021/jacs.0c02665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chiral urea derivatives are shown to catalyze enantioselective tail-to-head cyclization reactions of neryl chloride analogues. Experimental data are consistent with a mechanism in which π-participation by the nucleophilic olefin facilitates chloride ionization and thereby circumvents simple elimination pathways. Kinetic and computational studies support a cooperative mode of catalysis wherein two molecules of the urea catalyst engage the substrate and induce enantioselectivity through selective transition state stabilization.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
26
|
Kaur N, Ahlawat N, Bhardwaj P, Verma Y, Grewal P, Jangid NK. Ag-mediated synthesis of six-membered N-heterocycles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1703196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Neha Ahlawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Pranshu Bhardwaj
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Yamini Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Pooja Grewal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | | |
Collapse
|
27
|
Chen G, Wang C, Zou L, Zhu J, Li Y, Qi C. Six-Step Total Synthesis of (±)-Conolidine. JOURNAL OF NATURAL PRODUCTS 2019; 82:2972-2978. [PMID: 31686504 DOI: 10.1021/acs.jnatprod.9b00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A concise total synthesis of (±)-conolidine, a potent nonopioid analgesic, in 19% overall yield is described here. A gold(I)-catalyzed Conia-ene reaction (Toste cyclization) and a Pictet-Spengler reaction served as key transformations for assembling the 1-azabicyclo[4.2.2]decane core and defining the geometry of the exocyclic double bond. The activation energies of formation of the vinyl-gold intermediates were calculated and revealed a silyl enol ether with an unprotected indole moiety as a suitable precursor for the Toste cyclization. This six-step synthesis did not involve any nonstrategic redox manipulations.
Collapse
Affiliation(s)
- Guoqing Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process , Shaoxing University , Shaoxing , 312000 , People's Republic of China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process , Shaoxing University , Shaoxing , 312000 , People's Republic of China
| | - Liangbang Zou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process , Shaoxing University , Shaoxing , 312000 , People's Republic of China
| | - Jiahao Zhu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process , Shaoxing University , Shaoxing , 312000 , People's Republic of China
| | - Yong Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process , Shaoxing University , Shaoxing , 312000 , People's Republic of China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process , Shaoxing University , Shaoxing , 312000 , People's Republic of China
| |
Collapse
|
28
|
Plamondon SJ, Warnica JM, Kaldre D, Gleason JL. Hydrazide‐Catalyzed Polyene Cyclization: Asymmetric Organocatalytic Synthesis of
cis
‐Decalins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samuel J. Plamondon
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| | - Josephine M. Warnica
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| | - Dainis Kaldre
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| | - James L. Gleason
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| |
Collapse
|
29
|
Plamondon SJ, Warnica JM, Kaldre D, Gleason JL. Hydrazide‐Catalyzed Polyene Cyclization: Asymmetric Organocatalytic Synthesis of
cis
‐Decalins. Angew Chem Int Ed Engl 2019; 59:253-258. [DOI: 10.1002/anie.201911952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/23/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Samuel J. Plamondon
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| | - Josephine M. Warnica
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| | - Dainis Kaldre
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| | - James L. Gleason
- Department of Chemistry McGill University 801 Sherbrooke W. Montreal QC H3A 0B8 Canada
| |
Collapse
|
30
|
Tong J, Liu C, Wang B. Synthesis of A-B-C-ring Tricyclic Core of iso-Merrilactone A. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Rössler SL, Petrone DA, Carreira EM. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite,Olefin) Ligands. Acc Chem Res 2019; 52:2657-2672. [PMID: 31243973 DOI: 10.1021/acs.accounts.9b00209] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The catalytic, asymmetric synthesis of complex molecules has been a core focus of our research program for some time because developments in the area can have an immediate impact on the identification of novel strategies for the synthesis of value-added molecules. In concert with this central interest, we have emphasized the design of ligand scaffolds as a tactic to discover and develop novel chemistry and overcome well-recognized synthetic challenges. Based on our group's work on chiral pool-derived diolefin ligands, we designed and implemented a class of hybrid (phosphoramidite,olefin) ligands, which combines the properties of both phosphoramidite and olefin motifs to impact, fine-tune, and even override the inherent reactivity of the metal center. Specifically, we have utilized these unique modifying ligands to address several recognized limitations in the field of iridium-catalyzed, asymmetric allylic substitution. The methods we have documented typically employ branched, unprotected allylic alcohols as substrates and obviate the need for rigorous exclusion of air and moisture. Following Takeuchi's seminal report demonstrating the high aptitude of Ir(I)-phosphite catalysts for branch-selective allylic substitution, concerted efforts from numerous research laboratories have led to a broadening of the synthetic utility of this reaction class. The first section of this Account outlines the process leading to our discovery of an unprecedented (phosphoramidite,olefin) ligand and its validation in the first iridium-catalyzed amination of branched, unprotected allylic alcohols. This section continues with our work involving heteroatom-based nucleophiles within inter- and intramolecular etherification, thioetherification and spiroketalization processes. The second section highlights the use of readily available carbon nucleophiles possessing sp, sp2, and sp3 hybridization in a series of enantioselective carbon-carbon bond-forming reactions. We describe how alkylzinc, allylsilane, and several classes of organotrifluoroborate nucleophiles can be coupled enantioselectively to enable construction of several key motifs including 1,5-dienes, 1,4-dienes, and 1,4-enynes. Since the unique electronic and steric properties of this class of ligands renders the (η3-allyl)-Ir(III) intermediate highly electrophilic, even weak nucleophiles such as alkyl olefins can be used. We also show that more nucleophilic alkene motifs such as enamines and in situ generated ketene acetals smoothly participate in substitution reactions with allylic alcohols to yield valuable piperidines and γ,δ-unsaturated esters, respectively. The concept of stereodivergent dual catalysis, which synergistically combines chiral amine catalysis with iridium catalysis to furnish α-allylated aldehydes containing two independently controllable stereocenters is then discussed. This process has enabled the independent, stereoselective synthesis of all four possible product stereoisomers from a single set of starting materials, and was highlighted in the stereodivergent synthesis of Δ9-tetrahydrocannabinol. This Account concludes with an overview of our organometallic mechanistic studies regarding relevant intermediates within the catalytic cycle of this class of allylic substitution. These studies have allowed us to better understand the origin of the unique characteristics exhibited by this catalyst in comparison to related systems.
Collapse
|
32
|
Enantioselective, Organocatalytic, Dissymmetric 1,4- and 1,2-Addition of Malononitrile to a Keto-bisenone Followed by an Oxa-Michael Addition Cascade. Org Lett 2019; 21:5793-5797. [PMID: 31298544 DOI: 10.1021/acs.orglett.9b01705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An unprecedented enantioselective dissymmetric 1,4- and 1,2-addition of malononitrile to a keto-bisenone followed by an oxa-Michael addition cascade to trap the in situ generated unstable tertiary alcohol have been developed. The quinine-derived amino-squaramide bifunctional organocatalyst worked efficiently and provides the oxa-spiro-[4,4]-nonanes in good yields and excellent diastereo- and enantioselectivities (up to 99:1 dr and 99% ee). Notably, a complete chemoselective addition of a methylene unit to an aliphatic-tethered enone over the aromatic-tethered enone was observed.
Collapse
|
33
|
Kaur N, Bhardwaj P, Devi M, Verma Y, Grewal P. Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0920-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
34
|
Maji B. Stereoselective Haliranium, Thiiranium and Seleniranium Ion‐Triggered Friedel–Crafts‐Type Alkylations for Polyene Cyclizations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Maji
- Department of ChemistryIndira Gandhi National Tribal University Amarkantak – 484886 Madhya Pradesh India
| |
Collapse
|
35
|
Matsuoka J, Kumagai H, Inuki S, Oishi S, Ohno H. Construction of the Pyrrolo[2,3-d]carbazole Core of Spiroindoline Alkaloids by Gold-Catalyzed Cascade Cyclization of Ynamide. J Org Chem 2019; 84:9358-9363. [DOI: 10.1021/acs.joc.9b01149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Junpei Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kumagai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
36
|
Tskhovrebov AG, Lingnau JB, Fürstner A. Gold Difluorocarbenoid Complexes: Spectroscopic and Chemical Profiling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
37
|
Tskhovrebov AG, Lingnau JB, Fürstner A. Gold Difluorocarbenoid Complexes: Spectroscopic and Chemical Profiling. Angew Chem Int Ed Engl 2019; 58:8834-8838. [PMID: 30998295 DOI: 10.1002/anie.201903957] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 01/03/2023]
Abstract
Gold carbenes of the general type [LAu=CR2 ]+ are sufficiently long-lived for spectroscopic inspection only if the substituents compensate for the largely missing stabilization of the carbene center by the [LAu]+ fragment. π-Donation by two fluorine substituents (R=F) is insufficient; rather, difluorocarbene complexes are so deprived in electron density that they sequester even "weakly coordinating" anions such as triflate or triflimide. This particular bonding situation translates into unmistakable carbenium ion chemistry upon reaction with stilbene as a model substrate.
Collapse
Affiliation(s)
| | - Julia B Lingnau
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
38
|
Yang H, Tang W. Efficient Enantioselective Syntheses of Chiral Natural Products Facilitated by Ligand Design. CHEM REC 2019; 20:23-40. [PMID: 31025478 DOI: 10.1002/tcr.201900003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/27/2019] [Indexed: 12/23/2022]
Abstract
The employment of enantioselective transition-metal-catalyzed transformations as key steps in asymmetric natural product syntheses have attracted considerable attention in recent years owing to their versatile synthetic utilities, mild conditions and high efficiency in chirality generation. The chiral catalysts or supporting ligands are believed to be crucial for the requisite reactivity and enantioselectivity. Therefore, the rational design of chiral ligands is at the heart of developing new asymmetric transition-metal catalyzed reactions and provides an avenue to the asymmetric synthesis of natural products. Our group has been engaged in the development of transition-metal-catalyzed enantioselective cross-coupling, cyclization and other related reactions and the application of these methodologies to natural product syntheses. In this account, we summarized our recent synthetic efforts towards the efficient total syntheses of several different types of natural products including terpenes, alkaloids and polyketides facilitated by the design of a series of versatile P-chiral phosphorous ligands.
Collapse
Affiliation(s)
- He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032
| |
Collapse
|
39
|
Robb KA, Athavale SV, Denmark SE. Unusual Kinetic Profiles for Lewis Base-Catalyzed Sulfenocyclization of ortho-Geranylphenols in Hexafluoroisopropyl Alcohol. Synlett 2019; 30:1656-1661. [PMID: 33867688 DOI: 10.1055/s-0039-1690111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The kinetic behavior of the Lewis base-catalyzed sulfenocyclization of polyenes in hexafluoroisopropyl alcohol (HFIP) was explored. The rate of reaction is not dependent on the electronic properties of the terminal nucleophile, suggesting that this capture step is not rate limiting. Additionally, fractional orders were observed for two of the reaction components. This intriguing profile appears unique to the polyene sulfenocyclization reaction and is not merely due to solvent effects.
Collapse
Affiliation(s)
- Kevin A Robb
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Soumitra V Athavale
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem Rev 2018; 119:1855-1969. [PMID: 30582688 DOI: 10.1021/acs.chemrev.8b00506] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls , Universität Heidelberg , Im Neuenheimer Feld 270 , D-69120 Heidelberg , Germany
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
41
|
Muratore ME, Konovalov AI, Armengol-Relats H, Echavarren AM. Diastereospecific Gold(I)-Catalyzed Cyclization Cascade for the Controlled Preparation of N- and N,O-Heterocycles. Chemistry 2018; 24:15613-15621. [PMID: 30066978 DOI: 10.1002/chem.201802770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/25/2018] [Indexed: 11/11/2022]
Abstract
The reaction of oxime-tethered 1,6-enynes with a cationic gold(I) catalyst demonstrates a great potential for the synthesis of a range of heterocycles in a diastereospecific fashion. The control of the configuration of the oxime and the alkene of the enyne moiety is the key to selectively obtain dihydro-1,2-oxazines, isoxazolines or dihydropyrrole-N-oxides as single diastereoisomers. As supported by DFT calculations, these cascade reactions proceed stepwise, by the intramolecular addition of the O or N atom of the oxime onto cyclopropyl gold(I) carbene intermediates. In this study, a rare [3,3]-sigmatropic rearrangement of nitrones is also observed.
Collapse
Affiliation(s)
- Michael E Muratore
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Andrey I Konovalov
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Helena Armengol-Relats
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira I Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira I Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
42
|
Alyabyev SB, Beletskaya IP. Gold as a catalyst. Part II. Alkynes in the reactions of carbon–carbon bond formation. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4815] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Gold(I)-Catalysis for the Synthesis of Terpenoids: From Intramolecular Cascades to Intermolecular Cycloadditions. Isr J Chem 2018. [DOI: 10.1002/ijch.201800006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Tao Z, Robb KA, Zhao K, Denmark SE. Enantioselective, Lewis Base-Catalyzed Sulfenocyclization of Polyenes. J Am Chem Soc 2018; 140:3569-3573. [PMID: 29509003 PMCID: PMC6008787 DOI: 10.1021/jacs.8b01660] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A sulfenium-ion-initiated, catalytic, enantioselective polyene cyclization is described. Homogeranylarenes and ortho-geranylphenols undergo polycyclization in good yield, diastereoselectivity, and enantioselectivity. The stereodetermining step is the generation of an enantiomerically enriched thiiranium ion from a terminal alkene and a sulfenylating agent in the presence of a chiral Lewis basic catalyst. The use of hexafluoroisopropyl alcohol as the solvent is crucial to obtain good yields. The thioether moiety resulting from the reaction can be subsequently transformed into diverse oxygen and carbon functionality postcyclization. The utility of this method is demonstrated by the enantioselective syntheses of (+)-ferruginol and (+)-hinokiol.
Collapse
Affiliation(s)
- Zhonglin Tao
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Kevin A. Robb
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Kuo Zhao
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E. Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Oki Y, Nakada M. Research on Au(I)-catalyzed ene-yne cycloisomerization for construction of quassinoid scaffold. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
|
47
|
Theunissen C, Métayer B, Lecomte M, Henry N, Chan HC, Compain G, Gérard P, Bachmann C, Mokhtari N, Marrot J, Martin-Mingot A, Thibaudeau S, Evano G. Cationic polycyclization of ynamides: building up molecular complexity. Org Biomol Chem 2018; 15:4399-4416. [PMID: 28485455 DOI: 10.1039/c7ob00850c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycyclization reactions are among the most efficient synthetic tools for the synthesis of complex, polycyclic molecules in a single operation from simple starting materials. We report in this manuscript a full account on the discovery and development of a novel cationic polycyclization from readily available ynamides. Simple activation of these building blocks under acidic conditions enables the generation of highly reactive activated keteniminium ions, which triggers an unprecedented cationic polycyclization yielding highly substituted polycyclic nitrogen heterocycles possessing up to seven fused cycles and three contiguous stereocenters.
Collapse
Affiliation(s)
- Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fan L, Han C, Li X, Yao J, Wang Z, Yao C, Chen W, Wang T, Zhao J. Enantioselective Polyene Cyclization Catalyzed by a Chiral Brønsted Acid. Angew Chem Int Ed Engl 2018; 57:2115-2119. [DOI: 10.1002/anie.201711603] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Liwen Fan
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chunyu Han
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Xuerong Li
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Jiasheng Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Zhengning Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chaochao Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Weihao Chen
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Tao Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| | - Junfeng Zhao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| |
Collapse
|
49
|
Fan L, Han C, Li X, Yao J, Wang Z, Yao C, Chen W, Wang T, Zhao J. Enantioselective Polyene Cyclization Catalyzed by a Chiral Brønsted Acid. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Liwen Fan
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chunyu Han
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Xuerong Li
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Jiasheng Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Zhengning Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Chaochao Yao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Weihao Chen
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
| | - Tao Wang
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| | - Junfeng Zhao
- College of Chemistry & Chemical Engineering; Jiangxi Normal University; Nanchang 330022 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
- Key Laboratory of Chemical Biology of Jiangxi Province; China
| |
Collapse
|
50
|
Lee YC, Kumar K. Gold(I) Catalyzed Enyne Cycloisomerization - A Roadmap to Privileged Heterocyclic Scaffolds. Isr J Chem 2018. [DOI: 10.1002/ijch.201700067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yen-Chun Lee
- Max-Planck-Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn Str. 11 44227- Dortmund Germany
- Technische Universität Dortmund; Fakultät Chemie, Chemische Biologie; Otto-Hahn-Straße 6 Dortmund 44221 Germany
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie; Abteilung Chemische Biologie; Otto-Hahn Str. 11 44227- Dortmund Germany
| |
Collapse
|