1
|
Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3020. [PMID: 34835783 PMCID: PMC8626004 DOI: 10.3390/nano11113020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.
Collapse
Affiliation(s)
- Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Department of Physics, Moscow Region State University, Very Voloshinoy Street, 24, 141014 Mytishi, Russia
| | - Marianna V. Kharlamova
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/2, 1060 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria;
| | - Maxim P. Nikitin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
| |
Collapse
|
2
|
Kharlamova MV, Kramberger C. Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2863. [PMID: 34835628 PMCID: PMC8623637 DOI: 10.3390/nano11112863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs), which possess electrical and thermal conductivity, mechanical strength, and flexibility, and are ultra-light weight, are an outstanding material for applications in nanoelectronics, photovoltaics, thermoelectric power generation, light emission, electrochemical energy storage, catalysis, sensors, spintronics, magnetic recording, and biomedicine. Applications of SWCNTs require nanotube samples with precisely controlled and customized electronic properties. The filling of SWCNTs is a promising approach in the fine-tuning of their electronic properties because a large variety of substances with appropriate physical and chemical properties can be introduced inside SWCNTs. The encapsulation of electron donor or acceptor substances inside SWCNTs opens the way for the Fermi-level engineering of SWCNTs for specific applications. This paper reviews the recent progress in applications of filled SWCNTs and highlights challenges that exist in the field.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/2, 1060 Vienna, Austria
- Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| |
Collapse
|
3
|
Su L, Shu L, Shi B, Hang Y, Huang J. Construction of Enhanced Photostability Anthraquinone-Type Nanovesicles Based on a Novel Two-Step Supramolecular Assembly Strategy and Their Application on Multiband Laser-Responsive Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43458-43472. [PMID: 34464092 DOI: 10.1021/acsami.1c14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The photostability and dispersity under aggregation states always become an obstacle for the development of small-molecular organic dye (SMOD) composites. Herein, a novel supramolecular assembly strategy with a two-step assembly method is implemented to encapsulate SMODs for improving their photostability and acquiring uniformly dispersed nanoaggregates in aqueous solution. By the novel assembly strategy, photodegradation rates of the anthraquinone-type dyes can decrease significantly, and the stability of dispersed nanoassembly bodies can be improved in solution. Based on the two-step supramolecular assembly strategy, a new kind of aqueous processing composite system can be developed for preparing multiband laser-responsive devices and in situ healing of optical composite films. This two-step supramolecular assembly strategy can provide a new template and reference for improving the defects of SMODs and fabricating high-performance optical devices.
Collapse
Affiliation(s)
- Linlin Su
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lan Shu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Binbin Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yixiao Hang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jin Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Zhang T, Wang Y, Ma X, Hou C, Lv S, Jia D, Lu Y, Xue P, Kang Y, Xu Z. A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomater Sci 2019; 8:473-484. [PMID: 31755481 DOI: 10.1039/c9bm01692a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared to normal tissues, unique conditions in the tumor microenvironment, such as a lower pH, can induce accurate release of a drug into specific lesions. This strategy provides an efficient approach to overcome the issues of unexpected drug leakage and poor circulation stability, thereby reducing the side effects and enhancing the effect of cancer treatment. In this study, we designed a class of acid activatable supramolecular nano-prodrugs (DOM@DOX) with a bottlebrush architecture based on the dextran (DEX) polysaccharide, which connects with a hydrophilic polyethylene glycol chain by atom transfer radical polymerization and further conjugates with an anticancer drug doxorubicin (DOX) at the backbone of the copolymer via an acidity-responsive hydrazine bond. Furthermore, the DOM@DOX prodrug has a high drug loading up to 48 wt% for DOX, and the prodrug can maintain a stable nano-sized spherical shape in aqueous solution by a self-assembly strategy. In an acidic environment inside tumor cells, the hydrazine bond of the prodrug breaks, leading to the release of DOX from parental micelles. Owing to the small size of the carrier, the prodrug exhibits good intratumoral permeability, good circulation stability and significant tumor suppression efficiency in tumor-bearing mouse models, which is beneficial for the development of new generation nanomedicine for enhanced chemotherapy.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yajun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xianbin Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, P.R. China
| | - Shuangyu Lv
- School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Die Jia
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yi Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
5
|
Beauté L, McClenaghan N, Lecommandoux S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv Drug Deliv Rev 2019; 138:148-166. [PMID: 30553952 DOI: 10.1016/j.addr.2018.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
The use of nanotechnology to improve treatment efficacy and reduce side effects is central to nanomedicine. In this context, stimuli-responsive drug delivery systems (DDS) such as chemical/physical gels or nanoparticles such as polymersomes, micelles or nanogels are particularly promising and are the focus of this review. Several stimuli have been considered but light as an exogenous trigger presents many advantages that are pertinent for clinical applications such as high spatial and temporal control and low cost. Underlying mechanisms required for the release of therapeutic agents in vitro and in vivo range from the molecular scale, namely photoisomerization, hydrophobicity photoswitching, photocleavage or heat generation via nanoheaters, through to the macromolecular scale. As well as these approaches, DDS destabilization, DDS permeation pore unblocking and formation are discussed.
Collapse
Affiliation(s)
- Louis Beauté
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255, 351 Cours de la Libération, Talence 33405, France; Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, Bordeaux INP, UMR CNRS 5629, 16 Avenue Pey-Berland, Pessac 33607, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255, 351 Cours de la Libération, Talence 33405, France.
| | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, Bordeaux INP, UMR CNRS 5629, 16 Avenue Pey-Berland, Pessac 33607, France.
| |
Collapse
|
6
|
Chae S, Kim D, Lee KJ, Lee D, Kim YO, Jung YC, Rhee SD, Kim KR, Lee JO, Ahn S, Koh B. Encapsulation and Enhanced Delivery of Topoisomerase I Inhibitors in Functionalized Carbon Nanotubes. ACS OMEGA 2018; 3:5938-5945. [PMID: 30023933 PMCID: PMC6044808 DOI: 10.1021/acsomega.8b00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 05/04/2023]
Abstract
The topoisomerase I inhibitors SN-38 and camptothecin (CPT) have shown potent anticancer activity, but water insolubility and metabolic instability limits their clinical application. Utilizing carbon nanotubes as a protective shell for water-insoluble SN-38 and CPT while maintaining compatibility with aqueous media via a carboxylic acid-functionalized surface can thus be a strategy to overcome this limitation. Through hydrophobic-hydrophobic interactions, SN-38 and CPT were successfully encapsulated in carboxylic acid functionalized single-walled carbon nanotubes and dispersed in water. The resulting cell proliferation inhibition and drug distribution profile inside the cells suggest that these drug-encapsulated carbon nanotubes can serve as a promising delivery strategy for water-insoluble anticancer drugs.
Collapse
Affiliation(s)
- Sieun Chae
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Dahee Kim
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kyung-jin Lee
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Dasol Lee
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Young-O Kim
- Institute
of Advanced Composite Materials, Korea Institute
of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea
| | - Yong Chae Jung
- Institute
of Advanced Composite Materials, Korea Institute
of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea
| | - Sang Dal Rhee
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kwang Rok Kim
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jeong-O Lee
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sunjoo Ahn
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Byumseok Koh
- Advanced
Materials Division and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro,
Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
7
|
Joshi A, Ramachandran CN. Structural, optoelectronic and charge transport properties of the complexes of indigo encapsulated in carbon nanotubes. Phys Chem Chem Phys 2018; 20:15158-15167. [PMID: 29789826 DOI: 10.1039/c7cp08686e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using the dispersion-corrected density functional B97D and 6-31g(d,p) basis set, the structural, stability, electronic, optical and charge transport properties of the complexes formed by encapsulating indigo inside carbon nanotubes (CNTs) of varying diameters are investigated. Based on the stabilization energy of the complexes indigo@(n,n)CNT (where n = 6, 7 and 8), indigo@(7,7)CNT is shown to be the most stable owing to the ideal diameter of (7,7)CNT for encapsulating indigo. The nature of the interaction between the guest and the host is investigated by means of energy decomposition analysis employing the symmetry adapted perturbation theory. Electronic properties such as the ionization energy, the electron affinity and the energy gap between the highest occupied and lowest unoccupied molecular orbitals (ΔEH-L) of the complexes are determined. The low values of ΔEH-L (<1 eV) for the complexes suggest that they can act as narrow energy gap semiconductors. All the complexes exhibit high hole and electron mobilities which vary inversely with respect to the diameter of the CNT. Using the time-dependent density functional theoretical method, the absorption properties are predicted for the most stable complex indigo@(7,7)CNT. The presence of charge transfer peaks in the visible and near-infrared regions of the electromagnetic spectrum suggests that the complexes are suitable for optoelectronic devices such as solar cells.
Collapse
Affiliation(s)
- Ankita Joshi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | | |
Collapse
|
8
|
Mehrjouei E, Akbarzadeh H, Shamkhali AN, Abbaspour M, Salemi S, Abdi P. Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study. Mol Pharm 2017; 14:2273-2284. [PMID: 28595387 DOI: 10.1021/acs.molpharmaceut.7b00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.
Collapse
Affiliation(s)
- Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili , 56199-11367 Ardabil, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Sirous Salemi
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Pooya Abdi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran , 14395-1561 Tehran, Iran
| |
Collapse
|
9
|
Chaban VV, Pal S, Prezhdo OV. Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations. J Am Chem Soc 2016; 138:15927-15934. [DOI: 10.1021/jacs.6b08082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vitaly V. Chaban
- Instituto
de Ciência e Tecnologia, Universidade Federal de São Paulo, São
José dos Campos, 12231-280 São Paulo, Brazil
| | - Sougata Pal
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Lin G, Mi P, Chu C, Zhang J, Liu G. Inorganic Nanocarriers Overcoming Multidrug Resistance for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600134. [PMID: 27980988 PMCID: PMC5102675 DOI: 10.1002/advs.201600134] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Indexed: 02/05/2023]
Abstract
Cancer multidrug resistance (MDR) could lead to therapeutic failure of chemotherapy and radiotherapy, and has become one of the main obstacles to successful cancer treatment. Some advanced drug delivery platforms, such as inorganic nanocarriers, demonstrate a high potential for cancer theranostic to overcome the cancer-specific limitation of conventional low-molecular-weight anticancer agents and imaging probes. Specifically, it could achieve synergetic therapeutic effects, demonstrating stronger killing effects to MDR cancer cells by combining the inorganic nanocarriers with other treatment manners, such as RNA interference and thermal therapy. Moreover, the inorganic nanocarriers could provide imaging functions to help monitor treatment responses, e.g., drug resistance and therapeutic effects, as well as analyze the mechanism of MDR by molecular imaging modalities. In this review, the mechanisms involved in cancer MDR and recent advances of applying inorganic nanocarriers for MDR cancer imaging and therapy are summarized. The inorganic nanocarriers may circumvent cancer MDR for effective therapy and provide a way to track the therapeutic processes for real-time molecular imaging, demonstrating high performance in studying the interaction of nanocarriers and MDR cancer cells/tissues in laboratory study and further shedding light on elaborate design of nanocarriers that could overcome MDR for clinical translation.
Collapse
Affiliation(s)
- Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Department of Chemical and Biomolecular EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Peng Mi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University, and Collaborative Innovation Center for BiotherapyChengduSichuan610041China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Department of UltrasoundXijing HospitalXi'anShaanXi710032China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
11
|
pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations. J Mol Graph Model 2016; 70:70-76. [PMID: 27677150 DOI: 10.1016/j.jmgm.2016.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022]
Abstract
In the present study, we describe here the pH condition activating doxorubicin (DOX) anticancer drugs loading and release over single-wall carbon nanotube (SWNT) non-covalently wrapped with chitosan (CS). The possibility of drug displacement on DOX/CS/SWNT nanocarrier was investigated using molecular dynamics simulations. The drug loading and release were monitored via displacement analysis and binding energy calculations. The simulated results clearly showed that the drugs well interacted with the CS/SWNT at physiological pH (pH 7.4), where CS was in the deprotonated form. Contrastingly, in weakly acidic environments (pH 5.0-6.5) which is a pH characteristics of certain cancer environments, the protonated CS became loosen wrapped around the SWNT and triggered drugs release as a result of charge-charge repulsion between CS and drug molecules. The obtained data fulfil the understanding at atomic level of drug loading and release controlled by pH-sensitive polymer, which might be useful for further cancer therapy researches.
Collapse
|
12
|
Serpell C, Kostarelos K, Davis BG. Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS CENTRAL SCIENCE 2016; 2:190-200. [PMID: 27163049 PMCID: PMC4850505 DOI: 10.1021/acscentsci.6b00005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 05/31/2023]
Abstract
Carbon nanotubes (CNTs) are cylindrical sheets of hexagonally ordered carbon atoms, giving tubes with diameters on the order of a few nanometers and lengths typically in the micrometer range. They may be single- or multiwalled (SWCNTs and MWCNTs respectively). Since the seminal report of their synthesis in 1991, CNTs have fascinated scientists of all stripes. Physicists have been intrigued by their electrical, thermal, and vibrational potential. Materials scientists have worked on integrating them into ultrastrong composites and electronic devices, while chemists have been fascinated by the effects of curvature on reactivity and have developed new synthesis and purification techniques. However, to date no large-scale, real-life biotechnological CNT breakthrough has been industrially adopted and it is proving difficult to justify taking these materials forward into the clinic. We believe that these challenges are not the end of the story, but that a viable carbon nanotube biotechnology is one in which the unique properties of nanotubes bring about an effect that would be otherwise impossible. In this Outlook, we therefore seek to reframe the field by highlighting those biological applications in which the singular properties of CNTs provide some entirely new activity or biological effect as a pointer to "what could be".
Collapse
Affiliation(s)
- Christopher
J. Serpell
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.
- School
of Physical Sciences, Ingram Building, University
of Kent, Canterbury, Kent, CT2 7NH, U.K.
| | - Kostas Kostarelos
- Nanomedicine
Lab, School of Medicine and National Graphene Institute, Faculty of
Medical & Human Sciences, University
of Manchester, AV Hill
Building, Manchester M13
9PT, U.K.
| | - Benjamin G. Davis
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
13
|
Riedl SJ, Pasquale EB. Targeting the Eph System with Peptides and Peptide Conjugates. Curr Drug Targets 2015; 16:1031-47. [PMID: 26212263 PMCID: PMC4861043 DOI: 10.2174/1389450116666150727115934] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/02/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
Abstract
Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.
Collapse
Affiliation(s)
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Yang S, Hao J, Guo X, Huang H, Cui R, Lin G, Li C, Dong J, Sun B. Eu3+:Y2O3@CNTs—a rare earth filled carbon nanotube nanomaterial with low toxicity and good photoluminescence properties. RSC Adv 2015. [DOI: 10.1039/c4ra14456b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New fluorescent nanomaterials—europium-doped yttria filled CNTs with low toxicity and good photoluminescence properties were synthesized using a supercritical method.
Collapse
Affiliation(s)
- Shangyuan Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Jian Hao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Xihong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Huan Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Rongli Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Guoming Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Cheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Jinquan Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| | - Baoyun Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Science (CAS)
- Beijing 100049
- China
| |
Collapse
|
15
|
Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv 2014; 12:563-81. [DOI: 10.1517/17425247.2015.971751] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Lin B, Zhou H, Leaman DW, Goel VK, Agarwal AK, Bhaduri SB. Sustained release of small molecules from carbon nanotube-reinforced monetite calcium phosphate cement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:92-6. [DOI: 10.1016/j.msec.2014.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/08/2014] [Accepted: 06/30/2014] [Indexed: 11/29/2022]
|
17
|
Anastassiou A, Karahaliou EK, Alexiadis O, Mavrantzas VG. Detailed atomistic simulation of the nano-sorption and nano-diffusivity of water, tyrosol, vanillic acid, and p-coumaric acid in single wall carbon nanotubes. J Chem Phys 2014; 139:164711. [PMID: 24182068 DOI: 10.1063/1.4825397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report results from a detailed computer simulation study for the nano-sorption and mobility of four different small molecules (water, tyrosol, vanillic acid, and p-coumaric acid) inside smooth single-wall carbon nanotubes (SWCNTs). Most of the results have been obtained with the molecular dynamics (MD) method, but especially for the most narrow of the CNTs considered, the results for one of the molecules addressed here (water) were further confirmed through an additional Grand Canonical (μVT) Monte Carlo (GCMC) simulation using a value for the water chemical potential μ pre-computed with the particle deletion method. Issues addressed include molecular packing and ordering inside the nanotube for the four molecules, average number of sorbed molecules per unit length of the tube, and mean residence time and effective axial diffusivities, all as a function of tube diameter and tube length. In all cases, a strong dependence of the results on tube diameter was observed, especially in the way the different molecules are packed and organized inside the CNT. For water for which predictions of properties such as local structure and packing were computed with both methods (MD and GCMC), the two sets of results were found to be fully self-consistent for all types of SWCNTs considered. Water diffusivity inside the CNT (although, strongly dependent on the CNT diameter) was computed with two different methods, both of which gave identical results. For large enough CNT diameters (larger than about 13 Å), this was found to be higher than the corresponding experimental value in the bulk by about 55%. Surprisingly enough, for the rest of the molecules simulated (phenolic), the simulations revealed no signs of mobility inside nanotubes with a diameter smaller than the (20, 20) tube. This is attributed to strong phenyl-phenyl attractive interactions, also to favorable interactions of these molecules with the CNT walls, which cause them to form highly ordered, very stable structures inside the nanotube, especially under strong confinement. The interaction, in particular, of the methyl group (present in tyrosol, vanillic acid, and p-coumaric acid) with the CNT walls seems to play a key role in all these compounds causing them to remain practically immobile inside nanotubes characterized by diameters smaller than about 26 Å. It is only for larger-diameter CNTs that tyrosol, vanillic acid, and p-coumaric acid were observed to demonstrate appreciable mobility.
Collapse
|
18
|
Chouhan RS, Qureshi A, Niazi JH. Quantum dot conjugated S. cerevisiae as smart nanotoxicity indicators for screening the toxicity of nanomaterials. J Mater Chem B 2014; 2:3618-3625. [DOI: 10.1039/c4tb00495g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quantum dot conjugatedS. cerevisiaeas smart nanotoxicity indicators for screening the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Raghuraj S. Chouhan
- Sabanci University Nanotechnology Research and Application Center
- 34956 Istanbul, Turkey
| | - Anjum Qureshi
- Sabanci University Nanotechnology Research and Application Center
- 34956 Istanbul, Turkey
| | - Javed H. Niazi
- Sabanci University Nanotechnology Research and Application Center
- 34956 Istanbul, Turkey
| |
Collapse
|
19
|
Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells. Biosens Bioelectron 2014; 51:97-102. [DOI: 10.1016/j.bios.2013.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/06/2013] [Accepted: 07/12/2013] [Indexed: 12/26/2022]
|
20
|
|
21
|
Brahmachari S, Ghosh M, Dutta S, Das PK. Biotinylated amphiphile-single walled carbon nanotube conjugate for target-specific delivery to cancer cells. J Mater Chem B 2014; 2:1160-1173. [DOI: 10.1039/c3tb21334j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Wang J, Wang Y, Liu Y, Liqun RR, Jiang LG, Zheng C, Zhu J. Capillarity-induced loading and release of chemotherapeutic agent within multi-wall carbon nanotubes. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 2013; 65:1899-920. [PMID: 23856410 DOI: 10.1016/j.addr.2013.07.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/02/2013] [Accepted: 07/05/2013] [Indexed: 12/21/2022]
Abstract
The scope of nanotechnology is gaining importance in biology and medicine. Carbon nanotubes (CNTs) have emerged as a promising tool due to their unique properties, high specific surface area, and capacity to cross biological barriers. These properties offer a variety of opportunities for applications in nanomedicine, such as diagnosis, disease treatment, imaging, and tissue engineering. Nevertheless, pristine CNTs are insoluble in water and in most organic solvents; thereby functionalization of their surface is necessary to increase biocompatibility. Derivatization of CNTs also gives the possibility to conjugate different biological and bioactive molecules including drugs, proteins, and targeting ligands. This review focuses on the chemical modifications of CNTs that have been developed to impart specific properties for biological and medical purposes. Biomolecules can be covalently grafted or non-covalently adsorbed on the nanotube surface. In addition, the inner core of CNTs can be exploited to encapsulate drugs, nanoparticles, or radioactive elements.
Collapse
|
24
|
Lelimousin M, Sansom MSP. Membrane perturbation by carbon nanotube insertion: pathways to internalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3639-3646. [PMID: 23418066 DOI: 10.1002/smll.201202640] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Carbon nanotubes (CNTs) can penetrate the membranes of cells, offering prospects for nanomedicine but problems for nanotoxicity. Molecular simulations are used to provide a systematic analysis of the interactions of single-walled and multi-walled CNTs of different radii with a model lipid bilayer membrane. The simulations allow characterization of the mechanism of spontaneous exothermic insertion of CNTs into lipid bilayer membranes. The size and type of CNT determine the nature and extent of the local perturbation of the bilayer. Single-walled CNTs are shown to insert via a two-step mechanism with initial transient formation of a water filled pore followed by full insertion of the CNT into the bilayer. The latter stage is associated with formation of a persistent inverted micelle arrangement of lipid molecules trapped inside the CNT. This suggests a possible vehicle for nano-encapsulation of drugs, enabling their entry into and subsequent release within cells following endocytosis of CNT-containing membranes.
Collapse
|
25
|
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied
Organic
Chemistry and Institute of Polymer Science and Engineering, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Mousavi SZ, Amjad-Iranagh S, Nademi Y, Modarress H. Carbon nanotube-encapsulated drug penetration through the cell membrane: an investigation based on steered molecular dynamics simulation. J Membr Biol 2013; 246:697-704. [PMID: 23979172 DOI: 10.1007/s00232-013-9587-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/08/2013] [Indexed: 11/26/2022]
Abstract
Understanding the penetration mechanisms of carbon nanotube (CNTs)-encapsulated drugs through the phospholipid bilayer cell membrane is an important issue for the development of intracellular drug delivery systems. In the present work, steered molecular dynamics (SMD) simulation was used to explore the possibility of penetration of a polar drug, paclitaxel (PTX), encapsulated inside the CNT, through a dipalmitoylphosphatidylcholine bilayer membrane. The interactions between PTX and CNT and between PTX and the confined water molecules inside the CNT had a significant effect on the penetration process of PTX. The results reveal that the presence of a PTX molecule increases the magnitude of the pulling force. The effect of pulling velocity on the penetration mechanism was also investigated by a series of SMD simulations, and it is shown that the pulling velocity had a significant effect on pulling force and the interaction between lipid bilayer and drug molecule.
Collapse
Affiliation(s)
- Seyedeh Zahra Mousavi
- Department of Chemical Engineering, Amirkabir University of Technology, Hafez Avenue, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Na HK, Kim MH, Lee J, Kim YK, Jang H, Lee KE, Park H, Heo WD, Jeon H, Choi IS, Lee Y, Min DH. Cytoprotective effects of graphene oxide for mammalian cells against internalization of exogenous materials. NANOSCALE 2013; 5:1669-1677. [PMID: 23334460 DOI: 10.1039/c2nr33800a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To date, graphene oxide (GO), an oxidized version of graphene, has been utilized in many research areas including bioapplications such as drug delivery and bioanalysis. Unlike other spherical or polygonal nanomaterials, GO exhibits a sheet-like structure, which in itself suggests interesting applications based on its shape. Here we show that GO can protect cells from internalization of toxic hydrophobic molecules, nanoparticles, and nucleic acids such as siRNA and plasmid DNA by interacting with cell surface lipid bilayers without noticeably reducing cell viability. Furthermore, the cytoprotective effect of GO against the internalization of extracellular materials enabled spatial control over gene transfection through region-selective gene delivery only into GO-untreated cells, and not into the GO-treated cells.
Collapse
Affiliation(s)
- Hee-Kyung Na
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fang W, Tang S, Liu P, Fang X, Gong J, Zheng N. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3816-3822. [PMID: 22903778 DOI: 10.1002/smll.201200962] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/22/2012] [Indexed: 06/01/2023]
Abstract
A versatile system combining chemotherapy with photothermal therapy for cancer cells using Pd nanosheet-covered hollow mesoporous silica nanoparticles is reported. While the hollow mesoporous silica core can be used to load anticancer drugs (i.e., doxorubicin) for chemotherapy, the Pd nanosheets on the surface of particles can convert NIR light into heat for photothermal therapy. More importantly, the loading of Pd nanosheets on hollow mesoporous silica nanospheres can dramatically increase the amount of cellular internalization of the Pd nanosheets: almost 11 times higher than the unloaded Pd nanosheets. The as-prepared nanocomposites efficiently deliver both drugs and heat to cancer cells to improve the therapeutic efficiency with minimal side effects. Compared with chemotherapy or photothermal therapy alone, the combination of chemotherapy and phototherapy can significantly improve the therapeutic efficacy, exhibiting a synergistic effect.
Collapse
Affiliation(s)
- Weijun Fang
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
29
|
Rungnim C, Arsawang U, Rungrotmongkol T, Hannongbua S. Molecular dynamics properties of varying amounts of the anticancer drug gemcitabine inside an open-ended single-walled carbon nanotube. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Koh B, Kim G, Yoon HK, Park JB, Kopelman R, Cheng W. Fluorophore and dye-assisted dispersion of carbon nanotubes in aqueous solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11676-11686. [PMID: 22812904 DOI: 10.1021/la302004p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA short oligo, surfactant, peptides, and polymer-assisted dispersion of single-walled carbon nanotube (SWCNTs) in aqueous solution have been intensively studied. It has been suggested that van der Waals interaction, π-π stacking, and hydrophobic interaction are major factors that account for the SWCNTs dispersion. Fluorophore and dye molecules such as Rhodamine B and fluorescein have both hydrophilic and hydrophobic moieties. These molecules also contain π-conjugated systems that can potentially interact with SWCNTs to induce its dispersion. Through a systematic study, here we show that SWCNTs can be dispersed in aqueous solution in the presence of various fluorophore or dye molecules. However, the ability of a fluorophore or dye molecule to disperse SWCNTs is not correlated with the stability of the fluorophore/dye-SWCNT complex, suggesting that the on-rate of fluorophore/dye binding to SWCNTs may dominate the efficiency of this process. We also examined the uptake of fluorophore molecules by mammalian cells when these molecules formed complexes with SWCNTs. The results can have potential applications in the delivery of poor cell-penetrating fluorophore molecules.
Collapse
Affiliation(s)
- Byumseok Koh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
31
|
Canto ED, Natali M, Movia D, Giordani S. Photo-controlled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes. Phys Chem Chem Phys 2012; 14:6034-43. [DOI: 10.1039/c2cp40275k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
|