1
|
Hamaguchi T, Iseki Y, Ishikawa R, Mishima A, Kawata S. Structure of Ni(II) Inclusion Complex in Solid/Solution States and the Enhancement of Catalytic Behavior in Electrochemical Hydrogen Production. Molecules 2024; 29:5858. [PMID: 39769947 PMCID: PMC11678872 DOI: 10.3390/molecules29245858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
In this article, we investigate the encapsulation of K2[Ni(maleonitriledithiolate)2] (1) within a host molecule, β-cyclodextrin (β-CD), via single-crystal X-ray analysis. An inclusion complex, K2{[Ni(maleonitriledithiolate)2]@(β-CD)2} (2), was constructed from 1 and two β-CDs. The anion guest Ni complex included a host cavity, constructed using two β-CDs, and the Ni atom of the anion was located between the two hydrophilic primary rims. Ultraviolet-visible absorption spectroscopy revealed that inclusion complex 2 exhibited a 2:1 (host:guest) stoichiometry in the solution, which is consistent with the result obtained from X-ray crystallography. The association of the host and guest occurred in two steps, and the association constants for the first and second steps were 1.1(7) × 104 and 1.8(5) × 104 mol-1 dm3, respectively. The catalytic behavior of 1 and 2 was investigated for electrochemical hydrogen production in the aqueous solution of an acetate buffer (pH = 4.72). During the catalytic reaction, inclusion complex 2 was observed to have a better catalytic reaction rate than 1. The study findings provide insights into the effects of the encapsulation of guest molecules within host structures.
Collapse
Affiliation(s)
- Tomohiko Hamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan (R.I.); (A.M.); (S.K.)
| | | | | | | | | |
Collapse
|
2
|
Cropley JD, Mitchell AC, Fritsch NA, Ho M, Wells TD, Reynolds TM, Brennessel WW, McNamara WR. Mononuclear Fe(III) Schiff base antipyrine complexes for catalytic hydrogen generation. Dalton Trans 2024; 53:15421-15426. [PMID: 39246062 DOI: 10.1039/d4dt01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Mononuclear Fe(III) complexes containing an antipyrine Schiff base ligand were prepared and fully characterized, demonstrating a planar tetradentate coordination geometry. These complexes were found to be active for the hydrogen evolution reaction. Catalysis occurs at -1.4 V vs. Fc+/Fc, with an overpotential of 700 mV. The complexes are active electrocatalysts with a turnover frequency of 700 s-1. Furthermore, when paired with a chromophore and sacrificial donor, the complexes are active photocatalysts demonstrating >1700 turnovers during 40 hours of irradiation with a quantum yield of up to 5.4%. The catalysts have also been found to operate in natural water samples of varying salinity.
Collapse
Affiliation(s)
- Jessica D Cropley
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Amanda C Mitchell
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Nicole A Fritsch
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Marissa Ho
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Timothy D Wells
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Todd M Reynolds
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - William W Brennessel
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA
| | - William R McNamara
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| |
Collapse
|
3
|
Li S, Xie Y, Zhang B, Liu Y, Xu S, Wu H, Du R, Wang ZG. A Host-Guest Approach to Engineering Oxidase-Mimetic Assembly with Substrate Selectivity and Dynamic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45319-45326. [PMID: 39145897 DOI: 10.1021/acsami.4c08030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The creation of synthetic materials that emulate the complexity of natural systems, such as enzymes, remains a challenge in biomimicry. Here, we present a simple yet effective strategy to introduce substrate selectivity and dynamic responsiveness into an enzyme-mimetic supramolecular material. We achieved this by anchoring γ-cyclodextrin to a fluorene-modified Lys/Cu2+ assembly, which mimics copper-dependent oxidase. The binding affinity among the components was examined using 1H NMR, isothermal titration calorimetry (ITC), and theoretical simulation. The γ-cyclodextrin acts as a host, forming a complex with the fluorenyl moiety and aromatic substrates of specific sizes. This ensures the proximity of the substrate reactive groups to the copper center, leading to size-selective enhancement of aromatic substrate oxidation, particularly favoring biphenyl substrates. Notably, α- and β-cyclodextrins do not exhibit this effect, and the native oxidase lacks this selectivity. Additionally, the binding affinity of the aromatic substrate to the catalyst can be dynamically tuned by adding α-cyclodextrin or by irradiating with different wavelengths in the presence of competitive azo-guests, resulting in switched oxidative activities. This approach offers a new avenue for designing biomimetic materials with tailorable active site structures and catalytic properties.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Xie
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Velasco L, Liu C, Zhang X, Grau S, Gil-Sepulcre M, Gimbert-Suriñach C, Picón A, Llobet A, DeBeer S, Moonshiram D. Mapping the Ultrafast Mechanistic Pathways of Co Photocatalysts in Pure Water through Time-Resolved X-ray Spectroscopy. CHEMSUSCHEM 2023; 16:e202300719. [PMID: 37548998 DOI: 10.1002/cssc.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
Nanosecond time-resolved X-ray (tr-XAS) and optical transient absorption spectroscopy (OTA) are applied to study 3 multimolecular photocatalytic systems with [Ru(bpy)3 ]2+ photoabsorber, ascorbic acid electron donor and Co catalysts with methylene (1), hydroxomethylene (2) and methyl (3) amine substituents in pure water. OTA and tr-XAS of 1 and 2 show that the favored catalytic pathway involves reductive quenching of the excited photosensitizer and electron transfer to the catalyst to form a CoII square pyramidal intermediate with a bonded aqua molecule followed by a CoI square planar derivative that decays within ≈8 μs. By contrast, a CoI square pyramidal intermediate with a longer decay lifetime of ≈35 μs is formed from an analogous CoII geometry for 3 in H2 O. These results highlight the protonation of CoI to form the elusive hydride species to be the rate limiting step and show that the catalytic rate can be enhanced through hydrogen containing pendant amines that act as H-H bond formation proton relays.
Collapse
Grants
- RYC2020-029863-I Ramon y Cajal grant
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC-ICMM)
- PIE grant
- 20226AT001 CSIC-ICMM
- PID2019-111086RA-I00 Spanish Ministerio de Ciencia, Innovación y Universidades grants
- TED2021-132757B-I00 Spanish Ministerio de Ciencia, Innovación y Universidades grants
- PID2022-143013OB-I00 Spanish Ministerio de Ciencia, Innovación y Universidades grants
- DE-AC02-06CH11357 DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division
- PID2021-126560NB-I00 DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division
- 2017-T1/IND-5432 MCIU/AEI/FEDER, UE
- 2021-5A/IND-20959 MCIU/AEI/FEDER, UE
- Comunidad de Madrid through TALENTO program
- Max Planck Society
- RYC2019-027423-I Ramon y Cajal grant
- PID2019-111617RB-I00 Ministerio de Ciencia e Innovación
- MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- SO-CEX2019-000925-S Ministerio de Ciencia e Innovación
- MCIN/AEI/10.13039/5011000110 Ministerio de Ciencia e Innovación
- Advanced Photon Source (APS); a U.S. Department of Energy (DOE) Office of Science User Facility
- DE-AC02-06CH11357 Argonne National Laboratory
Collapse
Affiliation(s)
- Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont IL, 60439, U.S.A
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont IL, 60439, U.S.A
| | - Sergi Grau
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antonio Picón
- Departamento de Química, Universidad Autonoma de Madrid, 28049, Madrid, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| |
Collapse
|
5
|
Diao D, Simaan AJ, Martinez A, Colomban C. Bioinspired complexes confined in well-defined capsules: getting closer to metalloenzyme functionalities. Chem Commun (Camb) 2023; 59:4288-4299. [PMID: 36946593 DOI: 10.1039/d2cc06990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Reproducing the key features offered by metalloprotein binding cavities is an attractive approach to overcome the main bottlenecks of current open artificial models (in terms of stability, efficiency and selectivity). In this context, this featured article brings together selected examples of recent developments in the field of confined bioinspired complexes with an emphasis on the emerging hemicryptophane caged ligands. In particular, we focused on (1) the strategies allowing the insulation and protection of complexes sharing similarities with metalloprotein active sites, (2) the confinement-induced improvement of catalytic efficiencies and selectivities and (3) very recent efforts that have been made toward the development of bioinspired complexes equipped with weakly binding artificial cavities.
Collapse
Affiliation(s)
- Donglin Diao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | | | - Cédric Colomban
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
6
|
Agarwal T, Kaur‐Ghumaan S. [FeFe] Hydrogenase: 2‐Propanethiolato‐Bridged {FeFe} Systems as Electrocatalysts for Hydrogen Production in Acetonitrile‐Water. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Tashika Agarwal
- Department of Chemistry University of Delhi Delhi 110007 India
| | | |
Collapse
|
7
|
Ivanov AA, Haouas M, Evtushok DV, Pozmogova TN, Golubeva TS, Molard Y, Cordier S, Falaise C, Cadot E, Shestopalov MA. Stabilization of Octahedral Metal Halide Clusters by Host-Guest Complexation with γ-Cyclodextrin: Toward Nontoxic Luminescent Compounds. Inorg Chem 2022; 61:14462-14469. [PMID: 36041168 DOI: 10.1021/acs.inorgchem.2c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γ-Cyclodextrin (γ-CD) interacts in aqueous solution with octahedral halide clusters Na2[{M6X8}Cl6] (M = Mo, W; X = Br, I) to form robust inclusion supramolecular complexes [{M6X8}Cl6@2γ-CD]2-. Single-crystal X-ray diffraction analyses revealed two conformational organizations within the adduct depending on the nature of the inner halide X within the {M6X8} core. Using 35Cl NMR and UV-vis as complementary techniques, the kinetics of the hydrolysis process were shown to increase with the following order: {W6I8} < {W6Br8} ≈ {Mo6I8} < {Mo6Br8}. The complexation with γ-CD drastically enhances the hydrolytic stability of luminescent [{M6X8}Cl6]2- cluster-based units, which was quantitatively proved by the same techniques. The resulting host-guest complexation provides a protective shell against contact with water and offers promising horizons for octahedral clusters in biology as revealed by the low dark cytotoxicity and cellular uptake.
Collapse
Affiliation(s)
- Anton A Ivanov
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France.,Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Darya V Evtushok
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Tatiana N Pozmogova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Tatiana S Golubeva
- Novosibirsk State University, Novosibirsk 630090, Russia.,Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Yann Molard
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Stéphane Cordier
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | | |
Collapse
|
8
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
9
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Li A, Yang J, Lü S, Gui MS, Yan P, Gao F, Du LB, Yang Q, Li YL. Synthesis, characterization and electrochemical properties of diiron azadithiolate complexes Fe2[(μ-SCH2)2NCH2CCH](CO)5L (L = CO or monophosphines). Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
13
|
Keijer T, Bouwens T, Hessels J, Reek JNH. Supramolecular strategies in artificial photosynthesis. Chem Sci 2020; 12:50-70. [PMID: 34168739 PMCID: PMC8179670 DOI: 10.1039/d0sc03715j] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Artificial photosynthesis is a major scientific endeavor aimed at converting solar power into a chemical fuel as a viable approach to sustainable energy production and storage. Photosynthesis requires three fundamental actions performed in order; light harvesting, charge-separation and redox catalysis. These actions span different timescales and require the integration of functional architectures developed in different fields of study. The development of artificial photosynthetic devices is therefore inherently complex and requires an interdisciplinary approach. Supramolecular chemistry has evolved to a mature scientific field in which programmed molecular components form larger functional structures by self-assembly processes. Supramolecular chemistry could provide important tools in preparing, integrating and optimizing artificial photosynthetic devices as it allows precise control over molecular components within such a device. This is illustrated in this perspective by discussing state-of-the-art devices and the current limiting factors - such as recombination and low stability of reactive intermediates - and providing exemplary supramolecular approaches to alleviate some of those problems. Inspiring supramolecular solutions such as those discussed herein will incite expansion of the supramolecular toolbox, which eventually may be needed for the development of applied artificial photosynthesis.
Collapse
Affiliation(s)
- Tom Keijer
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tessel Bouwens
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joeri Hessels
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
14
|
Zaffaroni R, Orth N, Ivanović‐Burmazović I, Reek JNH. Hydrogenase Mimics in M 12 L 24 Nanospheres to Control Overpotential and Activity in Proton-Reduction Catalysis. Angew Chem Int Ed Engl 2020; 59:18485-18489. [PMID: 32614491 PMCID: PMC7589440 DOI: 10.1002/anie.202008298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Hydrogenase enzymes are excellent proton reduction catalysts and therefore provide clear blueprints for the development of nature-inspired synthetic analogues. Mimicking their catalytic center is straightforward but mimicking the protein matrix around the active site and all its functions remains challenging. Synthetic models lack this precisely controlled second coordination sphere that provides substrate preorganization and catalyst stability and, as a result, their performances are far from those of the natural enzyme. In this contribution, we report a strategy to easily introduce a specific yet customizable second coordination sphere around synthetic hydrogenase models by encapsulation inside M12 L24 cages and, at the same time, create a proton-rich nano-environment by co-encapsulation of ammonium salts, effectively providing substrate preorganization and intermediates stabilization. We show that catalyst encapsulation in these nanocages reduces the catalytic overpotential for proton reduction by 250 mV as compared to the uncaged catalyst, while the proton-rich nano-environment created around the catalyst ensures that high catalytic rates are maintained.
Collapse
Affiliation(s)
- Riccardo Zaffaroni
- Homogeneous, Supramolecular and Bio-Inspired Catalysisvan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Nicole Orth
- Department of Chemistry and PharmacyFriedrich-Alexander-Universitaet ErlangenEgerlandstrasse 391058ErlangenGermany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and PharmacyFriedrich-Alexander-Universitaet ErlangenEgerlandstrasse 391058ErlangenGermany
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysisvan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
15
|
Meunier A, Singleton ML, Kauffmann B, Granier T, Lautrette G, Ferrand Y, Huc I. Aromatic foldamers as scaffolds for metal second coordination sphere design. Chem Sci 2020; 11:12178-12186. [PMID: 34094430 PMCID: PMC8162952 DOI: 10.1039/d0sc05143h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 11/21/2022] Open
Abstract
As metalloproteins exemplify, the chemical and physical properties of metal centers depend not only on their first but also on their second coordination sphere. Installing arrays of functional groups around the first coordination sphere of synthetic metal complexes is thus highly desirable, but it remains a challenging objective. Here we introduce a novel approach to produce tailored second coordination spheres. We used bioinspired artificial architectures based on aromatic oligoamide foldamers to construct a rigid, modular and well-defined environment around a metal complex. Specifically, aza-aromatic monomers having a tethered [2Fe-2S] cluster have been synthesized and incorporated in conical helical foldamer sequences. Exploiting the modularity and predictability of aromatic oligoamide structures allowed for the straightforward design of a conical architecture able to sequester the metal complex in a confined environment. Even though no direct metal complex-foldamer interactions were purposely designed in this first generation model, crystallography, NMR and IR spectroscopy concurred to show that the aromatic oligoamide backbone alters the structure and fluxional processes of the metal cluster.
Collapse
Affiliation(s)
- Antoine Meunier
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), IECB 2 Rue Robert Escarpit 33600 Pessac France
| | - Michael L Singleton
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), IECB 2 Rue Robert Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, INSERM, Institut Européen de Chimie et Biologie (UMS 3033) 2 Rue Robert Escarpit 33600 Pessac France
| | - Thierry Granier
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), IECB 2 Rue Robert Escarpit 33600 Pessac France
| | - Guillaume Lautrette
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), IECB 2 Rue Robert Escarpit 33600 Pessac France
| | - Yann Ferrand
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), IECB 2 Rue Robert Escarpit 33600 Pessac France
| | - Ivan Huc
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), IECB 2 Rue Robert Escarpit 33600 Pessac France
- Department of Pharmacy, Centre for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| |
Collapse
|
16
|
Zaffaroni R, Orth N, Ivanović‐Burmazović I, Reek JNH. Hydrogenase Mimics in M
12
L
24
Nanospheres to Control Overpotential and Activity in Proton‐Reduction Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Riccardo Zaffaroni
- Homogeneous, Supramolecular and Bio-Inspired Catalysis van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Nicole Orth
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universitaet Erlangen Egerlandstrasse 3 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universitaet Erlangen Egerlandstrasse 3 91058 Erlangen Germany
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
17
|
Roy A, Vaughn MD, Tomlin J, Booher GJ, Kodis G, Simmons CR, Allen JP, Ghirlanda G. Enhanced Photocatalytic Hydrogen Production by Hybrid Streptavidin-Diiron Catalysts. Chemistry 2020; 26:6240-6246. [PMID: 32201996 DOI: 10.1002/chem.202000204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Hybrid protein-organometallic catalysts are being explored for selective catalysis of a number of reactions, because they utilize the complementary strengths of proteins and of organometallic complex. Herein, we present an artificial hydrogenase, StrepH2, built by incorporating a biotinylated [Fe-Fe] hydrogenase organometallic mimic within streptavidin. This strategy takes advantage of the remarkable strength and specificity of biotin-streptavidin recognition, which drives quantitative incorporation of the biotinylated diironhexacarbonyl center into streptavidin, as confirmed by UV/Vis spectroscopy and X-ray crystallography. FTIR spectra of StrepH2 show characteristic peaks at shift values indicative of interactions between the catalyst and the protein scaffold. StrepH2 catalyzes proton reduction to hydrogen in aqueous media during photo- and electrocatalysis. Under photocatalytic conditions, the protein-embedded catalyst shows enhanced efficiency and prolonged activity compared to the isolated catalyst. Transient absorption spectroscopy data suggest a mechanism for the observed increase in activity underpinned by an observed longer lifetime for the catalytic species FeI Fe0 when incorporated within streptavidin compared to the biotinylated catalyst in solution.
Collapse
Affiliation(s)
- Anindya Roy
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.,Present Address: Molecular Engineering and Sciences, Institute for Protein Design, University of Washington, Seattle, WA, 98195-1655, USA
| | - Michael D Vaughn
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - John Tomlin
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Garrett J Booher
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Chad R Simmons
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| |
Collapse
|
18
|
Schiffman ZR, Margonis CM, Moyer A, Ott M, McNamara WR. Tridentate bis(2-pyridylmethyl)amine iron catalyst for electrocatalytic proton reduction. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Song D, Li B, Li X, Sun X, Li J, Li C, Xu T, Zhu Y, Li F, Wang N. Orthogonal Supramolecular Assembly Triggered by Inclusion and Exclusion Interactions with Cucurbit[7]uril for Photocatalytic H 2 Evolution. CHEMSUSCHEM 2020; 13:394-399. [PMID: 31682086 DOI: 10.1002/cssc.201902668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Indexed: 06/10/2023]
Abstract
The fabrication of efficient and convenient photocatalytic H2 evolution systems is a fascinating research topic in the field of solar energy conversion. A ternary self-assembled photocatalytic H2 evolution system was fabricated through supramolecular host-guest chemistry. The system consisted of the H2 evolution catalyst [Co(dmgH)2 (4-ppy)2 ]NO3 (1; dmgH2 =dimethylglyoxime, 4-ppy=4-phenylpyridine) and the photosensitizer Eosin Y (EY) assembled with the macrocyclic compound cucurbit[7]uril (CB[7]) to form the 1@CB[7]/EY complex through inclusion and exclusion interactions, respectively. The synchronous self-assembly drives an orthogonal arrangement of the 1@CB[7]/EY system. The inclusion complex 1@CB[7] was successfully characterized by 1 H NMR spectroscopy and single-crystal XRD. The exclusion process of CB[7] with EY was identified by NMR titration and the optimized geometry of the exclusion structure was determined by DFT calculations. The use of CB[7] resulted in a 6-fold increase in turnover number, a 3-fold increase in turnover frequency, and a 3-fold extension of lifetime for photocatalytic H2 evolution as compared with the system in the absence of CB[7]. The improvement of the light-driven H2 evolution activity was ascribed to the ability of CB[7] to link the photosensitizer and catalyst.
Collapse
Affiliation(s)
- Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P.R. China
| | - Bo Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Xin Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Xuzhuo Sun
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P.R. China
| | - Chengbo Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P.R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P.R. China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P.R. China
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, P.R. China
| |
Collapse
|
20
|
Zhang YP, Zhang M, Chen XR, Lu C, Young DJ, Ren ZG, Lang JP. Cobalt(II) and Nickel(II) Complexes of a PNN Type Ligand as Photoenhanced Electrocatalysts for the Hydrogen Evolution Reaction. Inorg Chem 2020; 59:1038-1045. [DOI: 10.1021/acs.inorgchem.9b02497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ya-Ping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Xu-Ran Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Chengrong Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - David James Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
- Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| |
Collapse
|
21
|
Chen W, Cai X, Ji L, Li X, Wang X, Zhang X, Gao Y, Feng F. A photosynthesis-inspired supramolecular system: caging photosensitizer and photocatalyst in apoferritin. PHOTOSYNTHESIS RESEARCH 2019; 142:169-180. [PMID: 31522365 DOI: 10.1007/s11120-019-00671-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Inspired by the bioinorganic structure of natural [FeFe]-hydrogenase ([FeFe]-H2ase) that possesses iron sulfur clusters to catalyze proton reduction to hydrogen (H2), we design a supramolecular photosystem by sequentially integrating hydrophobic ruthenium complex (as a photosensitizer) and diiron dithiolate complex (as a photocatalyst) into the inner surface or cavity of apoferritin via noncovalent interactions. This platform allows photosensitizer and catalyst to localize in a close proximity and short-distance electron transfer process to occur within a confined space. The resulted uniform core-shell nanocomposites were stable and well dispersed in water, and showed enhanced H2 generation activity in acidic solution as compared to the homogenous system without apoferritin participation.
Collapse
Affiliation(s)
- Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuetong Cai
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Luyang Ji
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuewei Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaoran Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yajing Gao
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
22
|
|
23
|
Wang Z, He J, Lü S, Jiang W, Wu Y, Jiang J, Xie Y, Mu C, Li A, Li Y, Li Q. Monophosphine‐substituted diiron azadithiolate complexes: New syntheses, characterization and electrochemical properties. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zheng Wang
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Jiao He
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Shuang Lü
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252000 China
| | - Wei‐Dong Jiang
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Yu Wu
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Jin Jiang
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Ying Xie
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Chao Mu
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Ao Li
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Yu‐Long Li
- College of Chemistry and Environmental EngineeringSichuan University of Science and Engineering Zigong 643000 China
| | - Qian‐Li Li
- College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252000 China
| |
Collapse
|
24
|
Call A, Casadevall C, Romero-Rivera A, Martin-Diaconescu V, Sommer DJ, Osuna S, Ghirlanda G, Lloret-Fillol J. Improved Electro- and Photocatalytic Water Reduction by Confined Cobalt Catalysts in Streptavidin. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04981] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arnau Call
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Adrian Romero-Rivera
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Vlad Martin-Diaconescu
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Dayn J. Sommer
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
25
|
Cao M, Wang Z, Yuan Z, Jiang X, Xu S, Liu Y, Zhang S, Dai X. Synthesis and photocatalytic properties of two different chitosan-based structural hydrogenase models. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Nurttila SS, Zaffaroni R, Mathew S, Reek JNH. Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chem Commun (Camb) 2019; 55:3081-3084. [PMID: 30785463 DOI: 10.1039/c9cc00901a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen as a renewable fuel is viable when produced sustainably via proton reduction catalysis (PRC). Many homogeneous electrocatalysts perform PRC with high rates, but they all require a large overpotential to drive the reaction. Natural hydrogenase enzymes achieve reversible PRC with potentials close to the thermodynamic equilibrium through confinement of the active site in a well-defined protein pocket. Inspired by nature, we report a strategy that relies on the selective encapsulation of a synthetic hydrogenase mimic in a novel supramolecular cage. Catalyst confinement decreases the PRC overpotential by 150 mV, and is proposed to originate from the cationic cage stabilizing anionic reaction intermediates within the catalytic cycle.
Collapse
Affiliation(s)
- Sandra S Nurttila
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Karayilan M, Brezinski WP, Clary KE, Lichtenberger DL, Glass RS, Pyun J. Catalytic Metallopolymers from [2Fe-2S] Clusters: Artificial Metalloenzymes for Hydrogen Production. Angew Chem Int Ed Engl 2019; 58:7537-7550. [PMID: 30628136 DOI: 10.1002/anie.201813776] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/10/2022]
Abstract
Reviewed herein is the development of novel polymer-supported [2Fe-2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small-molecule, [2Fe-2S]-containing mimetics of the active site (H-cluster) of these metalloenzymes have been synthesized for years. These small [2Fe-2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe-2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer-supported [2Fe-2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe-2S] complex, termed single-site [2Fe-2S] metallopolymers, exhibit superior activity for H2 production.
Collapse
Affiliation(s)
- Metin Karayilan
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - William P Brezinski
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Kayla E Clary
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Dennis L Lichtenberger
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Richard S Glass
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA.,Program for Chemical Convergence of Energy & Environment, School of Chemical & Biological Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Karayilan M, Brezinski WP, Clary KE, Lichtenberger DL, Glass RS, Pyun J. Catalytic Metallopolymers from [2Fe‐2S] Clusters: Artificial Metalloenzymes for Hydrogen Production. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Metin Karayilan
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - William P. Brezinski
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Kayla E. Clary
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Dennis L. Lichtenberger
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Richard S. Glass
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
- Program for Chemical Convergence of Energy & Environment School of Chemical & Biological Engineering Seoul National University Seoul Korea
| |
Collapse
|
29
|
Kato M, Kon K, Hirayama J, Yagi I. Host–guest chemistry between cyclodextrin and a hydrogen evolution catalyst cobaloxime. NEW J CHEM 2019. [DOI: 10.1039/c9nj00081j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the host–guest chemistry between cyclodextrin and a bisdimethylglyoximato cobalt complex, cobaloxime.
Collapse
Affiliation(s)
- Masaru Kato
- Section of Environmental Materials Science
- Faculty of Environmental Earth Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Keita Kon
- Division of Environmental Materials Science
- Graduate School of Environmental Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Jun Hirayama
- Division of Environmental Materials Science
- Graduate School of Environmental Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Ichizo Yagi
- Section of Environmental Materials Science
- Faculty of Environmental Earth Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| |
Collapse
|
30
|
Song LC, Feng L, Guo YQ. Hydrophilic quaternary ammonium-group-containing [FeFe]H2ase models prepared by quaternization of the pyridyl N atoms in pyridylazadiphosphine- and pyridylmethylazadiphosphine-bridged diiron complexes with various electrophiles. Dalton Trans 2019; 48:1443-1453. [DOI: 10.1039/c8dt04211j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The first aromatic quaternary ammonium-group-containing [FeFe]H2ase models have been prepared and some of them found to be catalysts for H2 production under CV conditions.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Li Feng
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuan-Qiang Guo
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
31
|
Cheng M, Wang M, Zhang S, Liu F, Yang Y, Wan B, Sun L. Photocatalytic H 2 production using a hybrid assembly of an [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin. Faraday Discuss 2018; 198:197-209. [PMID: 28267170 DOI: 10.1039/c6fd00207b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is a great challenge to develop iron-based highly-efficient and durable catalytic systems for the hydrogen evolution reaction (HER) by understanding and learning from [FeFe]-hydrogenases. Here we report photocatalytic H2 production by a hybrid assembly of a sulfonate-functionalized [FeFe]-hydrogenase mimic (1) and CdSe quantum dot (QD), which is denoted as 1/β-CD-6-S-CdSe (β-CD-6-SH = 6-mercapto-β-cyclodextrin). In this assembly, thiolato-functionalized β-CD acts not only as a stabilizing reagent of CdSe QDs but also as a host compound for the diiron catalyst, so as to confine CdSe QDs to the space near the site of diiron catalyst. In addition, another two reference systems comprising MAA-CdSe QDs (HMAA = mercaptoacetic acid) and 1 in the presence and absence of β-CD, denoted as 1/β-CD/MAA-CdSe and 1/MAA-CdSe, were studied for photocatalytic H2 evolution. The influences of β-CD and the stabilizing reagent β-CD-6-S- on the stability of diiron catalyst, the fluorescence lifetime of CdSe QDs, the apparent electron transfer rate, and the photocatalytic H2-evolving efficiency were explored by comparative studies of the three hybrid systems. The 1/β-CD-6-S-CdSe system displayed a faster apparent rate for electron transfer from CdSe QDs to the diiron catalyst compared to that observed for MAA-CdSe-based systems. The total TON for visible-light driven H2 evolution by the 1/β-CD-6-S-CdSe QDs in water at pH 4.5 is about 2370, corresponding to a TOF of 150 h-1 in the initial 10 h of illumination, which is 2.7- and 6.6-fold more than the amount of H2 produced from the reference systems 1/β-CD/MAA-CdSe and 1/MAA-CdSe. Additionally, 1/β-CD-6-S-CdSe gave 2.4-5.1 fold enhancement in the apparent quantum yield and significantly improved the stability of the system for photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Minglun Cheng
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Deng C, Wang Z, Xie Y, He J, Wei J, Zou L, Xie B, Jiang J, Wu Y, Ma Z, Hu M, Li Y, Zhao P, Liu X. Synthesis, Structure, and Electrochemical Properties of O
-Alkyldithiophosphato Nickel Complexes with Chelating Aminodiphosphine Ligands. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenglong Deng
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Zheng Wang
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Ying Xie
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Jiao He
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Juan Wei
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Like Zou
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Bin Xie
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Jin Jiang
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Yu Wu
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Zhongyi Ma
- School of Materials Science and Engineering; North University of China; 030051 Taiyuan P. R. China
| | - Mengyuan Hu
- School of Materials Science and Engineering; North University of China; 030051 Taiyuan P. R. China
| | - Yulong Li
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Peihua Zhao
- School of Materials Science and Engineering; North University of China; 030051 Taiyuan P. R. China
| | - Xufeng Liu
- School of Materials and Chemical Engineering; Ningbo University of Technology; 315211 Ningbo P. R. China
| |
Collapse
|
33
|
Christoforides E, Papaioannou A, Bethanis K. Crystal structure of the inclusion complex of cholesterol in β-cyclodextrin and molecular dynamics studies. Beilstein J Org Chem 2018; 14:838-848. [PMID: 29719578 PMCID: PMC5905284 DOI: 10.3762/bjoc.14.69] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 01/19/2023] Open
Abstract
The role of beta-cyclodextrin (β-CD) in cholesterol removal primarily from mammalian cells and secondly from dairy products has been studied thoroughly in recent years. Although the physicochemical characterization of the inclusion compound of cholesterol in β-CD has been achieved by various methods, no crystal structure has been determined so far. We report here the crystal structure of the inclusion compound of cholesterol in β-CD. The inclusion complex crystallizes in the triclinic space group P1 forming head-to-head dimers which are stacked along the c-axis. One well-defined cholesterol molecule 'axially' encapsulated inside the β-CD dimer and 22 water molecules that stabilize the complexes in the crystalline state comprise the asymmetric unit of the structure. The dimers are arranged in an intermediate (IM) channel packing mode in the crystal. Moreover, MD simulations, at 300 and 340 K, based on the crystallographically determined coordinates of the complex show that the formed cholesterol/β-CD inclusion compound remains very stable in aqueous solution at both temperatures.
Collapse
Affiliation(s)
- Elias Christoforides
- Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | - Andreas Papaioannou
- Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | - Kostas Bethanis
- Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| |
Collapse
|
34
|
Click Access to a Cyclodextrin-Based Spatially Confined AIE Material for Hydrogenase Recognition. SENSORS 2018; 18:s18041134. [PMID: 29642489 PMCID: PMC5948543 DOI: 10.3390/s18041134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The spatial confinement of conjugated phenyl rotators is a compulsory requirement for the fluorescence enhancement of aggregation induced emission (AIE) molecules. This work reports a novel spatially confined AIE material by restricting several tetraphenylethylene (TPE) molecules around the primary face of β-cyclodextrin (CD) via a Cu(I) catalytic 1,3-dipolar cycloaddition reaction (click chemistry). The spatial confinement effect was found to significantly enhance the fluorescence emission when compared with a single TPE modified CD. In addition, the emission maxima took place with the dimethyl sulfoxide volume ratio of 30% in a water mixture, which is remarkably different from traditional AIE molecules. Benefiting from the CD’s complexation effect, this material exhibits a selective fluorescence quenching property in certain hydrogenases and can be used as a fluorescence probe for hydrogenase sensing. This demonstrates the potential of the spatially confined AIECD for practical applications.
Collapse
|
35
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
36
|
Li YL, He J, Wei J, Wei J, Mu C, Wu Y, Xie B, Zou LK, Wang Z, Wu ML, Li HM, Gao F, Zhao PH. Synthesis, structure and electrochemical properties of diiron S-(−)-1-Phenylethylazadithiolate complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Prochowicz D, Kornowicz A, Lewiński J. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chem Rev 2017; 117:13461-13501. [DOI: 10.1021/acs.chemrev.7b00231] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Prochowicz
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arkadiusz Kornowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
38
|
Investigations on the synthesis, structural characterization and electrochemical properties of diiron azadithiolate complexes and phosphine-substituted derivatives. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
He J, Deng CL, Li Y, Li YL, Wu Y, Zou LK, Mu C, Luo Q, Xie B, Wei J, Hu JW, Zhao PH, Zheng W. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00040] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiao He
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Cheng-Long Deng
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yao Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yu Wu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Li-Ke Zou
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Chao Mu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Qiang Luo
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Bin Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Jian Wei
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Jing-Wen Hu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Pei-Hua Zhao
- School
of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Wen Zheng
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| |
Collapse
|
40
|
Dizicheh ZB, Halloran N, Asma W, Ghirlanda G. De Novo Design of Iron–Sulfur Proteins. Methods Enzymol 2017; 595:33-53. [DOI: 10.1016/bs.mie.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Boralugodage NP, Arachchige RJ, Dutta A, Buchko GW, Shaw WJ. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H2 oxidation. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02579j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Outer coordination sphere interactions reduce the overpotential for H2 oxidation catalysts (brown ellipse) compared to those that have –COOH groups but don't have stabilizing interactions (blue ellipse).
Collapse
Affiliation(s)
| | | | - Arnab Dutta
- Pacific Northwest National Laboratory
- Richland
- 99352 USA
| | | | - Wendy J. Shaw
- Pacific Northwest National Laboratory
- Richland
- 99352 USA
| |
Collapse
|
42
|
One-Pot Click Access to a Cyclodextrin Dimer-Based Novel Aggregation Induced Emission Sensor and Monomer-Based Chiral Stationary Phase. SENSORS 2016; 16:s16121985. [PMID: 27886123 PMCID: PMC5190966 DOI: 10.3390/s16121985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
A 'two birds, one stone' strategy was developed via a one-pot click reaction to simultaneously prepare a novel cyclodextrin (CD) dimer based aggregation induced emission (AIE) sensor (AIE-DCD) and a monomer based chiral stationary phase (CSP-MCD) for chiral high performance liquid chromatography (CHPLC). AIE-DCD was found to afford satisfactory AIE response for specific detection of Zn2+ with a detection limit of 50 nM. CSP-MCD exhibits excellent enantioseparation ability toward dansyl amino acids, where the resolution of dansyl amino leucine reaches 5.43.
Collapse
|
43
|
Song LC, Wang YX, Xing XK, Ding SD, Zhang LD, Wang XY, Zhang HT. Hydrophilic Quaternary Ammonium-Group-Containing [FeFe]-Hydrogenase Models: Synthesis, Structures, and Electrocatalytic Hydrogen Production. Chemistry 2016; 22:16304-16314. [DOI: 10.1002/chem.201603040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P.R. China
| | - Yong-Xiang Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xu-Kang Xing
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Shu-Da Ding
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Long-Duo Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xu-Yong Wang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Hong-Tao Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
44
|
Hartley CL, DiRisio RJ, Screen ME, Mayer KJ, McNamara WR. Iron Polypyridyl Complexes for Photocatalytic Hydrogen Generation. Inorg Chem 2016; 55:8865-70. [PMID: 27548389 DOI: 10.1021/acs.inorgchem.6b01413] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of Fe(III) complexes were recently reported that are stable and active electrocatalysts for reducing protons into hydrogen gas. Herein, we report the incorporation of these electrocatalysts into a photocatalytic system for hydrogen production. Hydrogen evolution is observed when these catalysts are paired with fluorescein (chromophore) and triethylamine (sacrificial electron source) in a 1:1 ethanol:water mixture. The photocatalytic system is highly active and stable, achieving TONs > 2100 (with respect to catalyst) after 24 h. Catalysis proceeds through a reductive quenching pathway with a quantum yield of over 3%.
Collapse
Affiliation(s)
- Carolyn L Hartley
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Ryan J DiRisio
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Megan E Screen
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Kathryn J Mayer
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - William R McNamara
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| |
Collapse
|
45
|
Electrocatalytic hydrogen evolution by an iron complex containing a nitro-functionalized polypyridyl ligand. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Alcala-Torano R, Sommer DJ, Bahrami Dizicheh Z, Ghirlanda G. Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production. Methods Enzymol 2016; 580:389-416. [PMID: 27586342 DOI: 10.1016/bs.mie.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The last decades have seen an increased interest in finding alternative means to produce renewable fuels in order to satisfy the growing energy demands and to minimize environmental impact. Nature can serve as an inspiration for development of these methodologies, as enzymes are able to carry out a wide variety of redox processes at high efficiency, employing a wide array of earth-abundant transition metals to do so. While it is well recognized that the protein environment plays an important role in tuning the properties of the different metal centers, the structure/function relationships between amino acids and catalytic centers are not well resolved. One specific approach to study the role of proteins in both electron and proton transfer is the biomimetic design of redox active peptides, binding organometallic clusters in well-understood protein environments. Here we discuss different strategies for the design of peptides incorporating redox active FeS clusters, [FeFe]-hydrogenase organometallic mimics, and porphyrin centers into different peptide and protein environments in order to understand natural redox enzymes.
Collapse
Affiliation(s)
- R Alcala-Torano
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - D J Sommer
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Z Bahrami Dizicheh
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - G Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
47
|
Abstract
Virtually all organosulfur compounds react with Fe(0) carbonyls to give the title complexes. These reactions are reviewed in light of major advances over the past few decades, spurred by interest in Fe2(μ-SR)2(CO)x centers at the active sites of the [FeFe]-hydrogenase enzymes. The most useful synthetic route to Fe2(μ-SR)2(CO)6 involves the reaction of thiols with Fe2(CO)9 and Fe3(CO)12. Such reactions can proceed via mono-, di-, and triiron intermediates. The reactivity of Fe(0) carbonyls toward thiols is highly chemoselective, and the resulting dithiolato complexes are fairly rugged. Thus, many complexes tolerate further synthetic elaboration directed at the organic substituents. A second major route involves alkylation of Fe2(μ-S2)(CO)6, Fe2(μ-SH)2(CO)6, and Li2Fe2(μ-S)2(CO)6. This approach is especially useful for azadithiolates Fe2[(μ-SCH2)2NR](CO)6. Elaborate complexes arise via addition of the FeSH group to electrophilic alkenes, alkynes, and carbonyls. Although the first example of Fe2(μ-SR)2(CO)6 was prepared from ferrous reagents, ferrous compounds are infrequently used, although the Fe(II)(SR)2 + Fe(0) condensation reaction is promising. Almost invariably low-yielding, the reaction of Fe3(CO)12, S8, and a variety of unsaturated substrates results in C-H activation, affording otherwise inaccessible derivatives. Thiones and related C═S-containing reagents are highly reactive toward Fe(0), often giving complexes derived from substituted methanedithiolates and C-H activation.
Collapse
Affiliation(s)
- Yulong Li
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
48
|
REBACK MATTHEWL, GINOVSKA BOJANA, BUCHKO GARRYW, DUTTA ARNAB, PRIYADARSHANI NILUSHA, KIER BRANDONL, HELM MONTEL, RAUGEI SIMONE, SHAW WENDYJ. Investigating the role of chain and linker length on the catalytic activity of an H 2 production catalyst containing a β-hairpin peptide. J COORD CHEM 2016; 69:1730-1747. [PMID: 33093711 PMCID: PMC7577397 DOI: 10.1080/00958972.2016.1188924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/23/2016] [Indexed: 12/20/2022]
Abstract
Building on our recent report of an active H2 production catalyst [Ni(PPh 2NProp-peptide)2]2+ (Prop = para-phenylpropionic acid, peptide (R10) = WIpPRWTGPR-NH2, p = D-proline and P2N = 1-aza-3,6-diphosphacycloheptane) that contains structured β-hairpin peptides, here we investigate how H2 production is effected by: (1) the length of the hairpin (eight or ten residues) and (2) limiting the flexibility between the peptide and the core complex by altering the length of the linker: para-phenylpropionic acid (three carbons) or para-benzoic acid (one carbon). Reduction of the peptide chain length from ten to eight residues increases or maintains the catalytic current for H2 production for all complexes, suggesting a non-productive steric interaction at longer peptide lengths. While the structure of the hairpin appears largely intact for the complexes, NMR data are consistent with differences in dynamic behavior which may contribute to the observed differences in catalytic activity. Molecular dynamics simulations demonstrate that complexes with a one-carbon linker have the desired effect of restricting the motion of the hairpin relative to the complex; however, the catalytic currents are significantly reduced compared to complexes containing a three-carbon linker as a result of the electron withdrawing nature of the -COOH group. These results demonstrate the complexity and interrelated nature of the outer coordination sphere on catalysis.
Collapse
Affiliation(s)
| | - BOJANA GINOVSKA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - GARRY W. BUCHKO
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - ARNAB DUTTA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | - MONTE L. HELM
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - SIMONE RAUGEI
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - WENDY J. SHAW
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
49
|
Yang L, He C, Liu X, Zhang J, Sun H, Guo H. Supramolecular Photoinduced Electron Transfer between a Redox-Active Hexanuclear Metal-Organic Cylinder and an Encapsulated Ruthenium(II) Complex. Chemistry 2016; 22:5253-60. [DOI: 10.1002/chem.201504975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Lu Yang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China), Fax
| | - Cheng He
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China), Fax
| | - Xin Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China), Fax
| | - Jing Zhang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China), Fax
| | - Hui Sun
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China), Fax
| | - Huimin Guo
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116023 P. R. China), Fax
| |
Collapse
|
50
|
Troppmann S, Brandes E, Motschmann H, Li F, Wang M, Sun L, König B. Enhanced Photocatalytic Hydrogen Production by Adsorption of an [FeFe]-Hydrogenase Subunit Mimic on Self-Assembled Membranes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|