1
|
Weidmann AB, Franco LFM, Sum AK, Pessôa Filho PA. Dissociation temperature of gas hydrates through isenthalpic-isobaric molecular dynamics simulations. J Chem Phys 2024; 161:174505. [PMID: 39484910 DOI: 10.1063/5.0234866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Molecular simulations are a powerful tool to understand phenomena and obtain properties of gas hydrate systems. The direct coexistence method (DCM) in the NVT or NPT ensembles, the most commonly used method to determine hydrate dissociation temperatures, can be computationally expensive due to the need for several long simulations. Through an extensive set of simulations, we report here the details of the DCM within the NPH (isobaric-isenthalpic) ensemble, which require fewer and shorter trajectories. The dissociation pressure of methane hydrates is obtained for pressures of 4, 8, 15, 30, and 50 MPa. The values are in agreement with other literature simulations and experimental data. The results are further validated with the calculation of the enthalpy of dissociation, with a value of 50 kJ/mol of methane, also in agreement with the literature. The complexity of a multiphase and multicomponent system presents challenges lacking in simpler water/ice systems. These are found to be dependent on energy conservation. The optimal set of parameters to achieve it is also reported, including a smaller time step and the use of double precision, along with an analysis of some factors that could affect the convergence of the method. Although these parameters require more computational cost, the NPH ensemble is successful in providing the dissociation temperature of gas hydrates in fewer simulations than other ensembles and with productions lasting only 500 ns.
Collapse
Affiliation(s)
- Arthur B Weidmann
- Universidade de São Paulo (USP), Departamento de Engenharia Química, Escola Politécnica, São Paulo, São Paulo, Brazil
| | - Luís F M Franco
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química, Campinas, São Paulo, Brazil
| | - Amadeu K Sum
- Phases to Flow Laboratory, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Pedro A Pessôa Filho
- Universidade de São Paulo (USP), Departamento de Engenharia Química, Escola Politécnica, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Jin D, Zhong J. Reparameterization of the mW model to accurately predict the experimental phase diagram of methane hydrate. J Chem Phys 2024; 161:174504. [PMID: 39484906 DOI: 10.1063/5.0228522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
Due to their high computational efficiency, the coarse-grained water models are of particular importance for practical molecular simulations of gas hydrates. In these models, the mW model is successfully used to study many thermodynamics and dynamics of methane hydrate. Yet, despite several decades of intense research, the mW model is still found to overestimate the melting temperature of methane hydrate. We here employ the minimum mean squared error estimation to revisit the key parameter of the mW model, which determines the strength of the tetrahedral angle of the water system. Relying on the free energy calculations, we first estimate the chemical potentials of water in the liquid phase for temperatures at which methane hydrate forms. We then turn to the mean squared error to describe the chemical potential deviation between the mW model and the TIP4P/ice model (the latter could reproduce the experimental phase diagram of methane hydrate). By minimizing the mean squared error, we finally have an optimized parameter for the mW model. In this part, we also discuss the pressure effect on such reparameterization procedure. Moreover, relying on the direct coexistence method, the melting temperature determined using the reparameterized mW model is found to be consistent with the experimental data. This strategy provides a means to improve the coarse-grained model to match the experimental observations for temperatures in the range of interest.
Collapse
Affiliation(s)
- Dongliang Jin
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, People's Republic of China
| | - Jing Zhong
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, People's Republic of China
| |
Collapse
|
3
|
Torrejón MJ, Algaba J, Blas FJ. Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation. II. Effect of multiple occupancy. J Chem Phys 2024; 161:054712. [PMID: 39092957 DOI: 10.1063/5.0220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
In this work, we determine the dissociation line of the nitrogen (N2) hydrate by computer simulation using the TIP4P/Ice model for water and the TraPPE force field for N2. This work is the natural extension of Paper I, in which the dissociation temperature of the N2 hydrate has been obtained at 500, 1000, and 1500 bar [Algaba et al., J. Chem. Phys. 159, 224707 (2023)] using the solubility method and assuming single occupancy. We extend our previous study and determine the dissociation temperature of the N2 hydrate at different pressures, from 500 to 4500 bar, taking into account the single and double occupancy of the N2 molecules in the hydrate structure. We calculate the solubility of N2 in the aqueous solution as a function of temperature when it is in contact with a N2-rich liquid phase and when in contact with the hydrate phase with single and double occupancy via planar interfaces. Both curves intersect at a certain temperature that determines the dissociation temperature at a given pressure. We observe a negligible effect of occupancy on the dissociation temperature. Our findings are in very good agreement with the experimental data taken from the literature. We have also obtained the driving force for the nucleation of the hydrate as a function of temperature and occupancy at several pressures. As in the case of the dissociation line, the effect of occupancy on the driving force for nucleation is negligible. To the best of our knowledge, this is the first time that the effect of the occupancy on the driving force for nucleation of a hydrate that exhibits sII crystallographic structure is studied from computer simulation.
Collapse
Affiliation(s)
- Miguel J Torrejón
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - Jesús Algaba
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - Felipe J Blas
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| |
Collapse
|
4
|
Liao Z, Das A, Robb CG, Beveridge R, Wynne K. Amorphous aggregates with a very wide size distribution play a central role in crystal nucleation. Chem Sci 2024; 15:12420-12430. [PMID: 39118639 PMCID: PMC11304771 DOI: 10.1039/d4sc00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
There is mounting evidence that crystal nucleation from supersaturated solution involves the formation and reorganization of prenucleation clusters, contradicting classical nucleation theory. One of the key unresolved issues pertains to the origin, composition, and structure of these clusters. Here, a range of amino acids and peptides is investigated using light scattering, mass spectrometry, and in situ terahertz Raman spectroscopy, showing that the presence of amorphous aggregates is a general phenomenon in supersaturated solutions. Significantly, these aggregates are found on a vast range of length scales from dimers to 30-mers to the nanometre and even micrometre scale, implying a continuous distribution throughout this range. Larger amorphous aggregates are sites of spontaneous crystal nucleation and act as intermediates for laser-induced crystal nucleation. These results are shown to be consistent with a nonclassical nucleation model in which barrierless (homogeneous) nucleation of amorphous aggregates is followed by the nucleation of crystals from solute-enriched aggregates. This provides a novel perspective on crystal nucleation and the role of nonclassical pathways.
Collapse
Affiliation(s)
- Zhiyu Liao
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Ankita Das
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Christina Glen Robb
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Rebecca Beveridge
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow G12 8QQ UK
| |
Collapse
|
5
|
Yan KF, Mao MH, Kou X, Li XS, Chen ZY, Wang Y, Feng JC. Exploring Porous Flow Behavior of the Decomposed Gas from CH 4 Hydrate in Clayey Sediments by Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39078371 DOI: 10.1021/acs.langmuir.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A fundamental understanding of the fluid flow mechanism during CH4 hydrate dissociation in nanoscale clayey sediments from the molecular perspective can provide invaluable information for macroscale natural gas hydrate (NGH) exploration. In this work, the fluid flow behaviors of the decomposed gas from CH4 hydrate within clayey nanopores under different temperature conditions are revealed by molecular dynamics (MD) simulation. The simulation results indicate that the key influencing factors of gas-water flow in nanoscale clayey sediments include the diffusion and the random migration of gas molecules. The influencing mechanisms of fluid flow in nanopores are closely related with the temperature conditions. Under a low temperature condition, the gas diffusion process is impeded by the secondary hydrate formation, leading to the decline in gas transport velocity within nanopores. However, it is still noteworthy that the gas-water fluid flow channels are not completely blocked by the occurrence of secondary hydrate. Under a high temperature condition, the significant phenomenon of water migration during gas flow is observed, which can be ascribed to the gas-liquid entrainment effect in nanopores of the clayey sediment. These results may provide valuable implications and fundamental evidence for improving gas production efficiency in future field tests of NGH exploitation in marine sediments.
Collapse
Affiliation(s)
- Ke-Feng Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- School of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ming-Hang Mao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- School of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuan Kou
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- School of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Sen Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- School of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhao-Yang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- School of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- School of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jing-Chun Feng
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Ravindran S. Profile of Valeria P. Molinero. Proc Natl Acad Sci U S A 2024; 121:e2409573121. [PMID: 38857403 PMCID: PMC11194600 DOI: 10.1073/pnas.2409573121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
|
7
|
Liu L, Guan D, Lu Y, Sun M, Liu Y, Zhao J, Yang L. A Molecular Dynamics Study on Xe/Kr Separation Mechanisms Using Crystal Growth Method. ACS OMEGA 2024; 9:25822-25831. [PMID: 38911791 PMCID: PMC11191100 DOI: 10.1021/acsomega.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
The separation of xenon/krypton gas mixtures is a valuable but challenging endeavor in the gas industry due to their similar physical characteristics and closely sized molecules. To address this, we investigated the effectiveness of the hydrate-based gas separation method for mixed Xe-Kr gas via molecular dynamics (MD) simulations. The formation process of hydrates facilitates the encapsulation of guest molecules within hydrate cages, offering a potential strategy for gas separation. Higher temperatures and pressures are advantageous for accelerating the hydrate growth rate. The final occupancy of guest molecules and empty cages within 512, 51264, and all hydrate cages were thoroughly examined. An increase in the pressure and temperature enhanced the occupancy rates of Xe in both 512 and 51264 cages, whereas elevated pressure alone improved the occupancy of Kr in 51264 cages. However, the impact of temperature and pressure on Kr occupancy within 512 cages was found to be minimal. Elevated temperature and pressure resulted in a reduced occupancy of empty cages. Predominantly, 51264 cages were occupied by Xe, whereas Kr showed a propensity to occupy the 512 cages. With increasing simulated pressure, the final occupancy of Xe molecules in all cages rose from 0.37 to 0.41 for simulations at 260 K, while the final occupancy of empty cages decreased from 0.24 to 0.2.
Collapse
Affiliation(s)
- Liangliang Liu
- Shenyang
Aircraft Design Institute Shenyang 110042, China
| | - Dawei Guan
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Yi Lu
- Shenyang
Aircraft Design Institute Shenyang 110042, China
| | - Mingrui Sun
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Yu Liu
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Jiafei Zhao
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| | - Lei Yang
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, Dalian University
of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Shi Q, Lin Z, Qu Y, Wu J, Zhang Z. HTR+: a novel algorithm for identifying type and polycrystal of gas hydrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:365901. [PMID: 38821075 DOI: 10.1088/1361-648x/ad52df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
In this work, the hierarchical topology ring (HTR+) algorithm, an extension of the HTR algorithm, was developed for identifying gas hydrate types, cage structures, and grain boundaries (GBs) within polycrystalline structures. Utilizing molecular dynamics trajectories of polycrystalline hydrates, the accuracy of the HTR+ algorithm is validated in identifying sI, sII and sH hydrate types, hydrate grains, and GBs in multi-hydrate polycrystals, as well as clathrate cages at GBs. Additionally, during the hydrate nucleation and growth processes, clathrate cages, hydrate type, hydrate grains and ice structures are accurately recognized. Significantly, this algorithm demonstrates high efficiency, particularly for large hydrate systems. HTR+ algorithm emerges a powerful tool for identifying micro/mesoscopic structures of gas hydrates, enabling an in-depth understanding of the formation mechanisms and properties of gas hydrates.
Collapse
Affiliation(s)
- Qiao Shi
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ziyan Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yongxiao Qu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
9
|
Alavi S, Moudrakovski IL, Ratcliffe CI, Ripmeester JA. Unusual species of methane hydrate detected in nanoporous media using solid state 13C NMR. J Chem Phys 2024; 160:214709. [PMID: 38832748 DOI: 10.1063/5.0204109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Methane is considered to be a cubic structure I (CS-I) clathrate hydrate former, although in a number of instances, small amounts of structure II (CS-II) clathrate hydrate have been transiently observed as well. In this work, solid-state magic angle spinning 13C NMR spectra of methane hydrate formed at low temperatures inside silica-based nanoporous materials with pores in the range of 3.8-20.0 nm (CPG-20, Vycor, and MCM-41) show methane in several different environments. In addition to methane encapsulated in the dodecahedral 512 (D) and tetrakaidecahedral 51262 (T) cages typical of the CS-I clathrate hydrate phase, methane guests in pentakaidecahedral 51263 (P) and hexakaidecahedral 51264 (H) cages are also identified, and these appear to be stabilized for extended periods of time. The ratio of methane guests among the D and T cages determined from the line intensities is significantly different from that of bulk CS-I samples and indicates that both CS-I and CS-II are present as the dominant species. This is the first observation of methane in P cages, and the possible structures in which they could be present are discussed. Broad and relatively strong methane peaks, which are also observed in the spectra, can be related to methane dissolved in an amorphous component of water adjacent to the pore walls. Nanoconfinement and interaction with the pore walls clearly have a strong influence on the hydrate formed and may reflect species present in the early stages of hydrate growth.
Collapse
Affiliation(s)
- Saman Alavi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Igor L Moudrakovski
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | | | - John A Ripmeester
- National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1N 5A2, Canada
| |
Collapse
|
10
|
Bassani CL, Engel M, Sum AK. Mesomorphology of clathrate hydrates from molecular ordering. J Chem Phys 2024; 160:190901. [PMID: 38767264 DOI: 10.1063/5.0200516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 05/22/2024] Open
Abstract
Clathrate hydrates are crystals formed by guest molecules that stabilize cages of hydrogen-bonded water molecules. Whereas thermodynamic equilibrium is well described via the van der Waals and Platteeuw approach, the increasing concerns with global warming and energy transition require extending the knowledge to non-equilibrium conditions in multiphase, sheared systems, in a multiscale framework. Potential macro-applications concern the storage of carbon dioxide in the form of clathrates, and the reduction of hydrate inhibition additives currently required in hydrocarbon production. We evidence porous mesomorphologies as key to bridging the molecular scales to macro-applications of low solubility guests. We discuss the coupling of molecular ordering with the mesoscales, including (i) the emergence of porous patterns as a combined factor from the walk over the free energy landscape and 3D competitive nucleation and growth and (ii) the role of molecular attachment rates in crystallization-diffusion models that allow predicting the timescale of pore sealing. This is a perspective study that discusses the use of discrete models (molecular dynamics) to build continuum models (phase field models, crystallization laws, and transport phenomena) to predict multiscale manifestations at a feasible computational cost. Several advances in correlated fields (ice, polymers, alloys, and nanoparticles) are discussed in the scenario of clathrate hydrates, as well as the challenges and necessary developments to push the field forward.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Amadeu K Sum
- Phases to Flow Laboratory, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
11
|
Algaba J, Blazquez S, Míguez JM, Conde MM, Blas FJ. Three-phase equilibria of hydrates from computer simulation. III. Effect of dispersive interactions in the methane and carbon dioxide hydrates. J Chem Phys 2024; 160:164723. [PMID: 38686999 DOI: 10.1063/5.0201309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
In this work, the effect of the range of dispersive interactions in determining the three-phase coexistence line of the CO2 and CH4 hydrates has been studied. In particular, the temperature (T3) at which solid hydrate, water, and liquid CO2/gas CH4 coexist has been determined through molecular dynamics simulations using different cutoff values (from 0.9 to 1.6 nm) for dispersive interactions. The T3 of both hydrates has been determined using the direct coexistence simulation technique. Following this method, the three phases in equilibrium are put together in the same simulation box, the pressure is fixed, and simulations are performed at different temperatures T. If the hydrate melts, then T > T3. Conversely, if the hydrate grows, then T < T3. The effect of the cutoff distance on the dissociation temperature has been analyzed at three different pressures for CO2 hydrate: 100, 400, and 1000 bar. Then, we have changed the guest and studied the effect of the cutoff distance on the dissociation temperature of the CH4 hydrate at 400 bar. Moreover, the effect of long-range corrections for dispersive interactions has been analyzed by running simulations with homo- and inhomogeneous corrections and a cutoff value of 0.9 nm. The results obtained in this work highlight that the cutoff distance for the dispersive interactions affects the stability conditions of these hydrates. This effect is enhanced when the pressure is decreased, displacing the T3 about 2-4 K depending on the system and the pressure.
Collapse
Affiliation(s)
- J Algaba
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - S Blazquez
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J M Míguez
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - M M Conde
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - F J Blas
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| |
Collapse
|
12
|
Cao P, Wu J, Ning F. Mechanical properties of amorphous CO 2 hydrates: insights from molecular simulations. Phys Chem Chem Phys 2024; 26:9388-9398. [PMID: 38444360 DOI: 10.1039/d4cp00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Understanding physicochemical properties of amorphous gas hydrate systems is of great significance to reveal structural stabilities of polycrystalline gas hydrate systems. Furthermore, amorphous gas hydrates can occur ordinarily in the nucleation events of gas hydrate systems. Herein, the mechanical properties of amorphous carbon dioxide hydrates are examined by means of all-atom classical molecular dynamic simulations. Our molecular simulation results reveal that mechanical strengths of amorphous carbon dioxide hydrates are evidently governed by temperatures, confining pressures, and ratios of water to carbon dioxide molecules. Notably, under compressive loads, amorphous carbon dioxide hydrates firstly exhibit monotonic strain hardening, followed by an interesting distinct phenomenon characterized by a steady flow stress at further large deformation strains. Furthermore, structural evolutions of amorphous carbon dioxide hydrates are analyzed on the basis of the N-Hbond DOP order parameter. These important findings can not only contribute to our understanding of the structural stabilities of amorphous gas hydrate systems, but also help to develop fundamental understandings about grain boundaries of gas hydrate systems.
Collapse
Affiliation(s)
- Pinqiang Cao
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Fulong Ning
- Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China.
| |
Collapse
|
13
|
Walsh MR. Comparing brute force to transition path sampling for gas hydrate nucleation with a flat interface: comments on time reversal symmetry. Phys Chem Chem Phys 2024; 26:5762-5772. [PMID: 38214888 DOI: 10.1039/d3cp05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Fluid to solid nucleation is often investigated with the rare event method transition path sampling (TPS). I claim that the inherent irreversibility of solid nucleation, even at stationary conditions, calls into question TPS's applicability for determining solid nucleation mechanisms, especially for pre-critical behavior. Even when applied to a phenomenon which displays time reversal asymmetry like solid nucleation, TPS is a good means of exploring phase space and giving trends in post-critical structure, and its ability to facilitate nucleation rate and free energy calculations remains outstanding. Forward-only splitting and ratcheting methods such as forward flux sampling are more attractive for understanding nucleation mechanisms as they do not require time reversal symmetry, but at low driving forces may suffer from the same limitations as brute force: they may never make it to the first ratchet. Here I briefly summarize the TPS method and gas hydrate nucleation simulation literature, focusing on topics within both to facilitate a comparison of brute force hydrate nucleation to transition path sampling of hydrate nucleation. Perhaps anecdotally, the brute force technique results in more crystalline trajectories despite having higher driving forces than TPS. I maintain this difference is because of the inherent irreversibility of hydrate nucleation, meaning its pre-critical behavior cannot accurately be determined by the melting trajectories that comprise approximately half of the configurations in TPS's path ensemble.
Collapse
|
14
|
Xue H, Li L, Wang Y, Lu Y, Cui K, He Z, Bai G, Liu J, Zhou X, Wang J. Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles. Nat Commun 2024; 15:157. [PMID: 38167854 PMCID: PMC10762117 DOI: 10.1038/s41467-023-44378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Controlling the formation of clathrate hydrates is crucial for advancing hydrate-based technologies. However, the microscopic mechanism underlying clathrate hydrate formation through nucleation remains poorly elucidated. Specifically, the critical nucleus, theorized as a pivotal step in nucleation, lacks empirical validation. Here, we report uniform nanoparticles, e.g., graphene oxide (GO) nanosheets and gold or silver nanocubes with controlled sizes, as nanoprobes to experimentally measure the size of the critical nucleus of tetrahydrofuran (THF) clathrate hydrate formation. The capability of the nanoparticles in facilitating THF clathrate hydrate nucleation displays generally an abrupt change at a nanoparticle-size-determined specific supercooling. It is revealed that the free-energy barrier shows an abrupt change when the nanoparticles have an approximately the same size as that of the critical nucleus. Thus, it is inferred that THF clathrate hydrate nucleation involves the creation of a critical nucleus with its size being inversely proportional to the supercooling. By proving the existence and determining the supercooling-dependent size of the critical nucleus of the THF clathrate hydrates, this work brings insights in the microscopic pictures of the clathrate hydrate nucleation.
Collapse
Affiliation(s)
- Han Xue
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Linhai Li
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiqun Wang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youhua Lu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kai Cui
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiyuan He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoying Bai
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
15
|
Hudait A. Multiscale Molecular Dynamics Simulations of Ice-Binding Proteins. Methods Mol Biol 2024; 2730:185-202. [PMID: 37943459 DOI: 10.1007/978-1-0716-3503-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ice-binding proteins (IBPs) are a diverse class of proteins that are essential for the survival of organisms in cold conditions. IBPs are diverse in their function and can prevent or promote ice growth and selectively bind to specific crystallographic planes of the growing ice lattice. Moreover, IBPs are widely utilized to modulate ice crystal growth and recrystallization in the food industry and as cryoprotectants to preserve biological matter. A key unresolved aspect of the mode of action is how the ice-binding sites of these proteins distinguish between ice and water and interact with multiple crystal facets of the ice. The use of molecular dynamics (MD) simulation allows us to thoroughly investigate the binding mechanism and energetics of ice-binding proteins, to complement and expand on the mechanistic understandings gained from experiments. In this chapter, we describe a series of molecular dynamics simulation methodologies to investigate the mechanism of action of ice-binding proteins. Specifically, we provide detailed instructions to set up MD simulations to study the binding and interaction of ice-binding proteins using atomistic and coarse-grained simulations.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Li K, Chen B, Yang M, Song Y, Sum AK. Methane hydrate phase equilibrium considering dissolved methane concentrations and interfacial geometries from molecular simulations. J Chem Phys 2023; 159:244505. [PMID: 38153154 DOI: 10.1063/5.0174705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Natural gas hydrates, mainly existing in permafrost and on the seabed, are expected to be a new energy source with great potential. The exploitation technology of natural gas hydrates is one of the main focuses of hydrate-related studies. In this study, a large-size liquid aqueous solution wrapping a methane hydrate system was established and molecular dynamics simulations were used to investigate the phase equilibrium conditions of methane hydrate at different methane concentrations and interfacial geometries. It is found that the methane concentration of a solution significantly affects the phase equilibrium of methane hydrates. Different methane concentrations at the same temperature and pressure can lead to hydrate formation or decomposition. At the same temperature and pressure, in a system reaching equilibrium, the size of spherical hydrate clusters is coupled to the solution concentration, which is proportional to the Laplace pressure at the solid-liquid interface. Lower solution concentrations reduce the phase equilibrium temperature of methane hydrates at the same pressure; as the concentration increases, the phase equilibrium temperature gradually approaches the actual phase equilibrium temperature. In addition, the interfacial geometry of hydrates affects the thermodynamic stability of hydrates. The spherical hydrate particles have the highest stability for the same volume. Through this study, we provide a stronger foundation to understand the principles driving hydrate formation/dissociation relevant to the exploitation of methane hydrates.
Collapse
Affiliation(s)
- Kehan Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
- Phases to Flow Laboratory, Chemical & Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Bingbing Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
| | - Amadeu K Sum
- Phases to Flow Laboratory, Chemical & Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
17
|
Sharma M, Singh S. Carbon dioxide sequestration in natural gas hydrates - effect of flue and noble gases. Phys Chem Chem Phys 2023; 25:30211-30222. [PMID: 37830431 DOI: 10.1039/d3cp03777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Clean energy is one of the immediate requirements all over the world to tackle the global energy demands. Natural gas hydrates (NGHs) are one of the proposed alternatives that could be used to extract methane as clean energy and simultaneously sequestrate carbon dioxide. However, the formation of CH4-CO2 mixed hydrates and the first hydrate layer besides the interface reduces the rate of CO2 sequestration and methane extraction in NGHs, and thus, multistep extraction of methane is one of the proposed solutions. We report the atomic level factors that could enhance CO2 sequestration in the newly formed first hydrate layer besides the interface in the presence of flue and noble gases using DFT calculations and molecular dynamics simulations at 250 K and 0.15 kbar. The simulations show the formation of stable dual cages (large-large or small-large) that lead to the formation of a four-caged, Y-shaped cluster (growth synthon) which leads to the formation of a hydrate unit cell in heterogeneous medium. Among the flue and noble gases, only argon forms energetically favorable dual cages with itself and CO2 due to which enhanced CO2 sequestration is observed at different concentrations of Ar and CO2 where the CO2 : Ar (2.5 : 1.5) system shows the best CO2 sequestration in the first layer besides the interface. The results also provide understanding into the previously reported concentration dependent CO2 selectivity in sI hydrates in the presence of third gases (N2 and H2S).
Collapse
Affiliation(s)
- Manju Sharma
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India.
| | - Satyam Singh
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
18
|
Wang L, Kusalik PG. Understanding why constant energy or constant temperature may affect nucleation behavior in MD simulations: A study of gas hydrate nucleation. J Chem Phys 2023; 159:184501. [PMID: 37947514 DOI: 10.1063/5.0169669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Molecular dynamics simulations have been widely used in exploring the nucleation behavior of many systems, including gas hydrates. Gas hydrates are ice-like solids in which gas molecules are trapped in water cages. During hydrate formation, a considerable amount of heat is released, and previous work has reported that the choice of temperature control scheme may affect the behavior of hydrate formation. The origins of this effect have remained an open question. To address this question, extensive NVE simulations and thermostatted (NPT and NVT) simulations with different temperature coupling strengths have been performed and compared for systems where a water nanodroplet is immersed in a H2S liquid. Detailed analysis of the hydrate structures and their mechanisms of formation has been carried out. Slower nucleation rates in NVE simulations in comparison to NPT simulations have been observed in agreement with previous studies. Probability distributions for various temperature measures along with their spatial distributions have been examined. Interestingly, a comparison of these temperature distributions reveals a small yet noticeable difference in the widths of the distributions for water. The somewhat reduced fluctuations in the temperature for the water species in the NVE simulations appear to be responsible for reducing the hydrate nucleation rate. We further conjecture that the NVE-impeded nucleation rate may be the result of the finite size of the surroundings (here the liquid H2S portion of the system). Additionally, a local spatial temperature gradient arising from the heat released during hydrate formation could not be detected.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Peter G Kusalik
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
19
|
Li L, Wang X, Yan Y, Francisco JS, Zhang J, Zeng XC, Zhong J. Resolving Temperature-Dependent Hydrate Nucleation Pathway: The Role of "Transition Layer". J Am Chem Soc 2023; 145:24166-24174. [PMID: 37874937 DOI: 10.1021/jacs.3c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Understanding the nucleation of natural gas hydrate (NGH) at different conditions has important implications to NGH recovery and other industrial applications, such as gas storage and separation. Herein, vast numbers of hydrate nucleation events are traced via molecular dynamics (MD) simulations at different degrees of supercooling (or driving forces). Specifically, to precisely characterize a hydrate nucleus from an aqueous system during the MD simulation, we develop an evolutionary order parameter (OP) to recognize the nucleus size and shape. Subsequently, the free energy landscapes of hydrate during nucleation are explored by using the newly developed OP. The results suggest that at 270 K (or 0.92 Tm supercooling, where Tm is the melting point), the near-rounded nucleus prevails during the nucleation, as described from the classical nucleation theory. In contrast, at relatively strong driving forces of 0.85 and 0.88 Tm, nonclassical nucleation events arise. Specifically, the pathway toward an elongated nucleus becomes as important as the pathway toward a near-rounded nucleus. To explain the distinct nucleation phenomena at different supercoolings, a notion of a "transition layer" (or liquid-blob-like layer) is proposed. Here, the transition layer is to describe the interfacial region between the nucleus and aqueous solution, and this layer entails two functionalities: (1) it tends to retain CH4 depending on the degrees of supercooling and (2) it facilitates collision among CH4, which thus promote the incorporation of CH4 into nucleus. Our simulation indicates that compared to the near-rounded nucleus, the transition layer surrounding the elongated nucleus is more evident with the higher collision rate among CH4 molecules. As such, the transition layer tends to promote the elongated nucleus pathway, while offsetting the cost of larger surface free energy associated with the elongated nucleus. At 0.92 Tm, however, the transition layer gradually disappears, and classical nucleation events dominate. Overall, the notion of "transition layer" offers deeper insight into the NGH nucleation at different degrees of supercooling and could be extended to describe other types of hydrate nucleation.
Collapse
Affiliation(s)
- Liwen Li
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiao Wang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Youguo Yan
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Jun Zhang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Zhong
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
20
|
Hao X, Li C, Meng Q, Sun J, Huang L, Bu Q, Li C. Molecular Dynamics Simulation of the Three-Phase Equilibrium Line of CO 2 Hydrate with OPC Water Model. ACS OMEGA 2023; 8:39847-39854. [PMID: 37901483 PMCID: PMC10601413 DOI: 10.1021/acsomega.3c05673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
The three-phase coexistence line of the CO2 hydrate was determined using molecular dynamics (MD) simulations. By using the classical and modified Lorentz-Berthelot (LB) parameters, the simulations were carried out at 10 different pressures from 3 to 500 MPa. For the OPC water model, simulations with the classic and the modified LB parameters both showed negative deviations from the experimental values. For the TIP4P/Ice water model, good agreement with experimental equilibrium data can be achieved when the LB parameter is adjusted based on the solubility of CO2 in water. Our results also show that the influence of the water model on the equilibrium prediction is much larger than the CO2 model. Current simulations indicated that the H2O-H2O and H2O-CO2 cross-interactions' parameters might contribute equally to the accurate prediction of T3. According to our simulations, the prediction of T3 values showed relatively higher accuracy while using the combination of TIP4P/Ice water and EPM2 CO2 with modified LB parameter. Furthermore, varied χ values are recommended for accurate T3 estimation over a wide pressure range. The knowledge obtained in this study will be helpful for further accurate MD simulation of the process of CO2/CH4 replacement.
Collapse
Affiliation(s)
- Xiluo Hao
- Key
Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China
- Laboratory
for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266071, China
| | - Chengfeng Li
- Key
Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China
- Laboratory
for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266071, China
| | - Qingguo Meng
- Key
Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China
- Laboratory
for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266071, China
| | - Jianye Sun
- Key
Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China
- Laboratory
for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266071, China
| | - Li Huang
- Key
Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China
- Laboratory
for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266071, China
| | - Qingtao Bu
- Key
Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China
- Laboratory
for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266071, China
| | - Congying Li
- Center
of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory
for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
21
|
Algaba J, Zerón IM, Míguez JM, Grabowska J, Blazquez S, Sanz E, Vega C, Blas FJ. Solubility of carbon dioxide in water: Some useful results for hydrate nucleation. J Chem Phys 2023; 158:2889490. [PMID: 37158326 DOI: 10.1063/5.0146618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
In this paper, the solubility of carbon dioxide (CO2) in water along the isobar of 400 bar is determined by computer simulations using the well-known TIP4P/Ice force field for water and the TraPPE model for CO2. In particular, the solubility of CO2 in water when in contact with the CO2 liquid phase and the solubility of CO2 in water when in contact with the hydrate have been determined. The solubility of CO2 in a liquid-liquid system decreases as the temperature increases. The solubility of CO2 in a hydrate-liquid system increases with temperature. The two curves intersect at a certain temperature that determines the dissociation temperature of the hydrate at 400 bar (T3). We compare the predictions with T3 obtained using the direct coexistence technique in a previous work. The results of both methods agree, and we suggest 290(2) K as the value of T3 for this system using the same cutoff distance for dispersive interactions. We also propose a novel and alternative route to evaluate the change in chemical potential for the formation of hydrates along the isobar. The new approach is based on the use of the solubility curve of CO2 when the aqueous solution is in contact with the hydrate phase. It considers rigorously the non-ideality of the aqueous solution of CO2, providing reliable values for the driving force for nucleation of hydrates in good agreement with other thermodynamic routes used. It is shown that the driving force for hydrate nucleation at 400 bar is larger for the methane hydrate than for the carbon dioxide hydrate when compared at the same supercooling. We have also analyzed and discussed the effect of the cutoff distance of dispersive interactions and the occupancy of CO2 on the driving force for nucleation of the hydrate.
Collapse
Affiliation(s)
- Jesús Algaba
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - Iván M Zerón
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - José Manuel Míguez
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - Joanna Grabowska
- Department of Physical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
- Dpto. Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Samuel Blazquez
- Dpto. Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Dpto. Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Dpto. Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Felipe J Blas
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| |
Collapse
|
22
|
Jung H, Covino R, Arjun A, Leitold C, Dellago C, Bolhuis PG, Hummer G. Machine-guided path sampling to discover mechanisms of molecular self-organization. NATURE COMPUTATIONAL SCIENCE 2023; 3:334-345. [PMID: 38177937 PMCID: PMC10766509 DOI: 10.1038/s43588-023-00428-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 01/06/2024]
Abstract
Molecular self-organization driven by concerted many-body interactions produces the ordered structures that define both inanimate and living matter. Here we present an autonomous path sampling algorithm that integrates deep learning and transition path theory to discover the mechanism of molecular self-organization phenomena. The algorithm uses the outcome of newly initiated trajectories to construct, validate and-if needed-update quantitative mechanistic models. Closing the learning cycle, the models guide the sampling to enhance the sampling of rare assembly events. Symbolic regression condenses the learned mechanism into a human-interpretable form in terms of relevant physical observables. Applied to ion association in solution, gas-hydrate crystal formation, polymer folding and membrane-protein assembly, we capture the many-body solvent motions governing the assembly process, identify the variables of classical nucleation theory, uncover the folding mechanism at different levels of resolution and reveal competing assembly pathways. The mechanistic descriptions are transferable across thermodynamic states and chemical space.
Collapse
Affiliation(s)
- Hendrik Jung
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - A Arjun
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
23
|
Belosludov RV, Gets KV, Zhdanov RK, Bozhko YY, Belosludov VR, Chen LJ, Kawazoe Y. Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure. Molecules 2023; 28:2960. [PMID: 37049727 PMCID: PMC10095827 DOI: 10.3390/molecules28072960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.
Collapse
Affiliation(s)
| | - Kirill V. Gets
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ravil K. Zhdanov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yulia Y. Bozhko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir R. Belosludov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Li-Jen Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankurathur 603203, India
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
24
|
Grabowska J, Blazquez S, Sanz E, Noya EG, Zeron IM, Algaba J, Miguez JM, Blas FJ, Vega C. Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations. J Chem Phys 2023; 158:114505. [PMID: 36948790 DOI: 10.1063/5.0132681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
In this work, we shall estimate via computer simulations the homogeneous nucleation rate for the methane hydrate at 400 bars for a supercooling of about 35 K. The TIP4P/ICE model and a Lennard-Jones center were used for water and methane, respectively. To estimate the nucleation rate, the seeding technique was employed. Clusters of the methane hydrate of different sizes were inserted into the aqueous phase of a two-phase gas-liquid equilibrium system at 260 K and 400 bars. Using these systems, we determined the size at which the cluster of the hydrate is critical (i.e., it has 50% probability of either growing or melting). Since nucleation rates estimated from the seeding technique are sensitive to the choice of the order parameter used to determine the size of the cluster of the solid, we considered several possibilities. We performed brute force simulations of an aqueous solution of methane in water in which the concentration of methane was several times higher than the equilibrium concentration (i.e., the solution was supersaturated). From brute force runs, we infer the value of the nucleation rate for this system rigorously. Subsequently, seeding runs were carried out for this system, and it was found that only two of the considered order parameters were able to reproduce the value of the nucleation rate obtained from brute force simulations. By using these two order parameters, we estimated the nucleation rate under experimental conditions (400 bars and 260 K) to be of the order of log10 (J/(m3 s)) = -7(5).
Collapse
Affiliation(s)
- J Grabowska
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Blazquez
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Sanz
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E G Noya
- Instituto de Química Física Rocasolano, CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - I M Zeron
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - J Algaba
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - J M Miguez
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - F J Blas
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - C Vega
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
25
|
Dhabal D, Molinero V. Kinetics and Mechanisms of Pressure-Induced Ice Amorphization and Polyamorphic Transitions in a Machine-Learned Coarse-Grained Water Model. J Phys Chem B 2023; 127:2847-2862. [PMID: 36920450 DOI: 10.1021/acs.jpcb.3c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Water glasses have attracted considerable attention due to their potential connection to a liquid-liquid transition in supercooled water. Here we use molecular simulations to investigate the formation and phase behavior of water glasses using the machine-learned bond-order parameter (ML-BOP) water model. We produce glasses through hyperquenching of water, pressure-induced amorphization (PIA) of ice, and pressure-induced polyamorphic transformations. We find that PIA of polycrystalline ice occurs at a lower pressure than that of monocrystalline ice and through a different mechanism. The temperature dependence of the amorphization pressure of polycrystalline ice for ML-BOP agrees with that in experiments. We also find that ML-BOP accurately reproduces the density, coordination number, and structural features of low-density (LDA), high-density (HDA), and very high-density (VHDA) amorphous water glasses. ML-BOP accurately reproduces the experimental radial distribution function of LDA but overpredicts the minimum between the first two shells in high-density glasses. We examine the kinetics and mechanism of the transformation between low-density and high-density glasses and find that the sharp nature of these transitions in ML-BOP is similar to that in experiments and all-atom water models with a liquid-liquid transition. Transitions between ML-BOP glasses occur through a spinodal-like mechanism, similar to ice crystallization from LDA. Both glass-to-glass and glass-to-ice transformations have Avrami-Kolmogorov kinetics with exponent n = 1.5 ± 0.2 in experiments and simulations. Importantly, ML-BOP reproduces the competition between crystallization and HDA→LDA transition above the glass transition temperature Tg, and separation of their time scales below Tg, observed also in experiments. These findings demonstrate the ability of ML-BOP to accurately reproduce water properties across various regimes, making it a promising model for addressing the competition between polyamorphic transitions and crystallization in water and solutions.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
26
|
Liu J, Zhang W, Wu H, Gao Z, Feng Y, Liu S. First-principles Computational Study on Adsorption and Inhibition Mechanism of Kinetic Hydrate Inhibitors. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Arjun A, Bolhuis PG. Homogeneous nucleation of crystalline methane hydrate in molecular dynamics transition paths sampled under realistic conditions. J Chem Phys 2023; 158:044504. [PMID: 36725504 DOI: 10.1063/5.0124852] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Methane hydrates are important from a scientific and industrial perspective, and form by nucleation and growth from a supersaturated aqueous solution of methane. Molecular simulation is able to shed light on the process of homogeneous nucleation of hydrates, using straightforward molecular dynamics or rare event enhanced sampling techniques with atomistic and coarse grained force fields. In our previous work [Arjun, T. A. Berendsen, and P. G. Bolhuis, Proc. Natl. Acad. Sci. U. S. A. 116, 19305 (2019)], we performed transition path sampling (TPS) simulations using all atom force fields under moderate driving forces at high pressure, which enabled unbiased atomistic insight into the formation of methane hydrates. The supersaturation in these simulations was influenced by the Laplace pressure induced by the spherical gas reservoir. Here, we investigate the effect of removing this influence. Focusing on the supercooled, supersaturated regime to keep the system size tractable, our TPS simulations indicate that nuclei form amorphous structures below roughly 260 K and crystalline sI structures above 260 K. For these temperatures, the average transition path lengths are significantly longer than in our previous study, pushing the boundaries of what can be achieved with TPS. The temperature to observe a critical nucleus of certain size was roughly 20 K lower compared to a spherical reservoir due to the lower concentration of methane in the solution, yielding a reduced driving force. We analyze the TPS results using a model based on classical nucleation theory. The corresponding free energy barriers are estimated and found to be consistent with previous predictions, thus adding to the overall picture of the hydrate formation process.
Collapse
Affiliation(s)
- A Arjun
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
28
|
Islam MF, Adame-Ramirez E, Williams ER, Kittikhunnatham P, Wijesekera A, Zhang S, Ge T, Stefik M, Smith MD, Pellechia PJ, Greytak AB, Shimizu LS. Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine Bis-Urea Macrocycles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Md Faizul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Emely Adame-Ramirez
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Eric R. Williams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Andrew Wijesekera
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Siteng Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Andrew B. Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Linda S. Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
29
|
Yang P, Guo D, Fang B. Dynamic Dissociation Behaviors of sII Hydrates in Liquid Water by Heating: A Molecular Dynamics Simulation Approach. ACS OMEGA 2022; 7:42774-42782. [PMID: 36467936 PMCID: PMC9713880 DOI: 10.1021/acsomega.2c04488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
An understanding of the dynamic behavior of subtle hydrate dissociation in the liquid water phase is fundamental for gas production from marine hydrate reservoirs. Molecular dynamics simulations are performed in this study to investigate the dissociation kinetics of pure propane and binary propane + methane sII hydrates in a liquid water environment. The results show that faster hydrate dissociation rates are observed at higher initial temperatures. The hydrate phase dissociates from the cluster surface to the inside in a layer-by-layer manner under the simulation temperature conditions, which is similar to the behavior of sI hydrates and is independent of the hydrate crystal type. Compared to the binary sII hydrate, the pure sII hydrate dissociates more easily under the same initial temperature conditions, which can be attributed to the stabilizing effect of guest molecules in the hydrate cages. The empty cages collapse in one step, in contrast to the two-step pathway induced by the guest-host interaction. In addition, a hydrocarbon phase forms in the binary hydrate dissociation system instead of nanobubbles. These results can provide molecular-level insights into the dynamic mechanism of hydrate dissociation and theoretical guidance for gas recovery by thermal injection from marine hydrate reservoirs.
Collapse
Affiliation(s)
- Peihan Yang
- School
of Mathematics and Physics, China University
of Geosciences, Wuhan430074, China
| | - Dongdong Guo
- School
of Earth and Environment, Anhui University
of Science & Technology, Huainan232001, China
| | - Bin Fang
- School
of Mathematics and Physics, China University
of Geosciences, Wuhan430074, China
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat
39, 2628CBDelft, The Netherlands
| |
Collapse
|
30
|
Wang Z, Jiao L. Fluctuation–dissipation analysis of heat and mass flow in energy transport at different CO2 hydrate dissociation interfaces. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Lv W, Deng C, Jin Z, Zhang H, Wang Y. Molecular Simulation of the Effects of Cyclic Organic Compounds on the Stability of Lccbm Hydrates. Molecules 2022; 27:molecules27207077. [PMID: 36296669 PMCID: PMC9612244 DOI: 10.3390/molecules27207077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
CH4 can be separated from low-concentration coal bed methane (LCCBM) by using the hydrate-based gas separation (HBGS) method. To study the contribution of different cyclic organic compounds to the separation of CH4 in LCCBM, an LCCBM hydrate model was constructed. Based on the Monte Carlo and molecular dynamics theory, we simulated the effect of three cyclic organic compounds—cyclopentane (CP), cyclopentanone (CP-one), and cyclopentanol (CP-ol)—on the stability of the LCCBM hydrate at P = 2 MPa, various temperatures, and discussed the structural stability of the hydrate in depth in terms of final snapshots, radial distribution function, mean square displacement, diffusion coefficient, and potential energy change. The results showed that for the CH4-N2 LCCMM gas mixture, CP showed the best facilitation effect compared to the other two cyclic compounds by maintaining the stability of the LCCBM hydrate well at T = 293 K. The promotion effect of CP-one is between CP and CP-ol, and when the temperature increases to T = 293 K, the oxygen atoms in the water molecule can maintain the essential stability of the hydrate structure, although the orderliness decreases significantly. Moreover, the structure of the hydrate model containing CP-ol is destroyed at T = 293 K, and the eventual escape of CH4 and N2 molecules in solution occurs as bubbles. The research results are important for further exploration of the mechanism of action of cyclic promoter molecules with LCCBM hydrate molecules and promoter preferences.
Collapse
Affiliation(s)
- Wenbo Lv
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Cunbao Deng
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
- Correspondence: (C.D.); (H.Z.); Tel.: +86-133-3343-6997 (C.D.); +86-180-5137-5604 (H.Z.)
| | - Zhixin Jin
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Hao Zhang
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
- Datong Coal Mine Group Co., Ltd., Datong 037037, China
- Correspondence: (C.D.); (H.Z.); Tel.: +86-133-3343-6997 (C.D.); +86-180-5137-5604 (H.Z.)
| | - Yansheng Wang
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
32
|
Zheng X, Cheng L, Liu B, Ban S, Chen G. A molecular dynamic simulation on the memory effect of methane hydrate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Wang L, Hall K, Zhang Z, Kusalik PG. Mixed Hydrate Nucleation: Molecular Mechanisms and Cage Structures. J Phys Chem B 2022; 126:7015-7026. [PMID: 36047925 DOI: 10.1021/acs.jpcb.2c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular-level details of the formation of mixed gas hydrates remain elusive despite their significance for a variety of scientific and industrial applications. In this study, extensive molecular simulations have been performed to examine the behavior of CH4/H2S mixed hydrate nucleation utilizing two different simulation setups varying in compositions and temperatures. The observed behavior exhibits similar phenomenology across the various systems once differences in nucleation rates and guest uptake are accounted for. We find that CH4 is always enriched in the hydrate phase while the aqueous phase is enriched in H2S. Even with H2S as a minor component (i.e., 10% mole fraction), the system can mirror the overall nucleation kinetics of pure H2S hydrate systems with CH4-dominant nuclei. Through analyses of cages and their transitions, nonstandard cages, particularly those with 12 faces (e.g., 51062), have been found to be key intermediate cage types in the early stage of nucleation. Additionally, we present previously unreported cage types comprising heptagonal faces (e.g., 596271) as having a significant role in the early-stage gas hydrate structural transitions.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Alberta, Canada
| | - Kyle Hall
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Alberta, Canada
| | - Zhengcai Zhang
- Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Peter G Kusalik
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Alberta, Canada
| |
Collapse
|
34
|
Jaramillo-Granada AM, Reyes-Figueroa AD, Ruiz-Suárez JC. Xenon and Krypton Dissolved in Water Form Nanoblobs: No Evidence for Nanobubbles. PHYSICAL REVIEW LETTERS 2022; 129:094501. [PMID: 36083645 DOI: 10.1103/physrevlett.129.094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate, experimentally and by molecular dynamics simulations, that krypton and xenon form nanostructured water-gas domains. High pressure was applied to force the inert gases to dissolve in water following Henry's law, then the liquid was depressurized, centrifuged, and inspected by dynamic light scattering. The observed objects have similar sizes and electrical properties to nanobubbles, but we found that they have fairly neutral buoyancy even at high gravitational fields. We posit that the formed nano objects are not bubbles but blobs, unique structures conceived as clathrate-hydrate precursors, thus resolving the so-called Laplace pressure bubble catastrophe.
Collapse
Affiliation(s)
- Angela M Jaramillo-Granada
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, 66600 Nuevo León, Mexico
| | - A D Reyes-Figueroa
- Centro de Investigación en Matemáticas Unidad Monterrey, Av. Alianza Centro No. 502, PIIT, Apodaca, 66628 Nuevo León, Mexico
- Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940 CDMX, Mexico
| | - J C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, 66600 Nuevo León, Mexico
| |
Collapse
|
35
|
Hu Y, Zhang J, Luo P. Solvent effects on the original molecular recovery from the solvated solute monomers of cyclic nitramine explosives. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Sun R, Fan Z, Li K, Yang M, Song Y. Effects of ice and supercooled water on the metastability of methane hydrate: DSC analysis and MD simulations. Phys Chem Chem Phys 2022; 24:18805-18815. [PMID: 35904061 DOI: 10.1039/d2cp02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane hydrate (MH) has been viewed as a potential abundant clean energy resource worldwide. Its related technologies play important roles in applications of gas and energy storage, flow assurance of natural gas pipelines etc. Unlike the well-researched stability and decomposition of MH at temperatures above 273 K, the metastability of MH below the ice freezing point, i.e. the anomalous slow decomposition out of thermodynamically stable regions, remains to be unravelled. Studies regarding the influences of ice and supercooled water (SW) on the metastable properties of MH led to varied conclusions, i.e. the as-proposed self-preservation effect and metastable MH-SW-gas equilibrium. In this study, a series of DSC experiments were performed to investigate the thermal stability boundaries and the associated metastable behaviours of MH-ice-gas and MH-SW-gas samples in porous medium. The DSC analysis probed accurate thermal stabilities and characterized decomposition behaviors of the samples, contributing to the hypothesis of potential influences from SW and ice on the metastability of MH. MD simulations were also validated and performed. Active guest-host interactions by the SW layers between MH and gas phases were identified, suggesting probable microscopic configurations related to the metastability of the MH-SW-gas system. Indications of the DSC and MD simulation results call for future high-resolution in situ experimental validations.
Collapse
Affiliation(s)
- Ronghui Sun
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Zhen Fan
- WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kehan Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
37
|
Li M, Fan S, Wang Y, Lang X, Li G, Wang S, Yu C. Effect of Surface Curvature and Wettability on Nucleation of Methane Hydrate. AIChE J 2022. [DOI: 10.1002/aic.17823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengyang Li
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Shuanshi Fan
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education Guangzhou China
| | - Yanhong Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating Zhuhai China
| | - Xuemei Lang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education Guangzhou China
| | - Gang Li
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education Guangzhou China
| | - Shenglong Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Chi Yu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
38
|
Hao X, Li C, Liu C, Meng Q, Sun J. The performance of OPC water model in prediction of the phase equilibria of methane hydrate. J Chem Phys 2022; 157:014504. [DOI: 10.1063/5.0093659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics (MD) simulations were performed to determine the three-phase coexistence line of sI methane hydrates. The MD simulations were carried out at four different pressures (4, 10, 40 and 100 MPa) by using direct phase coexistence method. In current simulations, water was described by either TIP4P/Ice or OPC models and methane was described as a simple Lennard-Jones (LJ) interaction site. Lorentz-Berthelot combining rules were used to calculate the parameters of the cross interactions. For OPC model, positive deviations from the energetic Lorentz-Berthelot rule were also considered based on the solubility of methane in water. For TIP4P/Ice water model, the obtained three phase coexistence temperatures showed good agreement with experiment data at higher pressures, which is consistent with previous predictions. For OPC water model, simulations using the classic and the modified LB parameters both showed negative deviations to the experimental values. Our results also indicated that the deviation of the T3 prediction by OPC model not much correlated with the predicted melting point of ice. At 4 MPa, the modified OPC model showed outstanding prediction of hydrate equilibrium temperature, even better than the prediction by TIP4P/Ice. The relative higher accuracy in biomolecular MD of OPC model suggests that this model may have a better performance in hydrate MD simulations of biomolecule-based additives.
Collapse
Affiliation(s)
- Xiluo Hao
- Qingdao Institute of Marine Geology, China
| | | | | | | | - Jianye Sun
- Qingdao Institute of Marine Geology, China
| |
Collapse
|
39
|
Algaba J, Acuña E, Míguez JM, Mendiboure B, Zerón IM, Blas FJ. Simulation of the carbon dioxide hydrate-water interfacial energy. J Colloid Interface Sci 2022; 623:354-367. [PMID: 35594594 DOI: 10.1016/j.jcis.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Carbon dioxide hydrates are ice-like nonstoichiometric inclusion solid compounds with importance to global climate change, and gas transportation and storage. The thermodynamic and kinetic mechanisms that control carbon dioxide nucleation critically depend on hydrate-water interfacial free energy. Only two independent indirect experiments are available in the literature. Interfacial energies show large uncertainties due to the conditions at which experiments are performed. Under these circumstances, we hypothesize that accurate molecular models for water and carbon dioxide combined with computer simulation tools can offer an alternative but complementary way to estimate interfacial energies at coexistence conditions from a molecular perspective. CALCULATIONS We have evaluated the interfacial free energy of carbon dioxide hydrates at coexistence conditions (three-phase equilibrium or dissociation line) implementing advanced computational methodologies, including the novel Mold Integration methodology. Our calculations are based on the definition of the interfacial free energy, standard statistical thermodynamic techniques, and the use of the most reliable and used molecular models for water (TIP4P/Ice) and carbon dioxide (TraPPE) available in the literature. FINDINGS We find that simulations provide an interfacial energy value, at coexistence conditions, consistent with the experiments from its thermodynamic definition. Our calculations are reliable since are based on the use of two molecular models that accurately predict: (1) The ice-water interfacial free energy; and (2) the dissociation line of carbon dioxide hydrates. Computer simulation predictions provide alternative but reliable estimates of the carbon dioxide interfacial energy. Our pioneering work demonstrates that is possible to predict interfacial energies of hydrates from a truly computational molecular perspective and opens a new door to the determination of free energies of hydrates.
Collapse
Affiliation(s)
- Jesús Algaba
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, United Kingdom
| | - Esteban Acuña
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain
| | - José Manuel Míguez
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain
| | - Bruno Mendiboure
- Laboratoire des Fluides Complexes et Leurs Reservoirs, UMR5150, Universite de Pau et des Pays de l'Adour, B. P. 1155, Pau Cedex 64014, France
| | - Iván M Zerón
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain
| | - Felipe J Blas
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain.
| |
Collapse
|
40
|
Lu Y, Lv X, Li Q, Yang L, Zhang L, Zhao J, Song Y. Molecular behavior of hybrid gas hydrate nucleation: separation of soluble H 2S from mixed gas. Phys Chem Chem Phys 2022; 24:9509-9520. [PMID: 35388810 DOI: 10.1039/d1cp05302g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Soluble H2S widely exists in natural gas or oil potentially corroding oil/gas pipelines. Furthermore, it can affect the hydrate formation condition, resulting in pipeline blockage; the nucleation mechanism from mixed gas including H2S is still largely unclear. Molecular dynamics simulations were performed to reveal the effects of different initial mixed H2S/CH4 compositions on the hydrate nucleation and growth process. The geometric details of the nanobubbles and gas composition in the nanobubbles were analyzed; the size of the nanobubbles was found to decrease from 3.4 nm to 1.4 nm. With the increase in the initial H2S proportion, the diameter of the nanobubbles decreased; more guest molecules were dissolved in the water, which improved the initial concentration of guest molecules in the water. A multi-site nucleation process was observed, and separate hydrate clusters could grow independently until the simulation box limited their growth due to high local H2S concentration as a potential nucleation location. When the initial proportion of mixed gas approaches, H2S preferred to occupy and stabilize the incipient cage. Moreover, 512, 4151062, and 51262 cages accounted for approximately 95% of the first hydrate cage. Nucleation rates were shown to increase from 4.62 × 1024 to 9.438 × 1026 nuclei cm-3 s-1. The present high subcooling and H2S concentration provided a high driving force to promote mixed hydrate nucleation and growth. The proportion of cages occupied by H2S increased with increasing initial H2S proportion, but the largest enrichment factor of 1.38 occurred at 10% initial H2S/CH4 mixed gas.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Xin Lv
- State Key Laboratory of Natural Gas Hydrate, Beijing, 100028, China
| | - Qingping Li
- State Key Laboratory of Natural Gas Hydrate, Beijing, 100028, China
| | - Lei Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Jiafei Zhao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
41
|
Experimental Characterization of Memory Effect, Anomalous Self-Preservation and Ice-Hydrate Competition, during Methane-Hydrates Formation and Dissociation in a Lab-Scale Apparatus. SUSTAINABILITY 2022. [DOI: 10.3390/su14084807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study explores the process of methane hydrate formation and dissociation in a small-scale confined environment and in the presence of a porous sediment. The research is focused on answering the shortage of information about the intrinsic properties of the hydrate formation and dissociation processes, such as memory effect and anomalous self-preservation, in a lab-scale apparatus. Experiments were carried out consecutively and with the same gas–water mixture. The temperature reached during dissociation was high enough to ensure the complete dissolution of water cages. At the same time, it was sufficiently low to keep the system able to retain the memory of the previous formation of hydrates. Different well-known phenomena were observed and described; memory effect, anomalous self-preservation and competition between ice and hydrates were shown in detail. Experiments confirmed that the memory effect improves the process mainly during the initial nucleation phase, while it does not provide significant changes in the following massive growth phase. Finally, experiments proved that the formation process can be divided in two different steps: the initial intense growth, due to the small difference in local equilibrium conditions, and the subsequent asymptotic growth, which continues until the process is completed.
Collapse
|
42
|
Fu Y, Xiao S, Liu S, Chang Y, Ma R, Zhang Z, He J. Atomistic Insights into the Droplet Size Evolution during Self-Microemulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3129-3138. [PMID: 35238580 PMCID: PMC8928481 DOI: 10.1021/acs.langmuir.1c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Microemulsions have been attracting great attention for their importance in various fields, including nanomaterial fabrication, food industry, drug delivery, and enhanced oil recovery. Atomistic insights into the self-microemulsifying process and the underlying mechanisms are crucial for the design and tuning of the size of microemulsion droplets toward applications. In this work, coarse-grained models were used to investigate the role that droplet sizes played in the preliminary self-microemulsifying process. Time evolution of liquid mixtures consisting of several hundreds of water/surfactant/oil droplets was resolved in large-scale simulations. By monitoring the size variation of the microemulsion droplets in the self-microemulsifying process, the dynamics of diameter distribution of water/surfactant/oil droplets were studied. The underlying mass transport mechanisms responsible for droplet size evolution and stability were elucidated. Specifically, temperature effects on the droplet size were clarified. This work provides the knowledge of the self-microemulsification of water-in-oil microemulsions at the nanoscale. The results are expected to serve as guidelines for practical strategies for preparing a microemulsion system with desirable droplet sizes and properties.
Collapse
Affiliation(s)
- Yuequn Fu
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Senbo Xiao
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Siqi Liu
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Yuanhao Chang
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Rui Ma
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Zhiliang Zhang
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Jianying He
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
43
|
Hu W, Chen C, Sun J, Zhang N, Zhao J, Liu Y, Ling Z, Li W, Liu W, Song Y. Three-body aggregation of guest molecules as a key step in methane hydrate nucleation and growth. Commun Chem 2022; 5:33. [PMID: 36697657 PMCID: PMC9814777 DOI: 10.1038/s42004-022-00652-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Gas hydrates have an important role in environmental and astrochemistry, as well as in energy materials research. Although it is widely accepted that gas accumulation is an important and necessary process during hydrate nucleation, how guest molecules aggregate remains largely unknown. Here, we have performed molecular dynamics simulations to clarify the nucleation path of methane hydrate. We demonstrated that methane gather with a three-body aggregate pattern corresponding to the free energy minimum of three-methane hydrophobic interaction. Methane molecules fluctuate around one methane which later becomes the central gas molecule, and when several methanes move into the region within 0.8 nm of the potential central methane, they act as directional methane molecules. Two neighbor directional methanes and the potential central methane form a three-body aggregate as a regular triangle with a distance of ~6.7 Å which is well within the range of typical methane-methane distances in hydrates or in solution. We further showed that hydrate nucleation and growth is inextricably linked to three-body aggregates. By forming one, two, and three three-body aggregates, the possibility of hydrate nucleation at the aggregate increases from 3/6, 5/6 to 6/6. The results show three-body aggregation of guest molecules is a key step in gas hydrate formation.
Collapse
Affiliation(s)
- Wenfeng Hu
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Cong Chen
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China.
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China.
| | - Jingyue Sun
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Ning Zhang
- School of Petroleum and Chemical Engineering, Dalian University of Technology, 124221, Panjin, P. R. China
| | - Jiafei Zhao
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Yu Liu
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Zheng Ling
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Weizhong Li
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Weiguo Liu
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Yongchen Song
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China.
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China.
| |
Collapse
|
44
|
A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Kainai D, Bai D. Effect of Cage Occupancy on Stability and Decomposition of Methane Hydrate. J Phys Chem B 2022; 126:492-502. [PMID: 34985263 DOI: 10.1021/acs.jpcb.1c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas hydrates usually contain a certain number of empty cages that will both affect the hydrate stability and reduce the gas storage capacity. In this work, by MD simulations, we found that the hydrate stability is related to the cage occupancy, the empty cage types, and especially the distribution of empty cages. With the decrease of overall occupancy, the stability of hydrate becomes worse. Under the same overall occupancy, the more concentrated the empty cages are, the more unstable the hydrate is and hence the faster it decomposes. The methane molecules may migrate between distorted cages during the decomposition, resulting in a temporary increase in the stability of hydrate. Hydrates with different empty cage distributions show different decomposition mechanisms: when empty cages are concentrated, the melting rate is fast first due to the rapid decomposition of empty cages, but the remaining filled cages will reduce the melting rate; when empty cages are separated on the contrary, the early melting is slow because of the high local occupancy, and the following melting will be accelerated because of the high melting surface area. It indicates that the empty cage distribution plays a controlling role in hydrate decomposition kinetics at different stages.
Collapse
Affiliation(s)
- Dilare Kainai
- Department of Chemistry, College of Chemistry and Materials Engineering/Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Dongsheng Bai
- Department of Chemistry, College of Chemistry and Materials Engineering/Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
46
|
Xu J, Du S, Hao Y, Yang X, Zhang J. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Abstract
Water and methane can stay together under low temperature and high pressure in the forms of liquid solutions and crystalline solids. From liquid and gaseous states to crystalline solids or the contrary processes, amorphous methane hydrates can occur in these evolution scenarios. Herein, mechanical properties of amorphous methane hydrates are explored for the first time to bridge the gap between mechanical responses of monocrystalline and polycrystalline methane hydrates. Our results demonstrate that mechanical properties of amorphous methane hydrates are strongly governed by our original proposed order parameter, namely, normalized hydrogen-bond directional order parameter. Followed by this important achievement, a multistep deformation mechanism core is proposed to explain mechanical properties of amorphous methane hydrates. Through an extensive detailed analysis of amorphous methane hydrates, our simulation results not only greatly enlarge our fundamental understanding for mechanical responses of amorphous methane hydrates in geological systems but also offer a fresh perspective in structure-property topics of solid materials in future science and technology.
Collapse
Affiliation(s)
- Pinqiang Cao
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
48
|
Frassek M, Arjun A, Bolhuis PG. An extended autoencoder model for reaction coordinate discovery in rare event molecular dynamics datasets. J Chem Phys 2021; 155:064103. [PMID: 34391359 DOI: 10.1063/5.0058639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reaction coordinate (RC) is the principal collective variable or feature that determines the progress along an activated or reactive process. In a molecular simulation using enhanced sampling, a good description of the RC is crucial for generating sufficient statistics. Moreover, the RC provides invaluable atomistic insight into the process under study. The optimal RC is the committor, which represents the likelihood of a system to evolve toward a given state based on the coordinates of all its particles. As the interpretability of such a high dimensional function is low, a more practical approach is to describe the RC by some low-dimensional molecular collective variables or order parameters. While several methods can perform this dimensionality reduction, they usually require a preselection of these low-dimension collective variables (CVs). Here, we propose to automate this dimensionality reduction using an extended autoencoder, which maps the input (many CVs) onto a lower-dimensional latent space, which is subsequently used for the reconstruction of the input as well as the prediction of the committor function. As a consequence, the latent space is optimized for both reconstruction and committor prediction and is likely to yield the best non-linear low-dimensional representation of the committor. We test our extended autoencoder model on simple but nontrivial toy systems, as well as extensive molecular simulation data of methane hydrate nucleation. The extended autoencoder model can effectively extract the underlying mechanism of a reaction, make reliable predictions about the committor of a given configuration, and potentially even generate new paths representative for a reaction.
Collapse
Affiliation(s)
- M Frassek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - A Arjun
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - P G Bolhuis
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
49
|
Dhyani A, Wang J, Halvey AK, Macdonald B, Mehta G, Tuteja A. Design and applications of surfaces that control the accretion of matter. Science 2021; 373:373/6552/eaba5010. [PMID: 34437123 DOI: 10.1126/science.aba5010] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surfaces that provide control over liquid, solid, or vapor accretion provide an evolutionary advantage to numerous plants, insects, and animals. Synthetic surfaces inspired by these natural surfaces can have a substantial impact on diverse commercial applications. Engineered liquid and solid repellent surfaces are often designed to impart control over a single state of matter, phase, or fouling length scale. However, surfaces used in diverse real-world applications need to effectively control the accrual of matter across multiple phases and fouling length scales. We discuss the surface design strategies aimed at controlling the accretion of different states of matter, particularly those that work across multiple length scales and different foulants. We also highlight notable applications, as well as challenges associated with these designer surfaces' scale-up and commercialization.
Collapse
Affiliation(s)
- Abhishek Dhyani
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA
| | - Jing Wang
- Department of Mechanical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Alex Kate Halvey
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Brian Macdonald
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Geeta Mehta
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Anish Tuteja
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA. .,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan-Ann Arbor, MI, USA
| |
Collapse
|
50
|
|