1
|
Duran J, Rodríguez P, Vermeer W, Companyó X. Organocatalytic Asymmetric Allylic Benzylborylation via Fluoride-Assisted Catalytic Generation of α-Boryl Carbanionic Intermediates. Org Lett 2024; 26:8394-8399. [PMID: 39301847 PMCID: PMC11459515 DOI: 10.1021/acs.orglett.4c03242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Herein we describe the organocatalytic asymmetric allylic benzylborylation of allyl fluorides with α-silyl benzylboronic esters. The catalytic protocol leverages the singular features of fluoride as an unconventional leaving group, enabling the catalytic generation of reactive α-boryl carbanion species through desilylative activation. It allows the construction of a wide set of homoallylic benzylated organoboronates bearing two contiguous stereocenters. The chiral boronate installed in the products serves as a synthetic lynchpin to construct complex chemical architectures in a stereospecific manner.
Collapse
Affiliation(s)
- Jordi Duran
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Paula Rodríguez
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ward Vermeer
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Xavier Companyó
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Sun J, Jaworski C, Schirrmacher R, Hall DG. Suppressing Protodeboronation in Cu-Mediated 19F/ 18F-Fluorination of Arylboronic Acids: A Mechanistically Guided Approach Towards Optimized PET Probe Development. Chemistry 2024; 30:e202400906. [PMID: 38959115 DOI: 10.1002/chem.202400906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fluorinated arenes play a crucial role in drug discovery, specialty materials, and medical imaging. Although several variants for Cu-mediated nucleophilic fluorination of arylboronic acids and derivatives have been developed, these protocols rarely address the occurrence and control of protodeboronation, which greatly complicates product separation and can compromise the effectiveness of a radiotracer for in vivo imaging. Consequently, simpler and more efficient procedures are needed to allow rapid 18F/19F-fluorination of both arylboronic acids and esters while minimizing protodeboronation. Mechanistic controls revealed that in addition to a high temperature, strong donor ligands such as acetonitrile and pyridine accentuate a Cu-mediated protodeboronation. This observation guided the optimization of a ligandless procedure, with t-BuOH as solvent, to activate fluoride under milder conditions at lower temperatures minimizing protodeboronation. Additionally, a new copper salt, Cu(ONf)2 was employed to further improve the fluorination efficiency. A large range of functional groups are tolerated under the new procedure, which is complete within 30 minutes at a temperature of 60 °C, and affords fluorinated arenes and heteroarenes in 39 % to 84 % yield. With minimal modifications, the protocol can also be applied in 18F-radiofluorination, affording radiochemical conversions (RCCs) between 17 and 54 % with minimal protodeboronation compared to previously established protocols.
Collapse
Affiliation(s)
- Jingkai Sun
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Dennis G Hall
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
3
|
Petcu AS, Lázaro-Milla C, Alonso JM, Almendros P. Unveiling the Use of 1,1-Bis(triflyl)ethylene as CF 3SO 2CH═CH 2 Source with the Assistance of ( n-Bu) 4NF: Synthesis of 3-[(Trifluoromethyl)sulfonyl]cyclobut-1-enes. Org Lett 2024; 26:4560-4565. [PMID: 38767989 PMCID: PMC11148847 DOI: 10.1021/acs.orglett.4c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Allylic sulfone-embedded cyclobutenes have been prepared in one pot from alkynes. The carbocycle and the alkenyl sulfone moieties were installed through consecutive bis(triflyl)cyclobutenylation of a triple bond and tetra-n-butylammonium fluoride (TBAF)-assisted hydrodesulfonylation of an allylic bis(sulfone). It is noteworthy that 1,1-bis(triflyl)ethylene acts as a CF3SO2CH═CH2 source for the first time.
Collapse
Affiliation(s)
- A. Sonia Petcu
- Instituto
de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Lázaro-Milla
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
4
|
Wang X, Fellowes T, Bahri M, Qu H, Li B, Niu H, Browning ND, Zhang W, Ward JW, Cooper AI. 2D to 3D Reconstruction of Boron-Linked Covalent-Organic Frameworks. J Am Chem Soc 2024; 146:14128-14135. [PMID: 38723144 PMCID: PMC11117181 DOI: 10.1021/jacs.4c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
The transformation of two-dimensional (2D) covalent-organic frameworks (COFs) into three-dimensions (3D) is synthetically challenging, and it is typically addressed through interlayer cross-linking of alkene or alkyne bonds. Here, we report the first example of the chemical reconstruction of a 2D COF to a 3D COF with a complete lattice rearrangement facilitated by base-triggered boron hybridization. This chemical reconstruction involves the conversion of trigonal boronate ester linkages to tetrahedral anionic spiroborate linkages. This transformation reticulates the coplanar, closely stacked square cobalt(II) phthalocyanine (PcCo) units into a 3D perpendicular arrangement. As a result, the pore size of COFs expands from 2.45 nm for the initial 2D square lattice (sql) to 3.02 nm in the 3D noninterpenetrated network (nbo). Mechanistic studies reveal a base-catalyzed boronate ester protodeboronation pathway for the formation of the spiroborate structure.
Collapse
Affiliation(s)
- Xue Wang
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Thomas Fellowes
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Mounib Bahri
- Albert
Crewe Centre for Electron Microscopy, University
of Liverpool, Liverpool L69 3GL, U.K.
| | - Hang Qu
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Boyu Li
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Hongjun Niu
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Nigel D. Browning
- Albert
Crewe Centre for Electron Microscopy, University
of Liverpool, Liverpool L69 3GL, U.K.
| | - Weiwei Zhang
- School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - John W. Ward
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Andrew I. Cooper
- Leverhulme
Research Centre for Functional Materials Design, University of Liverpool, Liverpool L7 3NY, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
5
|
Seidler G, Schwenzer M, Clausen F, Daniliuc CG, Studer A. Borylative transition metal-free couplings of vinyl iodides with various nucleophiles, alkenes or alkynes. Chem Sci 2024; 15:1672-1678. [PMID: 38303934 PMCID: PMC10829001 DOI: 10.1039/d3sc06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Alkyl boronic esters are highly valuable compounds in organic chemistry and related fields due to their good stability and highly versatile reactivity. In this edge article, stereoselective borylative couplings of vinyl iodides with various nucleophiles, alkenes or alkynes is reported. These coupling reactions proceed through stereospecific hydroboration and subsequent stereospecific 1,2-metallate rearrangement. The cascades utilize readily available reagents and proceed without the need of a transition metal catalyst.
Collapse
Affiliation(s)
- Gesa Seidler
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Florian Clausen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| |
Collapse
|
6
|
Xiao Y, Sun Y, Wang X, Xu Y, Wang J. A General Strategy To Access Alternating Styrene/Substituted Styrene Copolymers by Using a Traceless Controlling Group. Angew Chem Int Ed Engl 2023; 62:e202313265. [PMID: 37819780 DOI: 10.1002/anie.202313265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
We herein report a synthetic strategy for alternating copolymers of styrene and substituted styrenes by utilizing α-styryl boronate pinacol ester (StBpin) as the co-monomer through radical alternating copolymerization followed by protodeboronation. The excellent alternating polymerization behavior of the StBpin co-monomer in such a radical polymerization system is considered to be attributed to the steric hindrance and radical stabilization exerted by the Bpin group. This strategy is effective with a wide range of substituted styrene co-monomers regardless of the electronic nature of the substituents, and the protodeboronation of the alternating Bpin-containing polymers is highly efficient without polymer backbone alternation. RAFT living polymerization was also compatible with this approach. Thus, this strategy provides a way to build-up alternating copolymers consisting of similar styrene-type co-monomers, which has been inaccessible by conventional synthetic methods.
Collapse
Affiliation(s)
- Yiyang Xiao
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Yichen Sun
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Xin Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Ishibashi H, Nishino S, Shibata K, Kamei T. Nickel-catalyzed Nucleophilic C-Borylation of Imines. Chem Asian J 2023; 18:e202300437. [PMID: 37545029 DOI: 10.1002/asia.202300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Application of bioisostere plays an important role in drug discovery. α-Aminoboronic acid is the familiar bioisostere of α-amino acid. Developing reactions for the synthesis of a wide variety of α-aminoboronic acid is one important task for synthetic chemistry. Herein, we report the development of nucleophilic C-borylation chemistry for N-arylimines catalyzed by nickel. The reaction proceeds through the insertion of a borylnickel species into the C=N bond to afford the corresponding α-aminoboronate, which was isolated as acetamide after trapping with acetic anhydride. N-Benzyl imine is also tolerated by the developed reaction.
Collapse
Affiliation(s)
- Hisayasu Ishibashi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata, Yamatokoriyama, Nara, Japan
| | - Soshi Nishino
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata, Yamatokoriyama, Nara, Japan
| | - Koki Shibata
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata, Yamatokoriyama, Nara, Japan
| | - Toshiyuki Kamei
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata, Yamatokoriyama, Nara, Japan
| |
Collapse
|
8
|
Szyling J, Szymańska A, Walkowiak J. Selective synthesis of boron-substituted enynes via a one-pot diboration/protodeboration sequence. Chem Commun (Camb) 2023; 59:9541-9544. [PMID: 37458472 DOI: 10.1039/d3cc02695g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An efficient and facile one-pot protocol to access enynylboronates via a Pt-catalyzed diboration/protodeboration strategy has been developed. The reaction is suitable for various silylsubstituted symmetrical and unsymmetrical 1,3-diynes, leading to π-conjugated organoboron compounds with excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Jakub Szyling
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| | - Aleksandra Szymańska
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Jędrzej Walkowiak
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| |
Collapse
|
9
|
Qian YS, Wang ZL, Jiang B, Xiao ZY, Xu YH. Copper-Catalyzed Borylation and Silylation of Dichlorocyclobutenones. Org Lett 2023; 25:3364-3368. [PMID: 37154506 DOI: 10.1021/acs.orglett.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report copper-catalyzed borylation and silylation of dichlorocyclobutenones, which furnish the boron-substituted and silicon-substituted polyfunctionalized cyclobutenones in high yields. The reactions proceed under mild reaction conditions, show broad substrate scope, and display high chemoselectivity. In addition, a series of transformations of the corresponding products has been realized.
Collapse
Affiliation(s)
- Yi-Sen Qian
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bing Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhen-Yu Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
McGettigan JE, Ready JM. Diastereoselective Alkylation of Activated Nitrogen Heterocycles with Alkenyl Boronate Complexes. Angew Chem Int Ed Engl 2023; 62:e202216961. [PMID: 36780188 PMCID: PMC10073296 DOI: 10.1002/anie.202216961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Alkenyl boronate complexes react with acylated quinolines and isoquinolines via 1,2-metalate rearrangement to give alkylated, dearomatized heterocycles in good yields, diastereoselectivities, and regioselectivities. This multi-component coupling is highly modular and can be used to access a wide scope of heterocyclic scaffolds. Chiral boronic esters made through this methodology possess high synthetic potential and can be transformed into various functional groups in one step without racemization.
Collapse
Affiliation(s)
- James E McGettigan
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-0938, USA
| | - Joseph M Ready
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-0938, USA
| |
Collapse
|
11
|
Das KK, Panda S. 1,2-Metallate Rearrangement Using Indole Boronate Species to Access 2,3-Diarylindoles and Indolines. Org Lett 2023; 25:314-319. [PMID: 36602541 DOI: 10.1021/acs.orglett.2c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A transition metal-free multicomponent reaction using lithiated indole, boronic ester, pyridine, and ethyl chloroformate was developed to access C2,C3 bis-arylated indoles, which are present in several marketed drugs and bioactive compounds. One-pot access to unsymmetrical C2,C3-diaryl indole from the parent indole remains a huge synthetic challenge. Our group was able to achieve this goal through a transition metal-free 1,2-metalate rearrangement of the indole boronate complex. The reaction of indole boronate species with activated pyridine allows 1,2-migration to access pyridyl-indoleboronate species, which will convert to the corresponding indole upon oxidation and indoline after deborylation. The reaction tolerates substituted pyridines, quinolone, isoquinoline, and more. Both aryl and alkyl boronic esters were accommodated under optimized reaction conditions. Apart from mechanistic studies using 11B-NMR, this methodology has been applied to the gram-scale synthesis of several bioactive compounds.
Collapse
Affiliation(s)
| | - Santanu Panda
- Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
12
|
Li M, Peng GR, Yang X, Ma ZN, Xie JB. Enantio- and diastereoselective boron conjugate addition to α-alkyl α,β-unsaturated esters. Org Biomol Chem 2022; 21:53-58. [PMID: 36468637 DOI: 10.1039/d2ob01928k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We developed a copper-catalyzed enantio- and diastereoselective boron conjugate addition to α-alkyl α,β-unsaturated esters under base-free conditions. The approach showed excellent enantioselectivities (87-99% ee) and moderate to good conversions (51-99%), albeit with moderate diastereoselectivities (1 : 1-17 : 1 dr). The synthetic utility of this protocol was demonstrated.
Collapse
Affiliation(s)
- Meng Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Guang-Rui Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Xuan Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Zhen-Ning Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Jian-Bo Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Xu J, He Z, Zhang J, Chen J, Huang Y. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angew Chem Int Ed Engl 2022; 61:e202211408. [DOI: 10.1002/anie.202211408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jingwei Xu
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Zhiqi He
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiwei Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Jiean Chen
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Yong Huang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| |
Collapse
|
14
|
Xu J, He Z, Zhang J, Chen J, Huang Y. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jingwei Xu
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Zhiqi He
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Jiwei Zhang
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Jiean Chen
- SZBL: Shenzhen Bay Laboratory Pingshan Translational Medicine Center CHINA
| | - Yong Huang
- The Hong Kong University of Science and Technology Chemistry Clear Water Bay 00000 Hong Kong HONG KONG
| |
Collapse
|
15
|
Khanal HD, Perumal M, Lee YR. Annulation strategies for diverse heterocycles via the reductive transformation of 2-nitrostyrenes. Org Biomol Chem 2022; 20:7675-7693. [PMID: 35971908 DOI: 10.1039/d2ob01149b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of the stable nitro group is a fundamental and widely used transformation for the construction of complex and functionalized heterocyclic architectures. The unfolding of the reactivity of the nitro group in the 2-nitrostyrene moiety not only triggers the formation of carbon-nitrogen bonds, but also offers the opportunity for annulation and heteroannulation, thereby providing a cascade process for the synthesis of highly conjugated natural and unnatural molecules. In this review, we comprehensively discuss the use of 2-nitrostyrene motifs in the synthesis of various N-heterocycles. We offer readers an overview of the synthetic achievements achieved to date, highlighting their important features, reactivities, and mechanisms.
Collapse
Affiliation(s)
- Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muthuraja Perumal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
16
|
Sakamoto R, Odagi M, Izumiseki A, Konuki K, Nagasawa K. Stereodivergent Synthesis of 1,3-Dienes via Protodeboronation of Homoallenylboronic Esters. J Org Chem 2022; 87:8084-8098. [PMID: 35671244 DOI: 10.1021/acs.joc.2c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinylboronic esters and allylboronic esters are well known to afford olefins by protodeboronation, and therefore homoallenylboronic esters should be similarly available as precursors for 1,3-dienes, but this strategy has not been well explored due to the limited availability of homoallenylboronic esters. Here, we describe a versatile synthesis of homoallenylboronic esters via lithiation-borylation and subsequent 1,2-rearrangement. The resulting homoallenylboronic esters were successfully converted into Z- and E-1,3-dienes by protodeboronation using Bu4NF and B(C6F5)3/PhOH, respectively.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsuto Izumiseki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kaname Konuki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
17
|
Ali K, Prajapati G, Ampapathi RS, Panda G. Transition metal-free reductive coupling of allylic sulfonylhydrazones with aryl boronic acids for C(sp 3)–C(sp 2) bond formation. Org Biomol Chem 2022; 20:8672-8684. [DOI: 10.1039/d2ob01472f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The reductive coupling between allylic sulfonylhydrazones and aryl boronic acids gives 1,3-diarylpropene systems with good to excellent yields under very simple reaction conditions without metal catalysts and an inert atmosphere.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gurudayal Prajapati
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Sankar Ampapathi
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
18
|
Zhao W, Zhang K, Huang J. Rh-Catalyzed Coupling of Aldehydes with Allylboronates Enables Facile Access to Ketones. Chemistry 2021; 28:e202103851. [PMID: 34967479 DOI: 10.1002/chem.202103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/09/2022]
Abstract
We present herein a novel strategy for the preparation of ketones from aldehydes and allylic boronicesters. This reaction involves the allylation of aldehydes with allylic boronicesters and the Rh-catalyzed chain-walking of homoallylic alcohols. The key to this successful development is the protodeboronation of alkenyl borylether intermediate via a tetravalent borate anion species in the presence of KHF 2 and MeOH. This approach features mild reaction conditions, broad substrate scope, and excellent functional group tolerance. Mechanistic studies also supported that the tandem allylation and chain-walking process was involved.
Collapse
Affiliation(s)
- Wanxiang Zhao
- Hunan University, chemistry, Yuelushan, Changsha, 410082, changsha, CHINA
| | | | - Jiaxin Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
19
|
Trofimova A, Holownia A, Tien CH, Širvinskas MJ, Yudin AK. Acylboronates in Polarity-Reversed Generation of Acyl Palladium(II) Intermediates. Org Lett 2021; 23:3294-3299. [PMID: 33848176 DOI: 10.1021/acs.orglett.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report a catalytic cross-coupling process between aryl (pseudo)halides and boron-based acyl anion equivalents. This mode of acylboronate reactivity represents polarity reversal, which is supported by the observation of tetracoordinated boronate and acyl palladium(II) species by 11B, 31P NMR, and mass spectrometry. A broad scope of aliphatic and aromatic acylboronates has been examined, as well as a variety of aryl (pseudo)halides.
Collapse
Affiliation(s)
- Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Chieh-Hung Tien
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Martynas J Širvinskas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
20
|
Yang K, Song Q. Tetracoordinate Boron Intermediates Enable Unconventional Transformations. Acc Chem Res 2021; 54:2298-2312. [PMID: 33852276 DOI: 10.1021/acs.accounts.1c00132] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ConspectusOrganoboron compounds are a class of multifunctional reagents for the construction of carbon-carbon and carbon-heteroatom bonds in modern synthetic chemistry. The transformations of organoboron compounds are usually carried out through tetracoordinate boron intermediates and mainly include additions to unsaturated bonds, rearrangement reactions, transmetalation reactions, and so on. Although great progress has been achieved in improving tetracoordinate boron intermediates, there are still shortcomings, such as sparse activation modes, a paucity of reaction strategies and difficulties in stereoselective control. In this Account, we mainly discuss our recent advances in the development of unconventional transformations of organoboron compounds based on the design of tetracoordinate boron intermediates, including the following three topics: (1) the construction of C-B bonds; (2) the construction of C-C bonds; (3) the design and application of chiral tetracoordinate boron.The development of new strategies to build C-B bonds is of great interest for chemists. We have developed tandem reactions involving multiple tetracoordinate boron intermediates for the selective borylations of alkynes and the synthesis of stable tetracoordinate boron, including a domino-borylation-protodeboronation (DBP) strategy for selective borylations of alkynes, highly regio-, stereo-, and chemoselective Cu-catalyzed diborylation of β-CF3-1,3-enynes and cascade B-Cl/C-B cross-metathesis and C-H bond borylation for the synthesis of tetracoordinate triarylboranes. We have also developed novel strategies involving tetracoordinate boron intermediates to form C-C bonds because the formation of C-C bonds is an enduring theme of organic chemistry. We disclosed long distance or multiple migration reactions and novel coupling partners in transmetalation reactions, such as long distance 1,4-migrations of tetracoordinate nitrile oxide boron and nitrilium boron intermediates, multiple migrations of tetracoordinate isocyanide boron intermediate, palladium-catalyzed Suzuki-Miyaura coupling of thioureas or thioamides, copper-catalyzed atroposelective Michael-type addition, and a palladium-catalyzed atroposelective Catellani reaction. Moreover, in terms of stereoselective control of the tetracoordinate boron intermediate, we found that a chiral tricoordinate boron complex could activate water to form a chiral tetracoordinate boron complex with Brønsted acidity, which has been successfully applied with high enantioselectivity to the asymmetric catalytic reduction of challenging indoles.This Account summarizes our recent efforts using unconventional transformations of organoboron compounds for the design of tetracoordinate boron intermediates, which not only achieved the precise construction of a wide range of diverse C-B bonds and C-C bonds but also developed a novel chiral Brønsted acid for the asymmetric catalytic reduction of challenging indoles.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
21
|
Ashraf MA, Tambe SD, Cho EJ. Diastereoselective Reductive Cyclization of
Allene‐Tethered
Ketoamines via
Copper‐Catalyzed
Cascade Carboboronation and Protodeborylation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Muhammad Awais Ashraf
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Shrikant D. Tambe
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| |
Collapse
|
22
|
Park D, Baek D, Lee CW, Ryu H, Park S, Han W, Hong S. Enantioselective C(sp2)–H borylation of diarylmethylsilanes catalyzed by chiral pyridine-dihydroisoquinoline iridium complexes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Florentino L, López L, Barroso R, Cabal M, Valdés C. Synthesis of Pyrrolidines by a Csp
3
‐Csp
3
/Csp
3
‐
N
Transition‐Metal‐Free Domino Reaction of Boronic Acids with γ‐Azido‐
N
‐Tosylhydrazones. Angew Chem Int Ed Engl 2020; 60:1273-1280. [DOI: 10.1002/anie.202010528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Lucía Florentino
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Raquel Barroso
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - María‐Paz Cabal
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
24
|
Florentino L, López L, Barroso R, Cabal M, Valdés C. Synthesis of Pyrrolidines by a Csp
3
‐Csp
3
/Csp
3
‐
N
Transition‐Metal‐Free Domino Reaction of Boronic Acids with γ‐Azido‐
N
‐Tosylhydrazones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucía Florentino
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Raquel Barroso
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - María‐Paz Cabal
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
25
|
Robinson SG, Wu X, Jiang B, Sigman MS, Lin S. Mechanistic Studies Inform Design of Improved Ti(salen) Catalysts for Enantioselective [3 + 2] Cycloaddition. J Am Chem Soc 2020; 142:18471-18482. [PMID: 33064948 DOI: 10.1021/jacs.0c07128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ti(salen) complexes catalyze the asymmetric [3 + 2] cycloaddition of cyclopropyl ketones with alkenes. While high enantioselectivities are achieved with electron-rich alkenes, electron-deficient alkenes are less selective. Herein, we describe mechanistic studies to understand the origins of catalyst and substrate trends in an effort to identify a more general catalyst. Density functional theory (DFT) calculations of the selectivity determining transition state revealed the origin of stereochemical control to be catalyst distortion, which is largely influenced by the chiral backbone and adamantyl groups on the salicylaldehyde moieties. While substitution of the adamantyl groups was detrimental to the enantioselectivity, mechanistic information guided the development of a set of eight new Ti(salen) catalysts with modified diamine backbones. These catalysts were evaluated with four electron-deficient alkenes to develop a three-parameter statistical model relating enantioselectivity to physical organic parameters. This statistical model is capable of quantitative prediction of enantioselectivity with structurally diverse alkenes. These mechanistic insights assisted the discovery of a new Ti(salen) catalyst, which substantially expanded the reaction scope and significantly improved the enantioselectivity of synthetically interesting building blocks.
Collapse
Affiliation(s)
- Sophia G Robinson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Binyang Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Hu H, Hu X, Liu Y. Copper-Catalyzed ortho-Functionalization of Quinoline N-Oxides with Vinyl Arenes. Angew Chem Int Ed Engl 2020; 59:18975-18979. [PMID: 32618077 DOI: 10.1002/anie.202007699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Indexed: 11/06/2022]
Abstract
An efficient copper-catalyzed regioselective C-H alkenylation and borylative alkylation of quinoline N-oxides with vinyl arenes in the presence of pinacol diborane has been developed. The reaction proceeds through the borylcupration of the vinyl arenes followed by nucleophilic attack of the resulting alkyl copper species to the quinoline N-oxides. Benzoquinone and KOt Bu were identified as the necessary additives at the second step of the reaction that are crucial for the success of the reaction. A wide range of C2-functionalizaed quinolines were obtained with good functional group tolerance, which may find utilities in pharmaceuticals and synthetic chemistry.
Collapse
Affiliation(s)
- Hui Hu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Xiaoping Hu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| |
Collapse
|
27
|
Hu H, Hu X, Liu Y. Copper‐Catalyzed
ortho
‐Functionalization of Quinoline
N
‐Oxides with Vinyl Arenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Hu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Xiaoping Hu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| |
Collapse
|
28
|
You C, Studer A. Synthesis of 1,3-Bis-(boryl)alkanes through Boronic Ester Induced Consecutive Double 1,2-Migration. Angew Chem Int Ed Engl 2020; 59:17245-17249. [PMID: 32579295 PMCID: PMC7540398 DOI: 10.1002/anie.202007541] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 01/03/2023]
Abstract
A general and efficient approach for the preparation of 1,3-bis-(boryl)alkanes is introduced. It is shown that readily generated vinylboron ate complexes react with commercially available ICH2 Bpin to valuable 1,3-bis-(boryl)alkanes. The introduced transformation, which is experimentally easy to conduct, shows broad substrate scope and high functional-group tolerance. Mechanistic studies reveal that the reaction does not proceed via radical intermediates. Instead, an unprecedented boronic ester induced sequential bis-1,2-migration cascade is suggested.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
29
|
Bennett SH, Fawcett A, Denton EH, Biberger T, Fasano V, Winter N, Aggarwal VK. Difunctionalization of C-C σ-Bonds Enabled by the Reaction of Bicyclo[1.1.0]butyl Boronate Complexes with Electrophiles: Reaction Development, Scope, and Stereochemical Origins. J Am Chem Soc 2020; 142:16766-16775. [PMID: 32885974 DOI: 10.1021/jacs.0c07357] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Difunctionalization reactions of C-C σ-bonds have the potential to streamline access to molecules that would otherwise be difficult to prepare. However, the development of such reactions is challenging because C-C σ-bonds are typically unreactive. Exploiting the high ring-strain energy of polycyclic carbocycles is a common strategy to weaken and facilitate the reaction of C-C σ-bonds, but there are limited examples of highly strained C-C σ-bonds being used in difunctionalization reactions. We demonstrate that highly strained bicyclo[1.1.0]butyl boronate complexes (strain energy ca. 65 kcal/mol), which were prepared by reacting boronic esters with bicyclo[1.1.0]butyl lithium, react with electrophiles to achieve the diastereoselective difunctionalization of the strained central C-C σ-bond of the bicyclo[1.1.0]butyl unit. The reaction shows broad substrate scope, with a range of different electrophiles and boronic esters being successfully employed to form a diverse set of 1,1,3-trisubstituted cyclobutanes (>50 examples) with high diastereoselectivity. The high diastereoselectivity observed has been rationalized based on a combination of experimental data and DFT calculations, which suggests that separate concerted and stepwise reaction mechanisms are operating, depending upon the migrating substituent and electrophile used.
Collapse
Affiliation(s)
- Steven H Bennett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Alexander Fawcett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Elliott H Denton
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Tobias Biberger
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Valerio Fasano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Nils Winter
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
30
|
Affiliation(s)
- Xiangyu Li
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Dennis G. Hall
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
31
|
You C, Studer A. Synthesis of 1,3‐Bis‐(boryl)alkanes through Boronic Ester Induced Consecutive Double 1,2‐Migration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
32
|
Li X, Hall DG. Stereodivergent Asymmetric Synthesis of α,β-Disubstituted β-Aminoalkylboronic Acid Derivatives via Group-Selective Protodeboronation Enabling Access to the Elusive Anti Isomer. J Am Chem Soc 2020; 142:9063-9069. [PMID: 32320234 DOI: 10.1021/jacs.0c03207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral β-aminoalkylboronates generate growing interest as versatile synthetic building blocks to access β-aminoalcohols and other useful compounds, and also as bioisosteres of β-amino acids in drug discovery. In this study, the lack of methodology to access both syn and anti diastereomers of optically enriched, acyclic α,β-disubstituted β-aminoalkylboronates is addressed with the development of a divergent, diastereoselective strategy for the monoprotodeboration of β-amino gem-bis(boronate) precursors. To this end, new reaction conditions were successfully optimized to provide the elusive anti diastereomer by inverting a sequence of desulfinylation and protodeboronation. The desired syn or anti isomers are isolated independently in good yields and excellent diastereoselectivity (up to >20:1 dr) for a wide scope of substituents. The diastereotopic group selectivity of the new conditions yielding the anti isomer is rationalized by invoking a reactive rotamer featuring two ammonium-boronate hydrogen bonds, which enables phosphate coordination to boron with a concomitant, stereoretentive protonation of the least sterically hindered C-B bond. The accessibility and utility of both diastereomers of these α,β-disubstituted β-aminoalkylboronates is exemplified with the functionalization of the amino group, stereospecific oxidation to β-amino alcohols and C-C bond transformations of the secondary alkylboronate, and the preparation of free boronic acids and hemiboronic heterocycles.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of Chemistry, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
33
|
Hou SH, Prichina AY, Zhang M, Dong G. Asymmetric Total Syntheses of Di- and Sesquiterpenoids by Catalytic C-C Activation of Cyclopentanones. Angew Chem Int Ed Engl 2020; 59:7848-7856. [PMID: 32086872 PMCID: PMC7219654 DOI: 10.1002/anie.201915821] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 11/06/2022]
Abstract
To show the synthetic utility of the catalytic C-C activation of less strained substrates, described here are the collective and concise syntheses of the natural products (-)-microthecaline A, (-)-leubehanol, (+)-pseudopteroxazole, (+)-seco-pseudopteroxazole, pseudopterosin A-F and G-J aglycones, and (+)-heritonin. The key step in these syntheses involve a Rh-catalyzed C-C/C-H activation cascade of 3-arylcyclopentanones, which provides a rapid and enantioselective route to access the polysubstituted tetrahydronaphthalene cores presented in these natural products. Other important features include 1) the direct C-H amination of the tetralone substrate in the synthesis of (-)-microthecaline A, 2) the use of phosphoric acid to enhance efficiency and regioselectivity for problematic cyclopentanone substrates in the C-C activation reactions, and 3) the direct conversion of serrulatane into amphilectane diterpenes by an allylic cyclodehydrogenation coupling.
Collapse
Affiliation(s)
- Si-Hua Hou
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | | | - Mengxi Zhang
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
34
|
Khan I, Luo Z, Xu Y, Xie J, Zhu W, Liu B. Transition Metal‐Free Alkyne‐Aldehyde Reductive C−C Coupling trough Cascade Borylation/Olefin Isomerization. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Imran Khan
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P.R. China
- School of the Environment and Safety EngineeringJiangsu University Zhenjiang 212013 P.R. China
| | - Zhibin Luo
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P.R. China
| | - Yin Xu
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P.R. China
| | - Jimin Xie
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P.R. China
| | - Weihua Zhu
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P.R. China
| | - Bin Liu
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P.R. China
| |
Collapse
|
35
|
Davenport R, Silvi M, Noble A, Hosni Z, Fey N, Aggarwal VK. Visible-Light-Driven Strain-Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angew Chem Int Ed Engl 2020; 59:6525-6528. [PMID: 31912963 DOI: 10.1002/anie.201915409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/19/2022]
Abstract
There are a limited number of ring-contraction methodologies which convert readily available five-membered rings into strained four-membered rings. Here we report a photo-induced radical-mediated ring contraction of five-membered-ring alkenyl boronate complexes into cyclobutanes. The process involves the addition of an electrophilic radical to the electron-rich alkenyl boronate complex, leading to an α-boryl radical. Upon one-electron oxidation, ring-contractive 1,2-metalate rearrangement occurs to give a cyclobutyl boronic ester. A range of radical precursors and vinyl boronates can be employed, and chiral cyclobutanes can be accessed with high levels of stereocontrol. The process was extended to the preparation of benzofused cyclobutenes and the versatility of the boronic ester was demonstrated by conversion to other functional groups.
Collapse
Affiliation(s)
- Raffael Davenport
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Mattia Silvi
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Zied Hosni
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Natalie Fey
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
36
|
Salvadó O, Fernández E. Tri(boryl)alkanes and Tri(boryl)alkenes: The Versatile Reagents. Molecules 2020; 25:molecules25071758. [PMID: 32290330 PMCID: PMC7180881 DOI: 10.3390/molecules25071758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
The interest of organoboron chemistry in organic synthesis is growing, together with the development of new and versatile polyborated reagents. Here, the preparation of 1,1,1-tri(boryl)alkanes, 1,2,3-tri(boryl)alkanes, 1,1,2-tri(boryl)alkanes, as well as 1,1,2-tri(boryl)alkenes as suitable and accessible polyborated systems is demonstrated as being easily applied in the construction of new carbon-carbon and carbon-heteroatom bonds. Synthetic procedures and limitations have been collected to demonstrate the powerful strategies to construct selective molecules, taking advantages of the easy transformation of carbon-boron bond in multiple functionalities, under the total control of chemo- and stereoselectivity.
Collapse
|
37
|
Smirnov VO, Volodin AD, Korlyukov AA, Dilman AD. Trapping of Difluorocarbene by Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vladimir O. Smirnov
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Volodin
- A. N. Nesmeyanov Institute of Organoelement Compounds 119991 Moscow Vavilov str. 28 Russian Federation
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds 119991 Moscow Vavilov str. 28 Russian Federation
- N. I. Pirogov Russian National Research Medical University Ostrovitianov str., 1 117997 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
38
|
Smirnov VO, Volodin AD, Korlyukov AA, Dilman AD. Trapping of Difluorocarbene by Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2020; 59:12428-12431. [PMID: 32160367 DOI: 10.1002/anie.202001354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/08/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Vladimir O. Smirnov
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Volodin
- A. N. Nesmeyanov Institute of Organoelement Compounds 119991 Moscow Vavilov str. 28 Russian Federation
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds 119991 Moscow Vavilov str. 28 Russian Federation
- N. I. Pirogov Russian National Research Medical University Ostrovitianov str., 1 117997 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
39
|
Fasano V, Winter N, Noble A, Aggarwal VK. Divergent, Stereospecific Mono‐ and Difluoromethylation of Boronic Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Valerio Fasano
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Nils Winter
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
40
|
Fasano V, Winter N, Noble A, Aggarwal VK. Divergent, Stereospecific Mono‐ and Difluoromethylation of Boronic Esters. Angew Chem Int Ed Engl 2020; 59:8502-8506. [DOI: 10.1002/anie.202002246] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Valerio Fasano
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Nils Winter
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
41
|
Hou S, Prichina AY, Zhang M, Dong G. Asymmetric Total Syntheses of Di‐ and Sesquiterpenoids by Catalytic C−C Activation of Cyclopentanones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Si‐Hua Hou
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | | | - Mengxi Zhang
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
42
|
Hari DP, Abell JC, Fasano V, Aggarwal VK. Ring-Expansion Induced 1,2-Metalate Rearrangements: Highly Diastereoselective Synthesis of Cyclobutyl Boronic Esters. J Am Chem Soc 2020; 142:5515-5520. [PMID: 32146807 DOI: 10.1021/jacs.0c00813] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The broad synthetic utility of organoboron compounds stems from their ready ability to undergo 1,2-migrations. Normally, such shifts are induced by α-leaving groups or by reactions of alkenyl boronates with electrophiles. Herein, we present a new strategy to induce 1,2-metalate rearrangements, via ring expansion of vinylcyclopropyl boronate complexes activated by electrophiles. This leads to a cyclopropane-stabilized carbocation, which triggers ring expansion and concomitant 1,2-metalate rearrangement. This novel process delivers medicinally relevant 1,2-substituted cyclobutyl boronic esters with high levels of diastereoselectivity. A wide range of organolithiums and Grignard reagents, electrophiles, and vinylcyclopropyl boronic esters can be used. The methodology was applied to a short, stereoselective synthesis of (±)-grandisol. Computational studies indicate that the reaction proceeds via a nonclassical carbocation followed by anti-1,2-migration.
Collapse
Affiliation(s)
- Durga Prasad Hari
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Joseph C Abell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Valerio Fasano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
43
|
Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings. Catalysts 2020. [DOI: 10.3390/catal10030296] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001.
Collapse
|
44
|
Davenport R, Silvi M, Noble A, Hosni Z, Fey N, Aggarwal VK. Visible‐Light‐Driven Strain‐Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raffael Davenport
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Mattia Silvi
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Zied Hosni
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Natalie Fey
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
45
|
Green JC, Zanghi JM, Meek SJ. Diastereo- and Enantioselective Synthesis of Homoallylic Amines Bearing Quaternary Carbon Centers. J Am Chem Soc 2020; 142:1704-1709. [PMID: 31934766 DOI: 10.1021/jacs.9b11529] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A Cu-catalyzed method for the efficient enantio- and diastereoselective synthesis of chiral homoallylic amines bearing a quaternary carbon and an alkenylboron is disclosed. Transformations are promoted by a readily prepared (phosphoramidite)-Cu complex and involve bench-stable γ,γ-disubstituted allyldiborons and benzyl imines; products are obtained in up to 82% yield, >20:1 dr, and >99:1 er. Reactions proceed via stereodefined boron-stabilized allylic Cu species formed by an enantioselective transmetalation. Utility of the 1-amino-3-alkenylboronate products is highlighted by a variety of synthetic transformations.
Collapse
Affiliation(s)
- Jacob C Green
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Joseph M Zanghi
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Simon J Meek
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
46
|
Kuang Z, Yang K, Zhou Y, Song Q. Base-promoted domino-borylation-protodeboronation strategy. Chem Commun (Camb) 2020; 56:6469-6479. [PMID: 32436551 DOI: 10.1039/d0cc00614a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since a nucleophilic sp2 boron species can be generated in situ under the combined action of an inorganic base, B2pin2 and methanol, research on base-promoted nucleophilic borylation of unsaturated compounds has attracted significant attention. A series of multi-borylated compounds, such as alkyl 1,2-bis(boronates), gem-diborylalkanes, and 1,1,2-tris(boronates), are constructed based on this strategy. These multi-borylated compounds can in turn undergo selective protodeboronation, creating a variety of useful boron-containing compounds. This Feature article documents the development of base-promoted domino-borylation-protodeboronation (DBP) strategies and their applications in organic synthesis.
Collapse
Affiliation(s)
- Zhijie Kuang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China.
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China. and Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
47
|
Salvado O, Gava R, Fernández E. Diborylalkyllithium Salts Trigger Regioselective Ring Opening of Vinyl Aziridines. Org Lett 2019; 21:9247-9250. [DOI: 10.1021/acs.orglett.9b03672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oriol Salvado
- Dept. Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Riccardo Gava
- Dept. Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Elena Fernández
- Dept. Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
48
|
Sugiura M, Ashikari Y, Takahashi Y, Yamaguchi K, Kotani S, Nakajima M. Lewis Base-Catalyzed Enantioselective Conjugate Reduction of β,β-Disubstituted α,β-Unsaturated Ketones with Trichlorosilane: E/ Z-Isomerization, Regioselectivity, and Synthetic Applications. J Org Chem 2019; 84:11458-11473. [PMID: 31449412 DOI: 10.1021/acs.joc.9b01298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chiral bisphosphine dioxide-catalyzed asymmetric conjugate reduction of acyclic β,β-disubstituted α,β-unsaturated ketones with trichlorosilane affords saturated ketones having a stereogenic carbon center at the carbonyl β-position with high enantioselectivities. Because the E/Z-isomerizations of enone substrates occur concomitantly, reduction products with the same absolute configurations are obtained from either (E)- or (Z)-enones. Conjugate reduction is accelerated in the presence of an electron-rich aryl group at the β-position of the enone owing to its carbocation-stabilizing ability. Computational studies were also conducted in order to elucidate the origin of the observed enantioselectivity. The regio- and enantioselective reductions of dienones were realized and applied to the syntheses of ar-turmerone, turmeronol A, mutisianthol, and jungianol, which are optically active sesquiterpenes.
Collapse
Affiliation(s)
- Masaharu Sugiura
- Faculty of Pharmaceutical Sciences , Sojo University , 4-22-1 Ikeda , Nishi-ku, Kumamoto 860-0082 , Japan
| | - Yasuhiko Ashikari
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Chuo-ku, Kumamoto 862-0973 , Japan
| | - Yuka Takahashi
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Chuo-ku, Kumamoto 862-0973 , Japan
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences , Sojo University , 4-22-1 Ikeda , Nishi-ku, Kumamoto 860-0082 , Japan
| | - Shunsuke Kotani
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Chuo-ku, Kumamoto 862-0973 , Japan
| | - Makoto Nakajima
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Chuo-ku, Kumamoto 862-0973 , Japan
| |
Collapse
|
49
|
Clausen F, Kischkewitz M, Bergander K, Studer A. Catalytic protodeboronation of pinacol boronic esters: formal anti-Markovnikov hydromethylation of alkenes. Chem Sci 2019; 10:6210-6214. [PMID: 31360428 PMCID: PMC6585874 DOI: 10.1039/c9sc02067e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 01/02/2023] Open
Abstract
Pinacol boronic esters are highly valuable building blocks in organic synthesis. In contrast to the many protocols available on the functionalizing deboronation of alkyl boronic esters, protodeboronation is not well developed. Herein we report catalytic protodeboronation of 1°, 2° and 3° alkyl boronic esters utilizing a radical approach. Paired with a Matteson-CH2-homologation, our protocol allows for formal anti-Markovnikov alkene hydromethylation, a valuable but unknown transformation. The hydromethylation sequence was applied to methoxy protected (-)-Δ8-THC and cholesterol. The protodeboronation was further used in the formal total synthesis of δ-(R)-coniceine and indolizidine 209B.
Collapse
Affiliation(s)
- Florian Clausen
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstraβe 40 , 48149 Münster , Germany .
| | - Marvin Kischkewitz
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstraβe 40 , 48149 Münster , Germany .
| | - Klaus Bergander
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstraβe 40 , 48149 Münster , Germany .
| | - Armido Studer
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität , Corrensstraβe 40 , 48149 Münster , Germany .
| |
Collapse
|
50
|
Bochat AJ, Shoba VM, Takacs JM. Ligand-Controlled Regiodivergent Enantioselective Rhodium-Catalyzed Alkene Hydroboration. Angew Chem Int Ed Engl 2019; 58:9434-9438. [PMID: 31067341 DOI: 10.1002/anie.201903308] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Indexed: 12/31/2022]
Abstract
Regiocontrol in the rhodium-catalyzed boration of vinyl arenes is typically dominated by the presence of the conjugated aryl substituent. However, small differences in TADDOL-derived chiral monophosphite ligands can override this effect and direct rhodium-catalyzed hydroboration of β-aryl and β-heteroaryl methylidenes by pinacolborane to selectively produce either chiral primary or tertiary borated products. The regiodivergent behavior is coupled with enantiodivergent addition of the borane. The nature of the TADDOL backbone substituents and that of the phosphite moiety function synergistically to direct the sense and extent of regioselectivity and enantioinduction. Twenty substrates are shown to undergo each reaction mode with regioselectivity values reaching greater than 20:1 and enantiomer ratios reaching up to 98:2. A variety of subsequent transformations illustrate the potential utility of each product.
Collapse
Affiliation(s)
- Andrew J Bochat
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, 807 Hamilton Hall, Lincoln, NE, 68588-0304, USA
| | - Veronika M Shoba
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, 807 Hamilton Hall, Lincoln, NE, 68588-0304, USA
| | - James M Takacs
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, 807 Hamilton Hall, Lincoln, NE, 68588-0304, USA
| |
Collapse
|