1
|
Cooney SE, Schreiber E, Ferrigno BM, Matson EM. O 2 reduction via proton-coupled electron transfer by a V(III) aquo on a polyoxovanadate-alkoxide cluster. Chem Commun (Camb) 2024; 60:5610-5613. [PMID: 38713068 DOI: 10.1039/d4cc01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We report the transfer of H-atoms from a reduced polyoxovanadate alkoxide [nOct4N][V6O6(OH2)(OMe)12] via concerted proton-electron transfer. Oxygen reduction is compared between bridging and terminal O-H bonds revealing similar mechanisms, providing new insight to design criteria for metal-oxide electrocatalysts that faciliate oxygen reduction by concerted-proton electron transfer.
Collapse
Affiliation(s)
- Shannon E Cooney
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA.
| | - Eric Schreiber
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA.
| | - Baela M Ferrigno
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA.
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA.
| |
Collapse
|
2
|
Li C, Gu C, Yamaguchi K, Suzuki K. Highly efficient degradation of polyesters and polyethers by decatungstate photocatalysis. NANOSCALE 2023; 15:15038-15042. [PMID: 37668707 DOI: 10.1039/d3nr03978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Photocatalytic polymer degradation has been recognized as a promising solution to the global disposal of waste plastics. In this work, we revealed that various polyesters and polyethers were efficiently degraded in the presence of a polyoxometalate photocatalyst, specifically, decatungstate ([W10O32]4-, W10). A catalytic amount of W10 initiated the degradation of various polyesters and polyethers under photo-irradiation with a xenon lamp (λ > 350 nm) using O2 (1 atm) as the oxidant in acetonitrile or water. Moreover, this system can promote polymer degradation even under sunlight. The degradation efficiency, assessed from the degradation rate (Mw0 - Mw)/Mw0 (%) (where Mw0 is the Mw before the reaction), of W10 was notably higher than those of previously reported photocatalysts such as titanium oxide, other polyoxometalates, organometallic compounds, and organic dyes.
Collapse
Affiliation(s)
- Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Chen Gu
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
3
|
Schreiber E, Brennessel WW, Matson EM. Regioselectivity of concerted proton-electron transfer at the surface of a polyoxovanadate cluster. Chem Sci 2023; 14:1386-1396. [PMID: 36794190 PMCID: PMC9906639 DOI: 10.1039/d2sc05928b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Proton-coupled electron transfer (PCET) is an important process in the activation and reactivity of metal oxide surfaces. In this work, we study the electronic structure of a reduced polyoxovanadate-alkoxide cluster bearing a single bridging oxide moiety. The structural and electronic implications of the incorporation of bridging oxide sites are revealed, most notably resulting in the quenching of cluster-wide electron delocalization in the most reduced state of the molecule. We correlate this attribute to a change in regioselectivity of PCET to the cluster surface (e.g. reactivity at terminal vs. bridging oxide groups). Reactivity localized at the bridging oxide site enables reversible storage of a single H-atom equivalent, changing the stoichiometry of PCET from a 2e-/2H+ process. Kinetic investigations indicate that the change in site of reactivity translates to an accelerated rate of e-/H+ transfer to the cluster surface. Our work summarizes the role which electronic occupancy and ligand density play in the uptake of e-/H+ pairs at metal oxide surfaces, providing design criteria for functional materials for energy storage and conversion processes.
Collapse
Affiliation(s)
- Eric Schreiber
- Department of Chemistry, University of Rochester Rochester NY 14611 USA
| | | | - Ellen M Matson
- Department of Chemistry, University of Rochester Rochester NY 14611 USA
| |
Collapse
|
4
|
Wang YF, Zhang MT. Proton-Coupled Electron-Transfer Reduction of Dioxygen: The Importance of Precursor Complex Formation between Electron Donor and Proton Donor. J Am Chem Soc 2022; 144:12459-12468. [PMID: 35776107 DOI: 10.1021/jacs.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction has drawn extensive attention for its widespread occurrence in chemistry, biology, and materials science. The mechanistic studies via model systems such as tyrosine and phenol oxidation have gradually deepened the understanding of PCET reactions, which was widely accepted and applied to bond activation and transformation. However, direct PCET activation of nonpolar bonds such as the C-H bond, O2, and N2 has yet to be explored. Herein, we report that the interaction between electron donor and proton donor could overcome the barrier of direct O2 activation via a concerted electron-proton transfer mechanism. This work provides a new strategy for developing direct PCET activation of nonpolar bonds.
Collapse
Affiliation(s)
- Yu-Fan Wang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wang Z, Hojo H, Einaga H. Photocatalytic hydroxylation of benzene to phenol with dioxygen using sodium decatungstate. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Fertig AA, Brennessel WW, McKone JR, Matson EM. Concerted Multiproton-Multielectron Transfer for the Reduction of O 2 to H 2O with a Polyoxovanadate Cluster. J Am Chem Soc 2021; 143:15756-15768. [PMID: 34528799 DOI: 10.1021/jacs.1c07076] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concerted transfer of protons and electrons enables the activation of small-molecule substrates by bypassing energetically costly intermediates. Here, we present the synthesis and characterization of several hydrogenated forms of an organofunctionalized vanadium oxide assembly, [V6O13(TRIOLNO2)2]2-, and their ability to facilitate the concerted transfer of protons and electrons to O2. Electrochemical analysis reveals that the fully reduced cluster is capable of mediating 2e-/2H+ transfer reactions from surface hydroxide ligands, with an average bond dissociation free energy (BDFE) of 61.6 kcal/mol. Complementary stoichiometric experiments with hydrogen-atom-accepting reagents of established bond strengths confirm that the electrochemically established BDFE predicts the 2H+/2e- transfer reactivity of the assembly. Finally, the reactivity of the reduced polyoxovanadate toward O2 reduction is summarized; our results indicate a stepwise reduction of the substrate, proceeding through H2O2 en route to the formation of H2O. Kinetic isotope effect experiments confirm the participation of hydrogen transfer in the rate-determining step of both the reduction of O2 and H2O2. This work constitutes the first example of hydrogen atom transfer for small-molecule activation with reduced polyoxometalates, where both electron and proton originate from the cluster.
Collapse
Affiliation(s)
- Alex A Fertig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - James R McKone
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
7
|
Meyer RL, Miró P, Brennessel WW, Matson EM. O 2 Activation with a Sterically Encumbered, Oxygen-Deficient Polyoxovanadate-Alkoxide Cluster. Inorg Chem 2021; 60:13833-13843. [PMID: 34161731 DOI: 10.1021/acs.inorgchem.1c00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The isolation of the oxygen-deficient, polyoxovanadate-alkoxide (POV-alkoxide) cluster, [nBu4N][V6O6(OMe)12(MeCN)], and its subsequent reactivity with oxygen (O2), has demonstrated the utility of these assemblies as molecular models for heterogeneous metal oxide catalysts. However, the mechanism through which this cluster activates and reduces O2 to generate the oxygenated species is poorly understood. Currently it is speculated that this POV-alkoxide mediates the four-electron O-O bond cleavage through an O2 bridged dimeric intermediate, a mechanism which is not viable for O2 reduction at solid-state metal oxide surfaces. Here, we report the successful activation and reduction of O2 by the calix-functionalized POV-alkoxide cluster, [nBu4N][(calix)V6O6(OMe)8](MeCN)] (calix = 4-tert-butylcalix[4]arene). The steric hindrance imparted to the open vanadium site by the calix motif eliminates the possibility of cooperative, bimolecular O2 activation, allowing for a comparison of the reactivity of this system with that of the nonfunctionalized POV-alkoxide described previously. Rigorous characterization of the calix-substituted assembly, enabled by its newfound solubility in organic solvent, reveals that the incorporation of the tetradentate aryloxide ligand into the POV-alkoxide scaffold perturbs the electronic communication between the site-differentiated vanadium(III) ion and the cluster core. Collectively, our results provide insight into the physiochemical factors that are important during the O2 reduction reaction at oxygen-deficient sites in reduced POV-alkoxide clusters.
Collapse
Affiliation(s)
- Rachel L Meyer
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pere Miró
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
8
|
Khatua M, Goswami B, Samanta S. Dehydrogenation of amines in aryl-amine functionalized pincer-like nitrogen-donor redox non-innocent ligands via ligand reduction on a Ni(ii) template. Dalton Trans 2020; 49:6816-6831. [PMID: 32374795 DOI: 10.1039/d0dt00466a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have synthesized a series of new redox non-innocent azo aromatic pincer-like ligands: 2-(phenylazo)-6-(arylaminomethyl)pyridine (HLa-c: HLa = 2-(phenylazo)-6-(2,6-diisopropylphenylaminomethyl)pyridine, HLb = 2-(phenylazo)-6-(2,6-dimethylphenylaminomethyl)pyridine, and HLc = 2-(phenylazo)-6-(phenylaminomethyl)pyridine), in which one side arm is an arylaminomethyl moiety and the other arm is a 2-phenylazo moiety. Nickel(ii) complexes, 1-3, of these ligands HLa-c were synthesized in good yield (approximately 70%) by the reaction of ligands : (NiCl2·6H2O) in a 1 : 1 molar ratio in methanol. The amine donor in each of the ligands HLa-c binds to the Ni(ii) centre without deprotonation. In the solid state, complex 3 is a dimer; in solution it exists as monomer 3a. The reduction of acetonitrile solutions of each of the complexes 1, 2 and 3a, separately, with cobaltocene (1 equivalent), followed by exposure of the solution to air, resulted in the formation of new complexes 7, 8 and 9, respectively. Novel free ligands Lx and Ly have also been isolated, in addition to complexes 7 and 8, from the reaction of complexes 1 and 2, respectively. Complexes 7-9 and free ligands Lx and Ly have been formed via a dehydrogenation reaction of the arylaminomethyl side arm. The mechanism of the reaction was thoroughly investigated using a series of studies, including cyclic voltammetry, EPR, and UV-Vis spectral studies and density functional theory (DFT) calculations. The results of these studies suggest a mechanism initiated by ligand reduction followed by dioxygen activation. A Cl-/I- scrambling experiment revealed that the dissociation of the chloride ligand(s) was associated with the one-electron reduction of the ligand (azo moiety) in each of the complexes 1, 2 and 3a. The dissociated chloride ligand(s) were reassociated with the metal following the dehydrogenation reaction to yield the final products. All of the newly synthesized compounds were fully characterized using a variety of physicochemical techniques. Single-crystal X-ray structures of the representative compounds were determined to confirm the identities of the synthesized molecules.
Collapse
Affiliation(s)
- Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India.
| |
Collapse
|
9
|
Chakraborty B, Gan‐Or G, Duan Y, Raula M, Weinstock IA. Visible‐Light‐Driven Water Oxidation with a Polyoxometalate‐Complexed Hematite Core of 275 Iron Atoms. Angew Chem Int Ed Engl 2019; 58:6584-6589. [DOI: 10.1002/anie.201900492] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/20/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Gal Gan‐Or
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Yan Duan
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Manoj Raula
- Amity Institute of Applied SciencesAmity University Noida 201313 India
| | - Ira A. Weinstock
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| |
Collapse
|
10
|
Chakraborty B, Gan‐Or G, Duan Y, Raula M, Weinstock IA. Visible‐Light‐Driven Water Oxidation with a Polyoxometalate‐Complexed Hematite Core of 275 Iron Atoms. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Gal Gan‐Or
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Yan Duan
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Manoj Raula
- Amity Institute of Applied SciencesAmity University Noida 201313 India
| | - Ira A. Weinstock
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| |
Collapse
|
11
|
Chakraborty B, Weinstock IA. Water-soluble titanium-oxides: Complexes, clusters and nanocrystals. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Saganovich M, Gadot E, Raula M, Weinstock IA. Proton-coupled electron transfer from photo-excited CdS nanoparticles. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1487556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Marina Saganovich
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Gadot
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Manoj Raula
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ira A. Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
13
|
Khenkin AM, Efremenko I, Martin JML, Neumann R. The kinetics and mechanism of oxidation of reduced phosphovanadomolybdates by molecular oxygen: theory and experiment in concert. Phys Chem Chem Phys 2018; 20:7579-7587. [PMID: 29493683 DOI: 10.1039/c7cp08610e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The reactivity of the H5PV2Mo10O40 polyoxometalate and its analogues as an electron transfer and electron transfer-oxygen transfer oxidant has been extensively studied in the past and has been shown to be useful in many transformations. One of the hallmarks of this oxidant is the possibility of its re-oxidation with molecular oxygen, thus enabling aerobic catalytic cycles. Although the re-oxidation reaction was known, the kinetics and mechanism of this reaction have not been studied in any detail. Experimentally, we show that both the one- and two-electron reduced polyoxometalate are reactive with O2, the two-electron one more so. The reactions are first-order in the polyoxometalate and O2. Solvents also have a considerable effect, protic solvents being preferred over aprotic ones. H5PV2Mo10O40 was reduced either by an electron transfer reaction (H2) or an electron transfer-oxygen transfer reaction (Ph3P). Similar rate constants and activation parameters were observed for both. DFT calculations carried out on the re-oxidation reactions strongly suggest an inner-sphere process. The process involves first the formation of a coordinatively unsaturated site (CUS) and subsequently the binding of O2 to form superoxo and then peroxo η2-O2 adducts. Most interestingly, although vanadium is the reactive redox centre as well as a necessary component for the oxidative activity of H5PV2Mo10O40, and a CUS can be formed at both Mo and V sites, O2 coordination occurs mostly at the Mo CUSs, preferably those where the vanadium centers are distal to each other.
Collapse
Affiliation(s)
- Alexander M Khenkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | |
Collapse
|
14
|
Li C, Suzuki K, Mizuno N, Yamaguchi K. Polyoxometalate LUMO engineering: a strategy for visible-light-responsive aerobic oxygenation photocatalysts. Chem Commun (Camb) 2018; 54:7127-7130. [DOI: 10.1039/c8cc03519a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report efficient visible-light-responsive oxygenation photocatalysis via the strategy of LUMO engineering of polyoxometalates.
Collapse
Affiliation(s)
- Chifeng Li
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
15
|
Homewood T, Frith JT, Vivek JP, Casañ-Pastor N, Tonti D, Owen JR, Garcia-Araez N. Using polyoxometalates to enhance the capacity of lithium–oxygen batteries. Chem Commun (Camb) 2018; 54:9599-9602. [DOI: 10.1039/c8cc03832e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving Li–O2 batteries with the highly stable Keggin type-polyoxometalate α-SiW12O404−.
Collapse
|
16
|
Weinstock IA, Schreiber RE, Neumann R. Dioxygen in Polyoxometalate Mediated Reactions. Chem Rev 2017; 118:2680-2717. [DOI: 10.1021/acs.chemrev.7b00444] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ira A. Weinstock
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Roy E. Schreiber
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Nunes M, Fernandes DM, Rocha IM, Pereira MFR, Mbomekalle IM, de Oliveira P, Freire C. Phosphomolybdate@Carbon-Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction. ChemistrySelect 2016. [DOI: 10.1002/slct.201601370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marta Nunes
- REQUIMTE/LAQV, Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Diana M. Fernandes
- REQUIMTE/LAQV, Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Inês M. Rocha
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Departamento de Engenharia Química, Faculdade de Engenharia; Universidade do Porto; 4200-465 Porto Portugal
| | - Manuel F. R. Pereira
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Departamento de Engenharia Química, Faculdade de Engenharia; Universidade do Porto; 4200-465 Porto Portugal
| | | | - Pedro de Oliveira
- Laboratoire de Chimie Physique, UMR 8000 CNRS; Université Paris-Sud; 91405 Orsay Cedex France
| | - Cristina Freire
- REQUIMTE/LAQV, Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| |
Collapse
|
18
|
Elgrishi N, McCarthy BD, Rountree ES, Dempsey JL. Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00778] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Noémie Elgrishi
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Brian D. McCarthy
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric S. Rountree
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L. Dempsey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
19
|
Liu CG, Zheng T, Liu S, Zhang HY. Photodegradation of malachite green dye catalyzed by Keggin-type polyoxometalates under visible-light irradiation: Transition metal substituted effects. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
von Allmen K, Moré R, Müller R, Soriano-López J, Linden A, Patzke GR. Nickel-Containing Keggin-Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure-Activity Relationships. Chempluschem 2015; 80:1389-1398. [DOI: 10.1002/cplu.201500074] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/21/2015] [Indexed: 11/11/2022]
|
21
|
McCarthy BD, Donley CL, Dempsey JL. Electrode initiated proton-coupled electron transfer to promote degradation of a nickel(ii) coordination complex. Chem Sci 2015; 6:2827-2834. [PMID: 29403633 PMCID: PMC5761499 DOI: 10.1039/c5sc00476d] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022] Open
Abstract
A Ni(ii) bisphosphine dithiolate compound degrades into an electrode-adsorbed film that can evolve hydrogen under reducing and protic conditions. An electrochemical study suggests that the degradation mechanism involves an initial concerted proton-electron transfer. The potential susceptibility of Ni-S bonds in molecular hydrogen evolution catalysts to degradation via C-S bond cleavage is discussed.
Collapse
Affiliation(s)
- Brian D McCarthy
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , USA .
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory , Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599-3216 , USA
| | - Jillian L Dempsey
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , USA .
| |
Collapse
|
22
|
Raula M, Gan Or G, Saganovich M, Zeiri O, Wang Y, Chierotti MR, Gobetto R, Weinstock IA. Polyoxometalate Complexes of Anatase-Titanium Dioxide Cores in Water. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Raula M, Gan Or G, Saganovich M, Zeiri O, Wang Y, Chierotti MR, Gobetto R, Weinstock IA. Polyoxometalate Complexes of Anatase-Titanium Dioxide Cores in Water. Angew Chem Int Ed Engl 2015; 54:12416-21. [DOI: 10.1002/anie.201501941] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Indexed: 11/11/2022]
|
24
|
Yang B, Pignatello JJ, Qu D, Xing B. Reoxidation of Photoreduced Polyoxotungstate ([PW12O40]4–) by Different Oxidants in the Presence of a Model Pollutant. Kinetics and Reaction Mechanism. J Phys Chem A 2015; 119:1055-65. [DOI: 10.1021/jp510036x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bing Yang
- College of Resources and Environment, Northwest A&F University, P.O. Box 59, NO. 3 Taicheng Road, Yangling, Xianyang, Shaanxi 712100, China
- Department
of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, P.O. Box 1106, New
Haven, Connecticut 06504-1106, United States
| | - Joseph J. Pignatello
- Department
of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, P.O. Box 1106, New
Haven, Connecticut 06504-1106, United States
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Dong Qu
- College of Resources and Environment, Northwest A&F University, P.O. Box 59, NO. 3 Taicheng Road, Yangling, Xianyang, Shaanxi 712100, China
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Saucedo-Vázquez JP, Kroneck PMH, Sosa-Torres ME. The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines. Dalton Trans 2015; 44:5510-9. [DOI: 10.1039/c4dt03606a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanistic study is presented of the oxidative dehydrogenation of the iron(iii) complex [FeIIIL3]3+, 1, (L3 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- Departamento de Química Inorgánica y Nuclear
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México, D.F. 04510
| | | | - Martha Elena Sosa-Torres
- Departamento de Química Inorgánica y Nuclear
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México, D.F. 04510
| |
Collapse
|
26
|
Khenkin AM, Efremenko I, Martin JML, Neumann R. Polyoxometalate-Catalyzed Insertion of Oxygen from O2 into Tin–Alkyl Bonds. J Am Chem Soc 2013; 135:19304-10. [DOI: 10.1021/ja409559h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alexander M. Khenkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Irena Efremenko
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| |
Collapse
|
27
|
A selective chemiluminescence detection method for reactive oxygen species involved in oxygen reduction reaction on electrocatalytic materials. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Lee CY, Guo SX, Murphy AF, McCormac T, Zhang J, Bond AM, Zhu G, Hill CL, Geletii YV. Detailed Electrochemical Studies of the Tetraruthenium Polyoxometalate Water Oxidation Catalyst in Acidic Media: Identification of an Extended Oxidation Series using Fourier Transformed Alternating Current Voltammetry. Inorg Chem 2012; 51:11521-32. [DOI: 10.1021/ic301370y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chong-Yong Lee
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Si-Xuan Guo
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Aidan F. Murphy
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Dundalk Institute of Technology, Dundalk Co. Louth, Ireland
| | | | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M. Bond
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Guibo Zhu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Craig L. Hill
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V. Geletii
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
29
|
Pellarin KR, McCready MS, Puddephatt RJ. Oxidation of Dimethylplatinum(II) Complexes with a Dioxirane: The Viability of Oxoplatinum(IV) Intermediates. Organometallics 2012. [DOI: 10.1021/om300616x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kyle R. Pellarin
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7
| | - Matthew S. McCready
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7
| | | |
Collapse
|
30
|
Abstract
Polyoxometalate cluster anions (POMs) control formation and morphology, and serve as protecting ligands, for structurally and compositionally diverse nanostructures. While numerous examples of POM-protected metal(0) nanoparticle syntheses and reactions can now be found in the literature, the use of POMs to prepare nano-scale analogs of binary inorganic materials, such as metal-oxides, sulfides and halides, is a relatively recent development. The first part of this critical review summarizes the use of POMs as protecting ligands for metal(0) nanoparticles, as well as their use as templates for the preparation of new inorganic materials. Here, key findings that reveal general trends are given additional emphasis. In the second part of the review, new information concerning the structure of POM-protected metal(0) nanoparticles is systematically developed. This information, obtained by the combined use of cryogenic transmission microscopy (cryo-TEM) and UV-vis spectroscopy, provides a new perspective on the formation and structure of POM-decorated nanoparticles, and on the rational design of catalytic and other functional POM-based nano-assemblies.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | | |
Collapse
|
31
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
32
|
Bonin J, Costentin C, Robert M, Savéant JM, Tard C. Hydrogen-bond relays in concerted proton-electron transfers. Acc Chem Res 2012; 45:372-81. [PMID: 22029773 DOI: 10.1021/ar200132f] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reaction mechanisms in which electron and proton transfers are coupled are central to a huge number of processes, both natural and synthetic. Moreover, most of the new approaches to address modern energy challenges involve proton-coupled electron transfer (PCET). Recent research has focused on the possibility that the two steps are concerted, that is, concerted proton-electron transfer (CPET) reactions, rather than stepwise pathways in which proton transfer precedes (PET) or follows (EPT) electron transfer. CPET pathways have the advantage of bypassing the high-energy intermediates of stepwise pathways, although this thermodynamic benefit may have a kinetic cost. Concerted processes require short distances between the group being oxidized and the proton acceptor (and vice versa for a reduction process), which usually involves the formation of a hydrogen bond. Unlike the electron in outer-sphere electron-transfer reactions, the distance a proton may travel in a CPET is therefore rather limited. The idea has recently emerged, however, that this distance may be substantially increased via a H-bond relay located between the electron-transfer-triggered proton source and the proton acceptor. Generally speaking, the relay is a group bearing a H atom able to accept a H-bond from the moiety being oxidized and, at the same time, to form a H-bond with the proton-accepting group without going through a protonated intermediate. Although these molecules do not retain all the properties of chains of water molecules engaged in Grotthuss-type transport of a proton, the OH group in these molecules does possess a fundamental property of water molecules: namely, it is both a hydrogen-bond acceptor and a hydrogen-bond donor. Despite centuries of study, the mechanisms of proton movement in water remain active experimental and theoretical research areas, but so far with no connection to CPET reactions. In this Account, we bring together recent results concerning (i) the oxidative response of molecules containing a H-bond relay and (ii) the oxidation of phenol with water (in water) as the proton acceptor. In the first case, a nondestructive electrochemical method (cyclic voltammetry) was used to investigate the oxidation of phenol molecules containing one H-bond relay and an amine proton acceptor compared with a similar amino phenol deprived of relay. In the second, the kinetics of phenol oxidation with water (in water) as proton acceptor is contrasted with that of conventional proton acceptors (such as hydrogen phosphate and pyridine) to afford evidence of the concerted nature of Grotthuss-type proton displacement with electron transfer. First indications were provided by the same electrochemical method, whereas a more complete kinetic characterization was obtained from laser flash photolysis. Older electrochemical results concerning the reduction of superoxide ion in the presence of water are also examined. The result is a timely picture of current insight into concerted mechanisms involving electron transfer coupled with proton transport over simple H-bond relays and over H-bond networks.
Collapse
Affiliation(s)
- Julien Bonin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Univ - CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Cyrille Costentin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Univ - CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Marc Robert
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Univ - CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Michel Savéant
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Univ - CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Cédric Tard
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Univ - CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
33
|
Noël JM, Latus A, Lagrost C, Volanschi E, Hapiot P. Evidence for OH Radical Production during Electrocatalysis of Oxygen Reduction on Pt Surfaces: Consequences and Application. J Am Chem Soc 2012; 134:2835-41. [DOI: 10.1021/ja211663t] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Marc Noël
- Sciences Chimiques de Rennes,
UMR CNRS 6226, Université de Rennes 1, Equipe MaCSE, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Alina Latus
- Department of Physical Chemistry, University of Bucharest, Boulevard Elisabeta 4-12,
Bucharest 030018, Romania
| | - Corinne Lagrost
- Sciences Chimiques de Rennes,
UMR CNRS 6226, Université de Rennes 1, Equipe MaCSE, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Elena Volanschi
- Department of Physical Chemistry, University of Bucharest, Boulevard Elisabeta 4-12,
Bucharest 030018, Romania
| | - Philippe Hapiot
- Sciences Chimiques de Rennes,
UMR CNRS 6226, Université de Rennes 1, Equipe MaCSE, Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|
34
|
Todea AM, Szakács J, Konar S, Bögge H, Crans DC, Glaser T, Rousselière H, Thouvenot R, Gouzerh P, Müller A. Reduced molybenum-oxide-based core-shell hybrids: "blue" electrons are delocalized on the shell. Chemistry 2011; 17:6635-42. [PMID: 21542032 DOI: 10.1002/chem.201003260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Indexed: 11/06/2022]
Abstract
The present study refers to a variety of reduced metal-oxide core-shell hybrids, which are unique with regard to their electronic structure, their geometry, and their formation. They contain spherical {Mo72Fe30} Keplerate-type shells encapsulating Keggin-type polyoxomolybdates based on very weak interactions. Studies on the encapsulation of molybdosilicate as well as on the earlier reported molybdophosphate, coupled with the use of several physical methods for the characterization led to unprecedented results (see title). Upon standing in air at room temperature, acidified aqueous solutions obtained by dissolving sodium molybdate, iron(II) chloride, acetic acid, and molybdosilicic acid led to the precipitation of monoclinic greenish crystals (1). A rhombohedral variant (2) has also been observed. Upon drying at room temperature, compound 3 with a layer structure was obtained from 1 in a solid-state reaction based on cross-linking of the shells. The compounds 1, 2, and 3 have been characterized by a combination of methods including single-crystal X-ray crystallography, magnetic studies, as well as IR, Mössbauer, (resonance) Raman, and electronic absorption spectroscopy. In connection with detailed studies of the guest-free two-electron-reduced {Mo72Fe30}-type Keplerate (4) and of the previously reported molybdophosphate-based hybrids (including 31P NMR spectroscopy results), it is unambiguously proved that 1, 2, and 3 contain non-reduced Keggin ion cores and reduced {Mo72Fe30}-type shells. The results are discussed in terms of redox considerations (the shell as well as the core can be reduced) including those related to the reduction of "molybdates" by FeII being of interdisciplinary including catalytic interest (the MoVI/MoV and FeIII/FeII couples have very close redox potentials!), while also referring to the special formation of the hybrids based on chemical Darwinism.
Collapse
Affiliation(s)
- Ana Maria Todea
- Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bonin J, Costentin C, Louault C, Robert M, Savéant JM. Water (in water) as an intrinsically efficient proton acceptor in concerted proton electron transfers. J Am Chem Soc 2011; 133:6668-74. [PMID: 21476550 DOI: 10.1021/ja110935c] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of PhOH in water by photochemically generated Ru(III)(bpy)(3) is taken as prototypal example disclosing the special character of water, in the solvent water, as proton acceptor in concerted proton-electron transfer reactions. The variation of the rate constant with temperature and driving force, as well as the variation of the H/D kinetic isotope effect with temperature, allowed the determination of the reaction mechanism characterized by three intrinsic parameters, the reorganization energy, a pre-exponential factor measuring the vibronic coupling of electronic states at equilibrium distance, and a distance-sensitivity parameter. Analysis of these characteristics and comparison with a standard base, hydrogen phosphate, revealed that electron transfer is concerted with a Grotthus-type proton translocation, leading to a charge delocalized over a cluster involving several water molecules. A mechanism is thus uncovered that may help in understanding how protons could be transported along water chains over large distances in concert with electron transfer in biological systems.
Collapse
Affiliation(s)
- Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|